Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SIPOLAR ANALOG INTEGRATED CIRCUIT μ PC1099

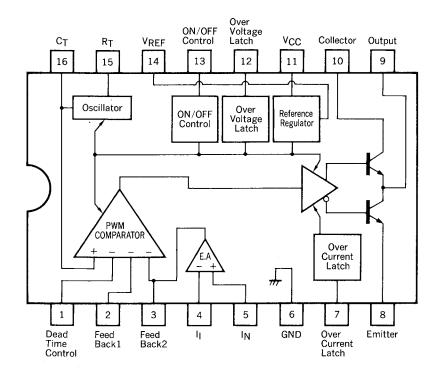
SWITCHING REGULATOR CONTROL CIRCUIT FOR 500 kHz OPERATION

 μ PC1099 is a control IC for the high performance switching power supply equipped with high speed/high sensitivity protection circuit. Control ICs for the high performance switching power supply have 3 series of μ PC1099, 1905, 1906. The features of μ PC1099 are as follows:

Low voltage start up (11 V TYP.) → Suiting for flyback mode converter, DC-DC converter, etc.

CONTROL IC FAMILY FOR THE HIGH PERFORMANCE SWITCHING POWER SUPPLY

PART NUMBER	SUPPLY VOLTAGE	START-UP THRESHOLD VOLTAGE	THRESHOLD HYSTERESIS	OVER CURRENT LATCH PROTECTION MODE
μPC1099	26 V	11 V	3 V	Pulse by pulse current limiting
μPC1905	31 V	16.5 V	6.5 V	Pulse by pulse current limiting
μPC1906	31 V	16.5 V	6.5 V	Shut down and V _{CC} reset

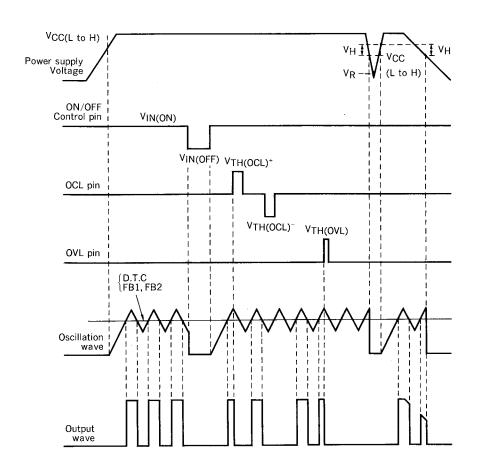

FEATURES

- Directly drive power MOS FET (totem pole circuit adopted)
- Pulse by pulse over current latch circuit incorporated
- Over voltage latch circuit incorporated
- Under voltage lockout circuit incorporated
- Remote control circuit incorporated
- Error amplifier incorporated

PART NUMBER	PACKAGE	QUALITY GRADE
μPC1099CX	16 pin plastic DIP (300 mil)	Chanadanal
μPC1099GS	16 pin plastic SOP (300 mil)	Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

PIN CONNECTION DIAGRAM (Top View)

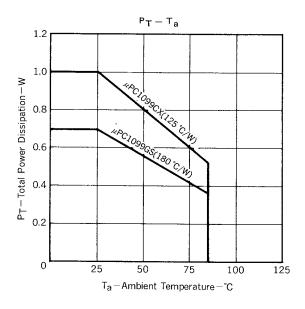

ABSOLUTE MAXIMUM RATING ($T_a = 25$ °C)

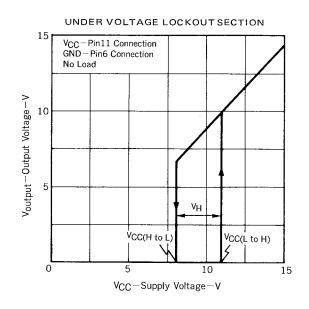
PARAMETER		SYMBOL	RATING	UNIT
Supply Voltage		Vcc	26	V
Output Voltage		Vc	26	V
Output Current		IC(DC)	100	mA
Peak Output Current		C (peak)	1.2	Α
Total	μPC1099CX	PT (T _a = 25 °C)	1 000	mW
Power Dissipation		694	mW	
Operation Temperat	Operation Temperature		-20 to +85	°C
Storage Temperature		T _{stg}	-55 to +150	°C

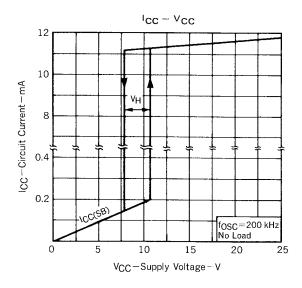
RECOMMENDED OPERATION REQUIREMENTS

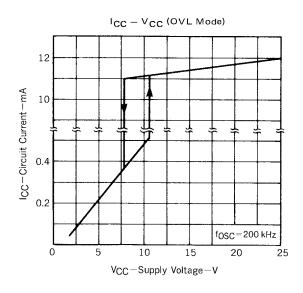
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	Vcc	11.5	15	24	V
Oscillation Frequency	fosc	50	200	500	kHz
Output Load Capacitance	СL	_	2 200	3 000	pF

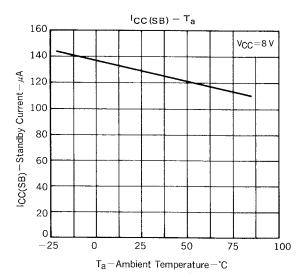
OPERATION WAVES

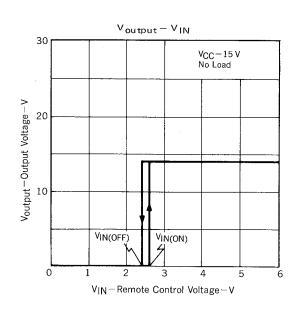


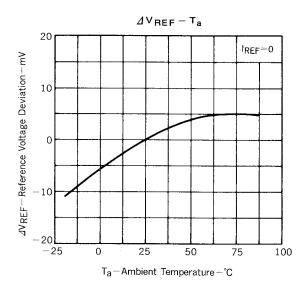

ELECTRICAL CHARACTERISTICS (T $_{a}$ = 25 $^{\circ}$ C, V $_{CC}$ = 15 V, C $_{T}$ = 470 pF, R $_{T}$ \leftrightarrows 10 k Ω , f $_{OSC}$ = 200 kHz)

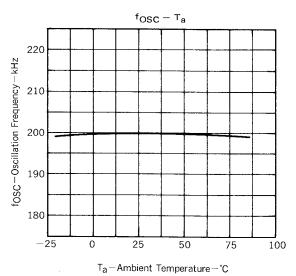

вьоск	PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
	Standby Current	ICC (SB)	0.05	0.1	0.2	mA	$V_{CC} = 8 \text{ V}, -10 ^{\circ}\text{C} \le T_a \le 85 ^{\circ}\text{C}$
tal	Circuit Current at OVL Operation Mode	ICC (OVL)		10		mA	
Total	Circuit Current at Off Mode	¹CC (OFF)		10		mA	
	Circuit Current	Icc		10	15	mA	V _{CC} = V _C = 24 V, V _D = 2.7 V, no load
Under Voltage Lockout Section	Start-Up Threshold Voltage	VCC (L to H)	10,5	11	11.5	V	
Und Volt Loc Sect	Threshold Hysteresis	V _H	2.8	3	3.2	٧	
	Output Voltage	V _{REF}	4.8	5	5.2	V	I _{REF} = 0
Itage	Line Regulation	REGIN		1	10	mV	11.5 V ≤ V _{CC} ≤ 20 V, I _{REF} = 0
, v	Load Regulation	REGL		6.5	12	mV	0 ≤ I _{REF} ≤ 3 mA
Reference Voltage Section	Output Voltage Temperature Coefficient	V _{REF/⊿} T		400	700	μV/°C	I _{REF} = 0, -10 °C ≤ T _a ≤ +85 °C
I II S	Short Circuit Current	I _{O short}		13		mA	V _{REF} = 0
	Input Bias Current	lΒ			10	μΑ	
tion	Low Level Threshold Voltage	V _{TH} (L)		1.5		V	
PWM Section	High Level Threshold Voltage	V _{TH} (H)		3.5	1.0.3	V	
PWN	Dead Time Temperature Coefficient	⊿DT/⊿T		3		%	$V_D = 0.54 V_{REF},$ -10 °C \leq T ₀ \leq +85 °C
JO.	Oscillation Frequency	fosc	180	200	220	kHz	
Oscillator Section	Frequency Line Regulation	Δf/ΔV _{CC}		1		%	11.5 V ≤ V _{CC} ≤ 24 V
Sec	Frequency Temperature Coefficient	⊿ f/ ⊿ T		2	5	%	-10°C ≤ T _a ≤ +85°C
no	Low Level Output Voltage	V _{OL}			0.5	V	I _{SINK} = 3 mA, V _{CC} = V _C
Output Section	High Level Output Voltage	V _{OH}		V _{CC} 1.6		V	I _{SOURCE} = 30 mA, V _{CC} = V _C
tput	Output Voltage Rise Time	t _r		60		ns	R _L = 15 Ω, C _L = 2 200 pF
no	Output Voltage Fall Time	tf		40		ns	VCC = VC
e = c	Input Voltage at Output ON	V _{IN} (ON)	2.4	2.6	2.8	V	
Remote Control Section	Input Voltage at Output OFF	VIN(OFF)	2.2	2.4	2.6	V	
ကြီးပဲကို	Hysteresis Width	٧ _H	0.1	0.2	0.3	V	
e C	Over Voltage Threshold Voltage	V _{TH} (OVL)	2.0	2.4	2.8	V	-10 °C ≤ T _a ≤ +85 °C
Over Voltage Latch Section	Input Bias Current	IB(OVL)			4	μΑ	OVL pin voltage = V _{TH} (OVL)
er V	OVL Reset Voltage	V _R (OVL)		2		V	
Ľ6	Delay to Output	td(OVL)		750		ns	
	Over Current Threshold Voltage	V _{TH} (OCL)+	200	220	240	mV	-10 °C ≤ T _a ≤ +85 °C
ent	Over Current Threshold Voltage	VTH (OCL)	-230	-210	-190	mV	-10 °C ≤ T _a ≤ +85 °C
Curr Sec	OCL Pin Output Current	IB (OCL)		250		μΑ	
Over Current Latch Section	Delay to Output	td(OCL)+		120		ns	
	Delay to Output	td(OCL)		160		ns	

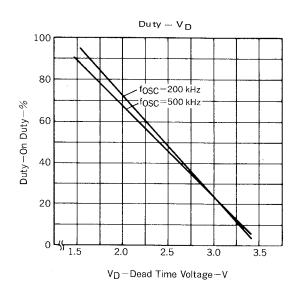

BLOCK	PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
	Input Bias Current	IB (AMP)			1	μΑ	V _{IN} = 2.5 V
ection	Open-Loop Voltage Gain	Αυ	60	80		dB	V _{FB} = 2.9 V
ဟ	Unit Gain Bandwidth	f _{unity}	1	1.6		MHz	
lifier	High Level Output Voltage	V _{om} +	3.0			V	
Amp	Low Level Output Voltage	v _{om} -			1.0	V	
Error	Common Mode Input Voltage Range	V _{ICM} +	3			V	11.5 V ≤ V _{CC} ≤ 24 V,
	Common Mode Input Voltage Range	V _{ICM} -			-0.3	V	-10 °C \leq T _a \leq +85 °C

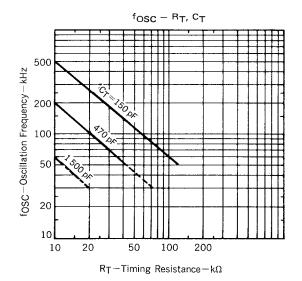

TYPICAL CHARACTERISTICS ($T_a = 25$ °C, $V_{CC} = 15$ V)

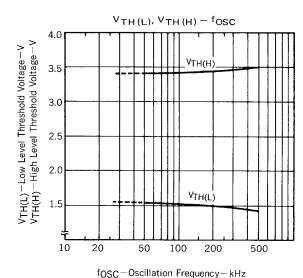


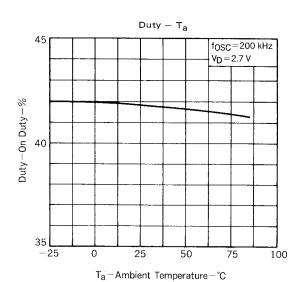


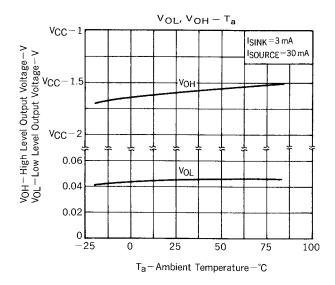


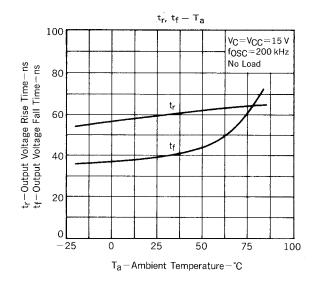


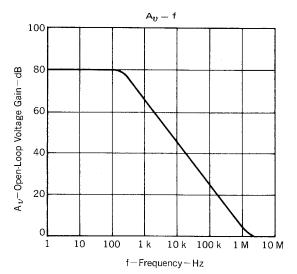


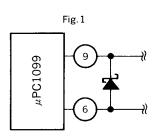


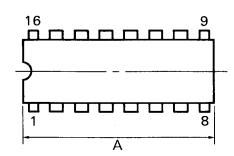


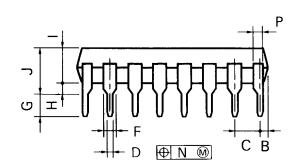


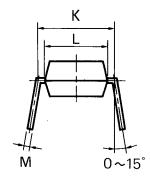








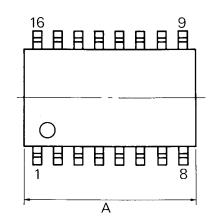

NOTE: When under-shoot voltage at pin 9 occurs, it must be cramped to prevent from wrong operation. See Fig. 1.

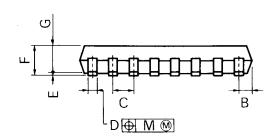


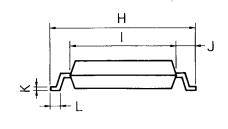
16PIN PLASTIC DIP (300 mil)

 μ PC1099CX

P16C-100-300B


NOTES


- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	20.32 MAX.	0.800 MAX.
В	1.27 MAX.	0.050 MAX.
С	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ^{±0.10}	0.020 + 0.004
F	1.1 MIN.	0.043 MIN.
G	3.5 ^{±0.3}	0.138 ^{±0.012}
Н	0.51 MIN.	0.020 MIN.
ı	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	7.62 (T.P.)	0.300 (T.P.)
L	6.5	0.256
М	0.25 -0.10	0.010 + 0.004
N	0.25	0.01
Р	1.1 MIN.	0.043 MIN.

16PIN PLASTIC SOP (300 mil)

 μ PC1099GS

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

P16GM-50-300B-1

ITEM	MILLIMETERS	INCHES
Α	10.46 MAX.	0.412 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	0.40 + 0.10	0.016 -0.003
E	0.1 ^{±0.1}	0.004 ±0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
Н	7.7 ^{±0.3}	0.303 ^{±0.012}
ı	5.6	0.220
J	1.1	0.043
К	0.20 -0.05	0.008 +0.004
L	0.6 ^{±0.2}	0.024 + 0.008
М	0.12	0.005

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be set when soldering this product.

Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions.

TYPES OF SURFACE MOUNT DEVICE

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

 μ PC1099GS

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 230 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow process: 1, Exposure limit*: None	IR30-00-1
VPS	Peak package's surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow process: 1, Exposure limit*: None	VP15-00-1

^{*:} Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Note: Do not apply more than a single process at once, except for "Partial heating method".

TYPES OF THROUGH HOLE MOUNT DEVICE

 μ PC1099CX

Soldering process	Soldering conditions	Symbol
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or below	

11

(MEMO)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in the field where very high reliability is required including, but not limited to, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or those intend to use "Standard" quality grade NEC devices for the application not intended by NEC, please contact our sales people in advance. Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anti-

crime systems, etc.