INTEGRATED CIRCUITS

DATA SHEET

74LVC1G125Bus buffer/line driver; 3-state

Product specification Supersedes data of 2002 May 28 2002 Nov 18

Bus buffer/line driver; 3-state

74LVC1G125

Product specification

FEATURES

- Wide supply voltage range from 1.65 to 5.5 V
- · High noise immunity
- Complies with JEDEC standard:
 - JESD8-7 (1.65 to 1.95 V)
 - JESD8-5 (2.3 to 2.7 V)
 - JESD8B/JESD36 (2.7 to 3.6 V).
- ±24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- · Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- · Multiple package options
- ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 to +125 °C.

DESCRIPTION

The 74LVC1G125 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

The input can be driven from either 3.3 or 5 V devices. This feature allows the use of this device in a mixed 3.3 and 5 V environment.

This device is fully specified for partial power-down applications using I_{off} . The I_{off} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The 74LVC1G125 provides one non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input ($\overline{\text{OE}}$). A HIGH level at pin $\overline{\text{OE}}$ causes the output to assume a high-impedance OFF-state.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f \le 2.5 \, \text{ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	propagation delay input A to output Y	$V_{CC} = 1.8 \text{ V}; C_L = 30 \text{ pF}; R_L = 1 \text{ k}\Omega$	3.3	ns
		$V_{CC} = 2.5 \text{ V}; C_L = 30 \text{ pF}; R_L = 500 \Omega$	2.2	ns
		$V_{CC} = 2.7 \text{ V}; C_L = 50 \text{ pF}; R_L = 500 \Omega$	2.5	ns
		$V_{CC} = 3.3 \text{ V}; C_L = 50 \text{ pF}; R_L = 500 \Omega$	2.1	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 50 \text{ pF}; R_L = 500 \Omega$	1.7	ns
Cı	input capacitance		5	pF
C _{PD}	power dissipation capacitance per buffer	output enabled; notes 1 and 2	25	pF
		output disabled; notes 1 and 2	6	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = total switching outputs;

 $\Sigma(C_1 \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$

2. The condition is $V_I = GND$ to V_{CC} .

Bus buffer/line driver; 3-state

74LVC1G125

FUNCTION TABLE

See note 1.

INF	OUTPUT	
ŌĒ	Α	Y
L	L	L
L	Н	Н
Н	X	Z

Note

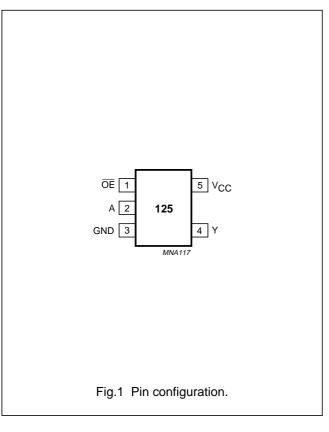
1. H = HIGH voltage level;

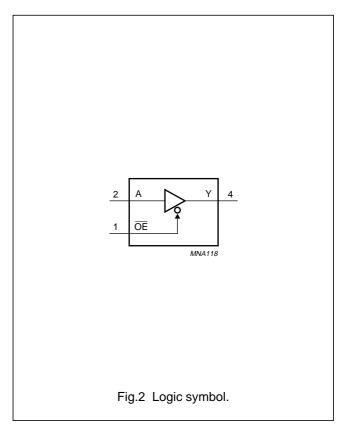
L = LOW voltage level;

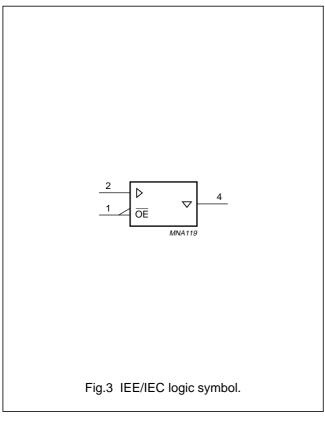
X = don't care;

Z = high-impedance OFF-state.

ORDERING INFORMATION


	PACKAGE							
TYPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE	MARKING		
74LVC1G125GW	-40 to +125 °C	5	SC-88A	plastic	SOT353	VM		
74LVC1G125GV	–40 to +125 °C	5	SC-74A	plastic	SOT753	V25		


PINNING


PIN	SYMBOL	DESCRIPTION
1	ŌĒ	output enable input
2	A	data input A
3	GND	ground (0 V)
4	Υ	data output Y
5	V _{CC}	supply voltage

Bus buffer/line driver; 3-state

74LVC1G125

Bus buffer/line driver; 3-state

74LVC1G125

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		1.65	5.5	V
V _I	input voltage		0	5.5	V
Vo	output voltage	V _{CC} = 1.65 to 5.5 V; enable mode	0	V _{CC}	V
		V _{CC} = 1.65 to 5.5 V; disable mode	0	5.5	V
		V _{CC} = 0 V; Power-down mode	0	5.5	V
T _{amb}	operating ambient temperature		-40	+125	°C
t _r , t _f	input rise and fall times	V _{CC} = 1.65 to 2.7 V	0	20	ns/V
		V _{CC} = 2.7 to 5.5 V	0	10	ns/V

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input diode current	V _I < 0	_	-50	mA
VI	input voltage	note 1	-0.5	+6.5	V
I _{OK}	output diode current	$V_O > V_{CC}$ or $V_O < 0$	_	±50	mA
Vo	output voltage	enable mode; notes 1 and 2	-0.5	V _{CC} + 0.5	V
		disable mode; notes 1 and 2	-0.5	+6.5	V
		Power-down mode; notes 1 and 2	-0.5	+6.5	V
Io	output source or sink current	$V_O = 0$ to V_{CC}	_	±50	mA
I _{CC} , I _{GND}	V _{CC} or GND current		_	±100	mA
T _{stg}	storage temperature		-65	+150	°C
P _D	power dissipation per package	for temperature range from -40 to +125 °C	_	250	mW

Notes

- 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. When $V_{CC} = 0 \text{ V}$ (Power-down mode), the output voltage can be 5.5 V in normal operation.

Bus buffer/line driver; 3-state

74LVC1G125

DC CHARACTERISTICS

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	DADAMETER	TEST CONDITIONS		MAINI	TVD (1)	MAY	LINUT	
STWIBUL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP. ⁽¹⁾	MAX.	UNIT	
T _{amb} = -40	to +85 °C				•			
V _{IH}	HIGH-level input		1.65 to 1.95	0.65 × V _{CC}	_	_	V	
	voltage		2.3 to 2.7	1.7	_	_	V	
			2.7 to 3.6	2.0	_	_	V	
			4.5 to 5.5	$0.7 \times V_{CC}$	_	_	V	
V _{IL}	LOW-level input		1.65 to 1.95	_	_	$0.35 \times V_{CC}$	V	
	voltage		2.3 to 2.7	_	_	0.7	V	
			2.7 to 3.6	_	_	0.8	V	
			4.5 to 5.5	_	_	$0.3 \times V_{CC}$	V	
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}						
	output voltage	I _O = 100 μA	1.65 to 5.5	_	_	0.1	V	
		I _O = 4 mA	1.65	_	_	0.45	V	
		I _O = 8 mA	2.3	_	_	0.3	V	
		I _O = 12 mA	2.7	_	_	0.4	V	
		I _O = 24 mA	3.0	_	_	0.55	V	
		I _O = 32 mA	4.5	_	_	0.55	V	
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}						
		$I_{O} = -100 \mu A$	1.65 to 5.5	V _{CC} – 0.1	_	_	V	
		$I_O = -4 \text{ mA}$	1.65	1.2	_	_	V	
		$I_O = -8 \text{ mA}$	2.3	1.9	_	_	V	
		$I_0 = -12 \text{ mA}$	2.7	2.2	_	_	V	
		I _O = -24 mA	3.0	2.7	_	_	V	
		$I_{O} = -32 \text{ mA}$	4.5	3.8	_	_	V	
I _{LI}	input leakage current	$V_I = 5.5 \text{ V or GND}$	5.5	-	±0.1	±5	μΑ	
l _{OZ}	3-state output OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = 5.5 \text{ V or GND}$	5.5	_	±0.1	±10	μΑ	
l _{off}	power OFF leakage current	V_I or $V_O = 5.5 \text{ V}$	0	-	±0.1	±10	μΑ	
lcc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	-	0.1	10	μΑ	
Δl _{CC}	additional quiescent supply current per pin	$V_I = V_{CC} - 0.6 \text{ V};$ $I_O = 0$	2.3 to 5.5	-	5	500	μА	

Bus buffer/line driver; 3-state

74LVC1G125

CVMDO	DADAMETER	TEST CONDITIONS		RAINI	— (1)		LINUT	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP. ⁽¹⁾	MAX.	UNIT	
T _{amb} = -40	to +125 °C		1	1	1	'		
V _{IH}	HIGH-level input		1.65 to 1.95	0.65 × V _{CC}	_	_	V	
	voltage		2.3 to 2.7	1.7	_	_	V	
			2.7 to 3.6	2.0	_	_	V	
			4.5 to 5.5	$0.7 \times V_{CC}$	_	_	V	
V _{IL}	LOW-level input		1.65 to 1.95	_	_	$0.35 \times V_{CC}$	V	
	voltage		2.3 to 2.7	_	_	0.7	V	
			2.7 to 3.6	_	_	0.8	V	
			4.5 to 5.5	_	_	$0.3 \times V_{CC}$	V	
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}						
	output voltage	I _O = 100 μA	1.65 to 5.5	_	_	0.1	V	
		$I_O = 4 \text{ mA}$	1.65	_	_	0.70	V	
		$I_O = 8 \text{ mA}$	2.3	_	_	0.45	V	
		I _O = 12 mA	2.7	_	_	0.60	V	
		I _O = 24 mA	3.0	_	_	0.80	V	
		I _O = 32 mA	4.5	_	_	0.80	V	
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}						
		$I_{O} = -100 \mu A$	1.65 to 5.5	V _{CC} – 0.1	_	_	V	
		$I_O = -4 \text{ mA}$	1.65	0.95	_	_	V	
		$I_O = -8 \text{ mA}$	2.3	1.7	_	_	V	
		I _O = -12 mA	2.7	1.9	_	_	V	
		I _O = -24 mA	3.0	2.0	_	_	V	
		$I_{O} = -32 \text{ mA}$	4.5	3.4	_	_	V	
I _{LI}	input leakage current	V _I = 5.5 V or GND	5.5	-	_	±100	μΑ	
l _{OZ}	3-state output OFF-state current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = 5.5 \text{ V or GND}$	5.5	_	_	±200	μΑ	
I _{off}	power OFF leakage current	V_I or $V_O = 5.5 \text{ V}$	0	-	_	±200	μА	
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	-	_	200	μΑ	
ΔI_{CC}	additional quiescent supply current per pin	$V_I = V_{CC} - 0.6 \text{ V};$ $I_O = 0$	2.3 to 5.5	-	_	5000	μΑ	

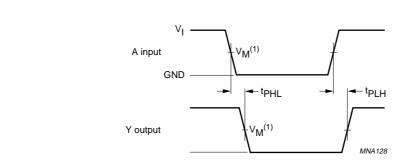
Note

1. All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 $^{\circ}C.$

Bus buffer/line driver; 3-state

74LVC1G125

AC CHARACTERISTICS

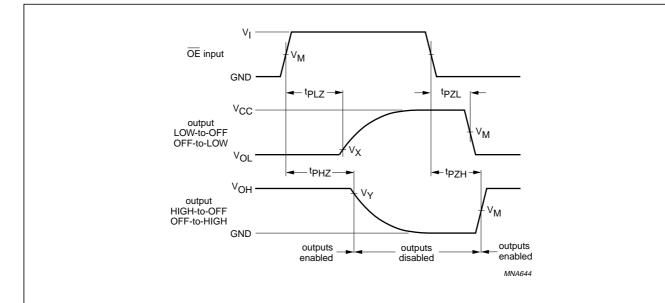

GND = 0 V; $t_r = t_f \le 2.0$ ns.

CVMDO	DADAMETED	TEST CON	MIN.	TVD	D MAY	LINUT		
SYMBOL	PARAMETER	WAVEFORMS	WAVEFORMS V _{CC} (V)		TYP.	MAX.	UNIT	
T _{amb} = -40) to +85 °C			-1	1	1	1	
t _{PHL} /t _{PLH}	propagation delay	see Figs 5 and 7	1.65 to 1.95	1.0	3.3	8.0	ns	
	A, B to Y		2.3 to 2.7	0.5	2.2	5.5	ns	
			2.7	0.5	2.5	5.5	ns	
			3.0 to 3.6	0.5	2.1	4.5	ns	
			4.5 to 5.5	0.5	1.7	4.0	ns	
t _{PZH} /t _{PZL}	3-state output enable	see Figs 6 and 7	1.65 to 1.95	1.0	4.1	9.4	ns	
	time input OE to Y		2.3 to 2.7	0.5	2.8	6.6	ns	
			2.7	0.5	3.3	6.6	ns	
			3.0 to 3.6	0.5	2.4	5.3	ns	
			4.5 to 5.5	0.5	2.1	5.0	ns	
t _{PHZ} /t _{PLZ}	3-state output disable	see Figs 6 and 7	1.65 to 1.95	1.0	4.3	9.2	ns	
	time input OE to Y		2.3 to 2.7	0.5	2.7	5.0	ns	
			2.7	0.5	3.0	5.0	ns	
			3.0 to 3.6	0.5	3.1	5.0	ns	
			4.5 to 5.5	0.5	2.2	4.2	ns	
T _{amb} = -40) to +125 °C							
t _{PHL} /t _{PLH}	propagation delay	see Figs 5 and 7	1.65 to 1.95	1.0	_	10.5	ns	
	A, B to Y		2.3 to 2.7	0.5	_	7	ns	
			2.7	0.5	_	7	ns	
			3.0 to 3.6	0.5	1-	6	ns	
			4.5 to 5.5	0.5	_	5.5	ns	
t _{PZH} /t _{PZL}	3-state output enable	see Figs 6 and 7	1.65 to 1.95	1.0	_	12	ns	
	time input OE to Y		2.3 to 2.7	0.5	1-	8.5	ns	
			2.7	0.5	_	8.5	ns	
			3.0 to 3.6	0.5	_	7	ns	
			4.5 to 5.5	0.5	_	6.5	ns	
t _{PHZ} /t _{PLZ}	3-state output disable	see Figs 6 and 7	1.65 to 1.95	1.0	1-	12	ns	
	time input OE to Y		2.3 to 2.7	0.5	_	6.5	ns	
			2.7	0.5	_	6.5	ns	
			3.0 to 3.6	0.5	<u> </u>	6.5	ns	
			4.5 to 5.5	0.5	_	5.5	ns	

Bus buffer/line driver; 3-state

74LVC1G125

AC WAVEFORMS


V	V _M	INF	PUT	
V _{CC}	V M	VI	$t_r = t_f$	
1.65 to 1.95 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns	
2.3 to 2.7 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns	
2.7 V	1.5 V	2.7 V	≤ 2.5 ns	
3.0 to 3.6 V	1.5 V	2.7 V	≤ 2.5 ns	
4.5 to 5.5 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.5 ns	

 $\rm V_{OL}$ and $\rm V_{OH}$ are typical output voltage drop that occur with the output load.

Fig.5 Input A to output Y propagation delay times.

Bus buffer/line driver; 3-state

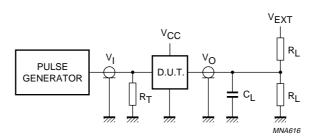
74LVC1G125

V	V _{CC} V _M		PUT
▼CC	V M	VI	$t_r = t_f$
1.65 to 1.95 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns
2.3 to 2.7 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.0 ns
2.7 V	1.5 V	2.7 V	≤ 2.5 ns
3.0 to 3.6 V	1.5 V	2.7 V	≤ 2.5 ns
4.5 to 5.5 V	$0.5 \times V_{CC}$	V _{CC}	≤ 2.5 ns

 $V_X = V_{OL} + 0.3 \text{ V at } V_{CC} \ge 2.7 \text{ V};$

 $V_X = V_{OL} + 0.15 \text{ V} \text{ at } V_{CC} < 2.7 \text{ V};$

 $V_Y = V_{OH} - 0.3 \text{ V at } V_{CC} \ge 2.7 \text{ V};$


 V_{Y} = $V_{OH} - 0.15 \ V$ at $V_{CC} < 2.7 \ V.$

 $\ensuremath{V_{\text{OL}}}$ and $\ensuremath{V_{\text{OH}}}$ are typical output voltage drop that occur with the output load.

Fig.6 3-state enable and disable times.

Bus buffer/line driver; 3-state

74LVC1G125

V	V _I C _L		D.	V _{EXT}		
V _{CC}	"	CL	R_L	t _{PLH} /t _{PHL}	t _{PZH} /t _{PHZ}	t _{PZL} /t _{PLZ}
1.65 to 1.95 V	V _{CC}	30 pF	1 kΩ	open	GND	$2 \times V_{CC}$
2.3 to 2.7 V	V _{CC}	30 pF	500 Ω	open	GND	$2 \times V_{CC}$
2.7 V	2.7 V	50 pF	500 Ω	open	GND	6 V
3.0 to 3.6 V	2.7 V	50 pF	500 Ω	open	GND	6 V
4.5 to 5.5 V	V _{CC}	50 pF	500 Ω	open	GND	$2 \times V_{CC}$

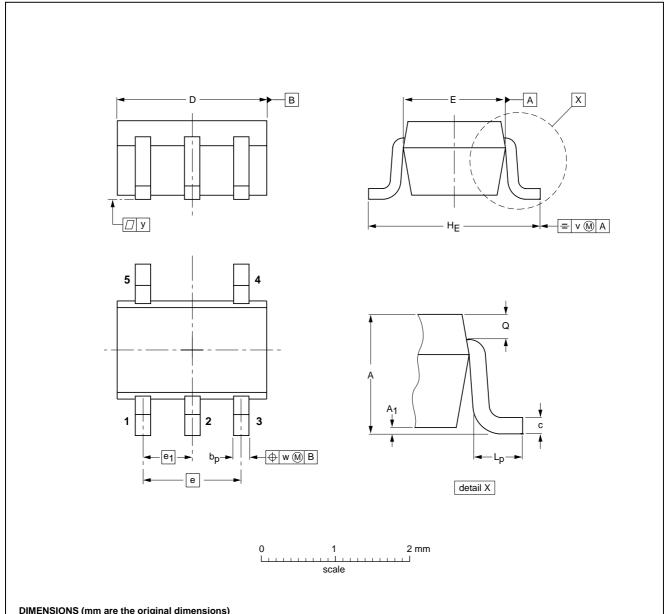
Definitions for test circuits:

 R_L = Load resistor.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

Fig.7 Load circuitry for switching times.


Bus buffer/line driver; 3-state

74LVC1G125

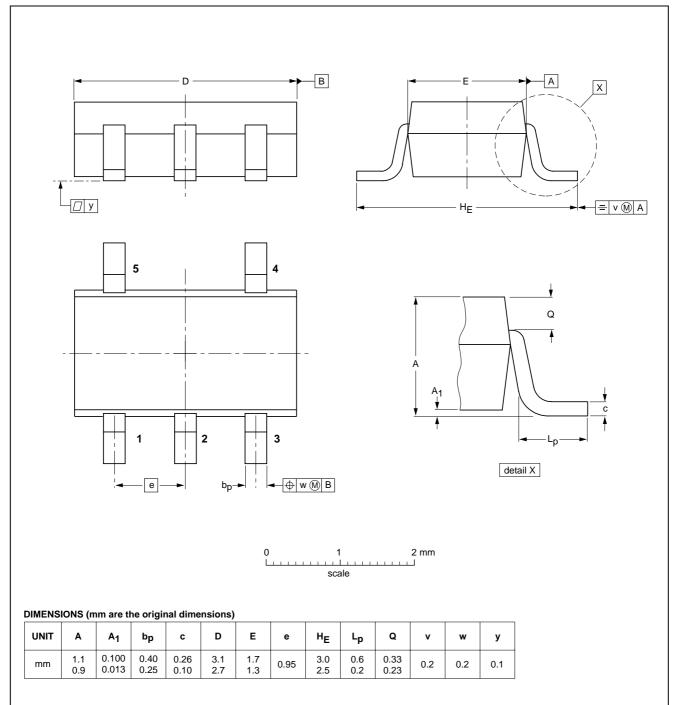
PACKAGE OUTLINES

Plastic surface mounted package; 5 leads

SOT353

DIMENS	IONS (m	ım are ti	he origir	nal dime	nsions)	

ı	UNIT	Α	A ₁ max	bp	С	D	E ⁽²⁾	е	e ₁	HE	Lp	q	v	w	у
	mm	1.1 0.8	0.1	0.30 0.20	0.25 0.10	2.2 1.8	1.35 1.15	1.3	0.65	2.2 2.0	0.45 0.15	0.25 0.15	0.2	0.2	0.1


OUTLINE		REFER	RENCES	EUROPEAN ISSUE DA		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT353			SC-88A		97-02-28	

Bus buffer/line driver; 3-state

74LVC1G125

Plastic surface mounted package; 5 leads

SOT753

OUTLINE		REFER	ENCES	EUROPEAN	ICCUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT753			SC-74A		02-04-16	

Bus buffer/line driver; 3-state

74LVC1G125

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300~^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

Bus buffer/line driver; 3-state

74LVC1G125

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE ⁽¹⁾	SOLDERING METHOD			
PACKAGE	WAVE	REFLOW ⁽²⁾		
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA	not suitable	suitable		
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ⁽³⁾	suitable		
PLCC ⁽⁴⁾ , SO, SOJ	suitable	suitable		
LQFP, QFP, TQFP	not recommended ⁽⁴⁾⁽⁵⁾	suitable		
SSOP, TSSOP, VSO	not recommended ⁽⁶⁾	suitable		

Notes

- 1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
- 2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- 4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 6. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

Bus buffer/line driver; 3-state

74LVC1G125

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Bus buffer/line driver; 3-state

74LVC1G125

NOTES

Bus buffer/line driver; 3-state

74LVC1G125

NOTES

Bus buffer/line driver; 3-state

74LVC1G125

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

SCA74

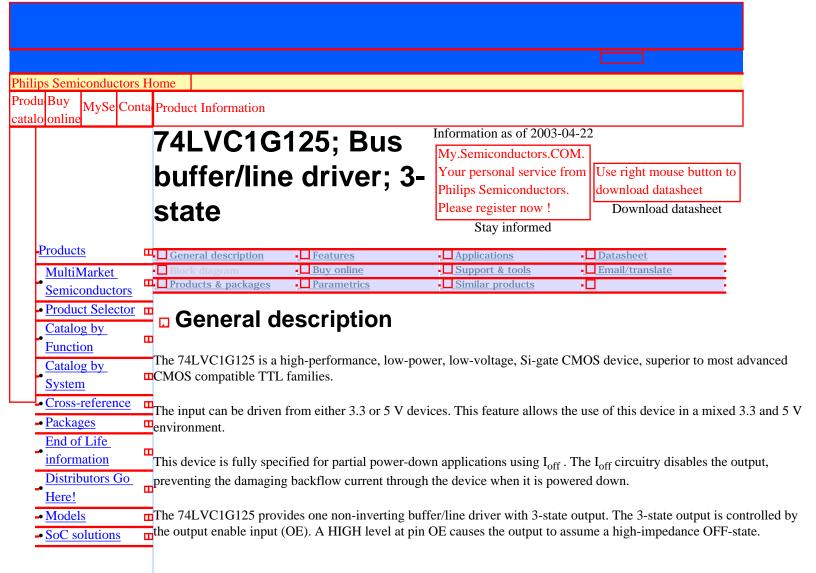
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613508/04/pp20

Date of release: 2002 Nov 18


Document order number: 9397 750 10069

Let's make things better.

□ Features

- Wide supply voltage range from 1.65 to 5.5 V
- High noise immunity
- Complies with JEDEC standard:
 - o JESD8-7 (1.65 to 1.95 V)
 - o JESD8-5 (2.3 to 2.7 V)
 - JESD8B/JESD36 (2.7 to 3.6 V).
- +-24 mA output drive $(V_{CC} = 3.0 \text{ V})$
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- Multiple package options
- ESD protection:

HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.

• Specified from -40 to +125 Cel.

Applications

AN10161_2: PicoGate Logic footprints (date 30-Oct-02)

□ Datasheet

Type number	<u>Title</u>	Publication release date	Datasheet status	Page count	File size (kB)	Datasheet
74LVC1G125	Bus buffer/line driver; 3-state	11/18/2002	Product specification	20	83	<u>Download</u>

Parametrics

Type number	Package	Description	Propagation Delay(ns)	Voltage	of	Power Dissipation Considerations	Logic Switching Levels	Output Drive Capability
74LVC1G125GW	SOT353 (UMT5)	3.3V PicoGate Buffer/Line Driver with Active LOW Output Enable (3- State)	4~6	Low	5	Low Power or Battery Applications	TTL	Medium

□ Products, packages, availability and ordering

Type number	North American type number	$\frac{Ordering\ code}{\underline{(12NC)}}$	Marking/Packing IC packing info	Package	Device status	Buy online
74LVC1G125GV		9352 720 18125	Standard Marking * Reel Pack, Reverse	<u>SOT753</u>	Full production	-
74LVC1G125GW	74LVC1G125GW- G	9352 687 20115	Standard Marking * Reel Pack, SMD, 7"	SOT353 (UMT5)	Full production	order this -
		9352 687 20118	Standard Marking * Reel Pack, SMD, 13"	SOT353 (UMT5)	Full production	-
		9352 687 20125	Standard Marking * Reel Pack, Reverse	SOT353 (UMT5)	Full production	-
		9352 687 20165	Standard Marking * Reel Pack, SMD, Large, Reverse	SOT353 (UMT5)	Full production	-

□ Similar products

74LVC1G125 links to the similar products page containing an overview of products that are similar in function or related to the type number(s) as listed on this page. The similar products page includes products from the same catalog tree(s), relevant selection guides and products from the same functional category.

Support & tools

I²C Bus Solutions, Typical I²C Bus Arrangement

Philips PicoGate Logic The logical alternative for miniaturization(date 01-Nov-02)

□ Email/translate this product information

- Email this product information.
- Translate this product information page from English to:

The English language is the official language used at the semiconductors.philips.com website and webpages. All translations on this website are created through the use of <u>Google Language Tools</u> and are provided for convenience purposes only. No rights can be derived from any translation on this website.

About this Web Site

| Copyright © 2003 Koninklijke Philips N.V. All rights reserved. | Privacy Policy |

Koninklijke Philips N.V. | Access to and use of this Web Site is subject to the following Terms of Use. |