

High-Efficiency LED Backlight Driver for Tablets

General Description

LP8556 is a white LED driver featuring an asynchronous boost converter and six high precision current sinks that can be controlled by a PWM signal or an I²C master.

The boost converter uses adaptive output voltage control for setting the optimal LED driver voltages as low as 7V and as high as 43V. This feature minimizes the power consumption by adjusting the output voltage to the lowest sufficient level under all conditions. The converter can operate at three switching frequencies: 312, 625 and 1250 kHz settable with an external resistor or pre-configured via EPROM. Programmable slew rate control and spread spectrum scheme minimize switching noise and improve EMI performance.

LED current sinks can be set with the PWM dimming resolution of up to 15 bits. Proprietary adaptive dimming mode allows higher system power saving. In addition, phase shifted LED PWM dimming allows reduced audible noise and smaller boost output capacitors.

The LP8556 has a full set of safety features that ensure robust operation of the device and external components. The set consists of input under-voltage lockout, thermal shutdown, over-current protection, up to 6 levels of over-voltage protection, LED open and short detection.

The LP8556 operates over the ambient temperature range of -30 $^{\circ}$ C to +85 $^{\circ}$ C. It is available in space-saving 20-bump micro SMD and 24-pad LLP packages.

Features

- High efficiency DC/DC boost converter with integrated 0.19Ω power MOSFET and three switching frequency options: 312 / 625 / 1250 kHz
- 2.7V 36V boost switch input voltage range supports multi-cell Li-lon batteries (2.7V - 20V VDD input range)
- 7V 43V boost switch output voltage range supports as few as 3 WLEDs in series per channel and as many as 12
- Configurable channel count (1 to 6)
- Up to 50 mA per channel
- PWM and / or I²C brightness control
- Phase-Shift PWM mode reduces audible noise
- Adaptive dimming for higher LED drive optical efficiency
- Programmable edge-rate control and spread spectrum scheme minimize switching noise and improve EMI performance
- LED fault (short/open) detection, UVLO, TSD, OCP and OVP (up to 6 threshold options)
- Available in a tiny 20-bump micro SMD 1.715 mm x 2.376 mm x 0.6 mm, 0.4 mm pitch package and a 24-pad, 4 mm x 4 mm x 0.8 mm, 0.5 mm pitch LLP package.

Applications

• Tablet LCD Display LED Backlight

Typical Application

Typical Application (2)

Recommended Inductance for the Boost Power Stage

Assumes 20 mA as the maximum LED current per string and 3.3V as the maximum LED forward voltage.

Number of LED	Number of LEDs	Boost Input	L1 Inductance [µH]			
Strings	per String	Voltage Range [V]	f _{SW} = 1250 kHz	f _{SW} = 625 kHz	f _{SW} = 312 kHz	
6	c	2.7V - 4.4V	3.3 µH - 6.8 µH	6.8 µH - 15 µH	10 µH - 33 µH	
0	0	5.4V - 8.8V	10 µH - 22 µH	22 µH - 47 µH	47 μH - 100 μH	
	8	2.7V - 4.4V	4.7 μH - 10 μH	10 µH - 15 µH	22 µH - 33 µH	
0		5.4V - 8.8V	10 µH - 22 µH	22 µH - 68 µH	47 μH - 100 μH	
4	10	5.4V - 8.8V	6.8 μH - 22 μH	22 µH - 47 µH	47 μH - 100 μH	
4	12	5.4V - 8.8V	10 µH - 22 µH	22 µH - 47 µH	33 µH - 100 µH	

Recommended Capacitances for the Boost and LDO Power Stages (Note 1)

Switching Frequency [kHz]	C _{IN} [µF]	С _{оит} [µF]	C _{VLDO} [μF]
1250	2.2	4.7	10
625	2.2	4.7	10
312	4.7	10	10

Note 1: Capacitance of Multi Layer Ceramic Capacitors (MLCC) can change significantly with the applied DC voltage. Use capacitors with good capacitance vs. DC bias characteristics. In general, MLCC in bigger packages have lower capacitance de-rating than physically smaller capacitors.

Connection Diagrams and Package Mark Information (Micro SMD)

20-bump Micro SMD Package 1.715 mm x 2.376 mm x 0.6 mm, 0.4 mm pitch NS Package Number TMD20EQA

Package Mark (Micro SMD)

Package Mark - Top View

Ordering Information (Micro SMD)

Order Number	Spec / Flow	Package Marking	Supplied As
LP8556TMX-E00	S7003001	56E0	3000 units, Tape-and-Reel
LP8556TME-E01	NoPb	56E1	250 units, Tape-and-Reel
LP8556TMX-E01	NoPb	56E1	3000 units, Tape-and-Reel
LP8556TME-E02	NoPb	56E2	250 units, Tape-and-Reel
LP8556TMX-E02	NoPb	56E2	3000 units, Tape-and-Reel
LP8556TME-E03	NoPb	56E3	250 units, Tape-and-Reel
LP8556TMX-E03	NoPb	56E3	3000 units, Tape-and-Reel
LP8556TME-E04	NoPb	56E4	250 units, Tape-and-Reel
LP8556TMX-E04	NoPb	56E4	3000 units, Tape-and-Reel
LP8556TME-E05	NoPb	56E5	250 units, Tape-and-Reel
LP8556TMX-E05	NoPb	56E5	3000 units, Tape-and-Reel
LP8556TME-E06	NoPb	56E6	250 units, Tape-and-Reel
LP8556TMX-E06	NoPb	56E6	3000 units, Tape-and-Reel
LP8556TME-E07	NoPb	56E7	250 units, Tape-and-Reel
LP8556TMX-E07	NoPb	56E7	3000 units, Tape-and-Reel
LP8556TMX-E08	S7003057	56E8	3000 units, Tape-and-Reel
LP8556TMX-E09	S7003056	56E9	3000 units, Tape-and-Reel
LP8556TME-E10	NoPb	6E10	250 units, Tape-and-Reel
LP8556TMX-E10	NoPb	6E10	3000 units, Tape-and-Reel

Ordering Information (LLP) (Note 2)

Order Number	Spec/Flow	Package Marking	Supplied As
LP8556SQE-E00	NoPb	L8556E0	250 units, Tape-and-Reel
LP8556SQX-E00	NoPb	L8556E0	4500 units, Tape-and-Reel
LP8556SQE-E08	NoPb	L8556E8	250 units, Tape-and-Reel
LP8556SQX-E08	NoPb	L8556E8	4500 units, Tape-and-Reel
LP8556SQE-E09	NoPb	L8556E9	250 units, Tape-and-Reel
LP8556SQX-E09	NoPb	L8556E9	4500 units, Tape-and-Reel

Note 2: Under development. Please contact TI Sales Office/Distributors for availability.

Connection Diagrams and Package Mark Information (LLP)

Package Mark (LLP)

U = Fab Z = Assembly XY = 2–Digit Date Code TT = Die Traceability xxxx = Product Identification

Pin Descriptions

uSMD	LLP	Name	Туре	Description
A1, B1	1, 2	SW	A	A connection to the drain terminal of the integrated power MOSFET.
A2, B2	3, 4	GND_SW	G	A connection to the source terminal of the integrated power MOSFET.
A3	5	SDA	I/O	I ² C data input/output pin.
A4	6	SCL	I	I ² C clock input pin.
B3	9	PWM	I	PWM dimming input. Supply a 75 Hz to 25 kHz PWM signal to control dimming. This pin must be connected to GND if unused.
B4	7	EN / VDDIO	Р	Dual purpose pin serving both as a Chip enable and as a power supply reference for PWM, SDA and SCL inputs. Drive this pin with a logic gate capable of sourcing a minimum of 1 mA.
C1	22	VDD	Р	Device power supply pin. Provide 2.7V to 20V supply to this pin. This pin is an input of the internal LDO regulator. The output of the internal LDO is what powers the device.
C2	20	VBOOST	A	Boost converter output pin. The internal Feedback (FB) and Over-voltage Protection (OVP) circuitry monitors the voltage on this pin. Connect the converter output capacitor bank close to this pin.
C3	21	FSET	A	A connection for setting the boost frequency and PWM output dimming frequency by using an external resistor. Connect a resistor, R _{FSET} , between this pin and the ground reference (See <i>Table 4</i>). This pin may be left floating if PWM_FSET_EN=0 AND BOOST_FSET_EN=0 (See <i>EPROM Memory Map</i>).
C4	14	LED3	A	LED driver - current sink terminal. If unused, it may be left floating.
D1	19	VLDO	Р	Internal LDO output pin. Connect a capacitor, C _{VLDO} , between this pin and the ground reference.
D2	23	ISET	A	A connection for the LED current set resistor. Connect a resistor, R_{ISET} , between this pin and the ground reference. This pin may be left floating if ISET_EN=0 (See <i>EPROM Memory Map</i>).
D3	10, 11, 15, 24, DAP	GND	I	Ground pin.
D4	13	LED2	A	LED driver - current sink terminal. If unused, it may be left floating.
E1	18	LED6	А	LED driver - current sink terminal. If unused, it may be left floating.
E2	17	LED5	A	LED driver - current sink terminal. If unused, it may be left floating.
E3	16	LED4	A	LED driver - current sink terminal. If unused, it may be left floating.
E4	12	LED1	A	LED driver - current sink terminal. If unused, it may be left floating.
-	8	NC	-	No Connect pin.

A: Analog Pin, G: Ground Pin, P: Power Pin, I: Digital Input Pin, I/O: Digital Input/Output Pin

Absolute Maximum Ratings (Note 5)

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

	Min	Max	Units
V _{DD}	-0.3	24	V
Voltage on Logic Pins (SCL, SDA, PWM)	-0.3	6	V
Voltage on Analog Pins (VLDO, EN / VDDIO)	-0.3	6	V
Voltage on Analog Pins (FSET, ISET)	-0.3	VLDO+0.3	V
V (LED1LED6,SW, VBOOST)	-0.3	50	V
Junction Temperature (T _{J-MAX}) (<i>Note 7</i>)		125	°C
Storage Temperature Range	-65	150	°C
Maximum Lead Temperature (Soldering)		260	°C
HBM (<i>Note 3</i>)	2		kV
CDM (Note 4)	500		V

Note 3: Human Body Model, applicable std. JESD22-A114C

Note 4: Field Induced Charge Device Model, applicable std. JESD22-C101-C

Operating Ratings (Note 5, Note 6)

	Min	Max	Units
VDD Range	2.7	20	V
VDDIO Range	-0.3	6	V
V(LED1LED6)	-0.3	6	V
Junction Temperature Range (T _J)	-30	125	°C
Ambient Temperature Range (T _A)	-30	85	°C

Thermal Properties (Note 8)

	Min	Max	Units
Junction-to-Ambient Thermal Resistance (θ_{JA}), TMD Package	40	73	°C/W
Junction-to-Ambient Thermal Resistance (θ_{JA}), SQA Package	35	50	°C/W

Electrical Characteristics (Note 6, Note 9)

Limits in standard typeface are for $T_A = 25 \text{ °C}$. Limits in **boldface** type apply over the full operating ambient temperature range (-30 °C $\leq T_A \leq +85 \text{ °C}$). Unless otherwise specified: VDDIO = 1.8V

Symbol	Parameter	Condition	Min	Тур	Max	Units	
V _{DDIO}	Supply voltage for digital I/Os		1.62		3.6	V	
V _{DD}	Input voltage for the internal LDO		2.7		20	V	
	Standby Supply Current	EN / VDDIO=0V, LDO disabled			1.6	μA	
I _{DD}	Normal Mode Supply Current	LDO enabled, Boost disabled		0.9	1.5	mA	
		LDO enabled, Boost enabled, no load		2.2	3.65	ma	
f	Internal Oscillator Frequency		-4		+4	0/_	
'OSC	Accuracy		-7		+7	/0	
V		$V_{DD} \ge 3.1V$	2.95	3.05	3.15	V	
V _{LDO}	LDO Output Voltage	$2.7V \le V_{DD} < 3.1V$		V _{DD} - 0.05			
T _{TSD}	Thermal Shutdown Threshold	(Note 10)		150		°C	
T _{TSD_hyst}	Thermal Shutdown Hysteresis			20		°C	

Note 5: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

Note 6: All voltages are with respect to the potential at the GND pins.

Note 7: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A-MAX}) is dependent on the maximum operating junction temperature ($T_{J-MAX-OP} = 125$ °C), the maximum power dissipation of the device in the application (P_{D-MAX}), and the junction-to ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: $T_{A-MAX} = T_{J-MAX-OP} - (\theta_{JA} \times P_{D-MAX})$.

Note 8: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

Note 9: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm. Note 10: Guaranteed by design and not tested in production.

Boost Converter Electrical Characteristics (Note 13)

Symbol	Parameter	Condition		Min	Тур	Мах	Units
R _{DS_ON}	Switch ON resistance	I _{SW} = 0.5A			0.19		Ω
V _{BOOST_MIN}	Boost minimum output voltage	VBOOST_RANGE = 0 VBOOST_RANGE = 1			7 16		V
		VBOOST_MAX = 100, VBOOST_RANGE = 0 VBOOST_MAX = 101, VBOOST_RANGE = 0 VBOOST_MAX = 110, VBOOST_RANGE = 0 VBOOST_MAX = 111, VBOOST_RANGE = 0			21 25 30 34	22 27 32 37	v
V _{BOOST_MAX}	Boost maximum output voltage	VBOOST_MAX = 010, VBOOST_ VBOOST_MAX = 011, VBOOST_ VBOOST_MAX = 100, VBOOST_ VBOOST_MAX = 101, VBOOST_ VBOOST_MAX = 110, VBOOST_ VBOOST_MAX = 111, VBOOST_	RANGE = 1 RANGE = 1 RANGE = 1 RANGE = 1 RANGE = 1 RANGE = 1	17.9 22.8 27.8 32.7 37.2 41.8	21 25 30 34.5 39 43	23.1 27.2 31.5 36.6 40.8 44.2	v
I _{LOAD_MAX}	Maximum continuous output load current	$V_{IN} = 3V, V_{OUT} = 18V$ $V_{IN} = 3V, V_{OUT} = 24V$ $V_{IN} = 3V, V_{OUT} = 30V$			220 160 120		mA
	Conversion ratio	f _{SW} = 625 kHz				15	
VOUT ^{/ V} IN	(Note 14)	f _{SW} = 1250 kHz				12	
f _{SW}	Switching frequency	BOOST_FREQ = 00 BOOST_FREQ = 01 BOOST_FREQ = 10			312 625 1250		kHz
V _{OVP}	Over-voltage protection voltage	VBOOST_RANGE = 1			V _{BOOST} + 1.6V		V
V _{UVLO}	V _{IN} under-voltage lockout threshold	UVLO_EN=1 UVLO_TH = 0, falling UVLO_TH = 1, falling			2.5 5.2		v
V _{UVLO_hyst}	V _{UVLO} hysteresis	V _{UVLO} [rising] - V _{UVLO} [falling]	UVLO_TH = 0 UVLO_TH = 1		50 100		mV
t _{PULSE}	Switch minimum pulse width	no load	•		50		ns
t _{STARTUP}	Startup time	(Note 11)			8		ms

Boost Converter Electrical Characteristics (Continued)

Symbol	Parameter	Conc	lition	Min	Тур	Max	Units
			IBOOST_LIM = 00	0.66	0.9	1.16	
Symbol I_{SW_LIM} $\Delta V_{SW} / t_{off_on}$ $\Delta V_{SW} / t_{on_off}$ $\Delta t_{OM} / t_{SW}$			IBOOST_LIM = 01	0.88	1.2	1.40	^
	$ \begin{array}{ c c c c c c } \hline Parameter & Condition & Min & Typ & Tip & Ti$	1.73	A				
I _{SW LIM}			IBOOST_LIM = 11	1.35	1.8	2.07	
	(NOLE 12)	IBOOST_LIM_2X = 1	IBOOST_LIM = 00		1.6		
			IBOOST_LIM = 01		2.1		А
			IBOOST_LIM = 10		2.6		
		EN_DRV3 = 0 AND EN_DRV2 = 0			3.7		
$\Delta V_{SW} / t_{off on}$	Sw pin siew rate during OFF to	EN_DRV3 = 0 AND EN	_DRV2 = 1		5.3		V/ns
•···_•··	ON transition	EN_DRV3 = 1 AND EN	_DRV2 = 1		n Typ Max 0.9 1.16 1.2 1.40 1.5 1.73 1.5 1.73 1.6 2.07 1.6 2.1 2.6 3.7 5.3 7.5 1.9 4.4 4.8 1		
		EN_DRV3 = 0 AND EN	_DRV2 = 0		1.9		
$\Delta V_{SW} / t_{on off}$	SW pin siew rate during ON to	EN_DRV3 = 0 AND EN	_DRV2 = 1		4.4		V / ns
	OFF transition	EN_DRV3 = 1 AND EN	_DRV2 = 1	$\begin{array}{ c c c c c c c }\hline \textbf{Min} & \textbf{Iyp} & \textbf{Max} \\ \hline 0.66 & 0.9 & 1.16 \\ 0.88 & 1.2 & 1.40 \\ 1.12 & 1.5 & 1.73 \\ 1.35 & 1.8 & 2.07 \\ \hline & 1.6 & & \\ 2.1 & & \\ 2.6 & & \\ \hline & 3.7 & & \\ 5.3 & & \\ 7.5 & & \\ \hline & 1.9 & & \\ 4.4 & & \\ 4.8 & & \\ \hline & 1 & & \\ \end{array}$			
	Peak to peak switch ON time						
∆t _{ON} / t _{SW}	deviation to SW period ratio	SSCLK_EN = 1			1		%
	(Spread spectrum feature)						

Note 11: Startup time is measured from the moment boost is activated until the VBOOST crosses 90% of its target value.

Note 12: 1.8A is the maximum I_{SW_LIM} supported with the Micro SMD package. For applications requiring the I_{SW_LIM} to be greater than 1.8A and up to 2.6A, LLP package should be considered.

Note 13: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm. Note 14: Guaranteed by design and not tested in production.

Symbol	Parameter	Condition	Min	Тур	Max	Units
ILED_LEAKAGE	Leakage current	Outputs LED1LED6, V _{OUT} = 48V		0.1	1	μA
I _{LED_MAX}	Maximum Sink Current LED1LED6			50		mA
I _{LED}	LED Current Accuracy (<i>Note 15</i>)	Output current set to 23 mA	-3 -4	1	+3 +4	%
I _{MATCH}	Matching	Output current set to 23 mA		0.5		%
		100 Hz < f _{PWM} ≤ 200 Hz	0.02		100	
		200 Hz < f _{PWM} ≤ 500 Hz	0.02		100	
		500 Hz < $f_{PWM} \le 1 \text{ kHz}$	0.02		100	
		1 kHz < f _{PWM} ≤ 2 kHz	0.04		100	
PWM _{DUTY}	LED PWM output pulse duty	2 kHz < f _{PWM} ≤ 5 kHz	0.1		100	%
		5 kHz < f _{PWM} ≤ 10 kHz	0.2		100	
		10 kHz < f _{PWM} ≤ 20 kHz	0.4		100	
		20 kHz < $f_{PWM} \le 30$ kHz	0.6		100	
		30 kHz < f _{PWM} ≤ 39 kHz	0.8		100	1
f _{LED}	PWM output frequency	PWM_FREQ = 1111		38.5		kHz
V _{SAT}	Saturation Voltage (Note 16)	Output current set to 23 mA		200		mV

LED Driver Electrical Characteristics (Note 17)

Note 15: Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current. Matching is the maximum difference from the average. For the constant current sinks on the part (OUT1 to OUT6), the following are determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG). Two matching numbers are calculated: (MAX-AVG)/AVG and (AVG-MIN/ AVG). The largest number of the two (worst case) is considered the matching figure. The typical specification provided is the most likely norm of the matching figure for all parts. Note that some manufacturers have different definitions in use.

Note 16: Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1V.

Note 17: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm. Note 18: Guaranteed by design and not tested in production.

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{PWM}	PWM Frequency Range (<i>Note 20</i>)		75		25000	Hz
t _{MIN_ON}	Minimum Pulse ON time			1		
t _{MIN_OFF}	Minimum Pulse OFF time			1		μs
t _{startup}	Turn on delay from standby to backlight on	PWM input active, VDDIO pin transitions from 0V to 1.8V.		10		ms
t _{STBY}	Turn off delay	PWM input low time for turn off		50		ms
PWM _{RES}	PWM Input Resolution	f _{IN} < 9.0 kHz		8		bits

PWM Interface Characteristics (Note 19)

Logic Interface Characteristics (Note 19)

Symbol	Parameter	Condition	Min	Тур	Max	Units
Logic Inp	outs (PWM, SDA, SCL)					
V _{IL}	Input Low Level				0.3 X VDDIO	V
V _{IH}	Input High Level		0.7 X VDDIO			V
I _I	Input Current	(V _{DDIO} = 0V or 3.6V) AND (V ₁ = 0V or 3.6V)	-1.0		1.0	μA
Logic Ou	itputs (SDA)					
V _{OL}	Output Low Level	I _{OUT} = 3 mA (pull-up current)		0.3	0.4	V
l,	Output Leakage Current	$V_{OUT} = 5V$	-1.0		1.0	μA

Note 19: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm. Note 20: Guaranteed by design and not tested in production.

I²C Serial Bus Timing Parameters (SDA, SCL) (Note 22)

Cumhal	Deventer	Lin	nit	Unite
Symbol	Parameter	Min	Max	
f _{SCL}	Clock Frequency		400	kHz
1	Hold Time (repeated) START Condition	0.6		μs
2	Clock Low Time	1.3		μs
3	Clock High Time	600		ns
4	Setup Time for a Repeated START Condition	600		ns
5	Data Hold Time	50		ns
6	Data Setup Time	100		ns
7	Rise Time of SDA and SCL	20+0.1C _b	300	ns
8	Fall Time of SDA and SCL	15+0.1C _b	300	ns
9	Set-up Time for STOP condition	600		ns
10	Bus Free Time between a STOP and a START Condition	1.3		μs
C _b	Capacitive Load Parameter for Each Bus Line Load of 1 pF corresponds to 1 ns.	10	200	ns

Note 21: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm. Note 22: Guaranteed by design and not tested in production.

Typical Performance Characteristics

Unless otherwise specified: V_{IN} = 3.8V, C_{VLDO} = 10 μ F, L1 = 4.7 μ H, C_{IN} = 2.2 μ F, C_{OUT} = 4.7 μ F, f_{SW} = 1.25 MHz

Boost and LED Drive Efficiency, $V_{IN} = 8.6V$

Optical Efficiency with 10" Panel

Boost and LED Drive Efficiency, V_{IN} = 6.3V

Luminance as a Function of Brightness

Input Power as a Function of Brightness

Steady State Operation Waveforms

Power Savings with Adaptive Dimming When Compared to PWM Dimming

30162659

Functional Overview

LP8556 is a white LED driver featuring an asynchronous boost converter and six high precision current sinks that can be controlled by a PWM signal or an I²C master.

The boost converter uses adaptive output voltage control for setting the optimal LED driver voltages as high as 43V. This feature minimizes the power consumption by adjusting the voltage to the lowest sufficient level under all conditions. The converter can operate at three switching frequencies: 312, 625 and 1250 kHz pre-configured via EPROM or settable via an external resistor. Programmable slew rate control and spread spectrum scheme minimize switching noise and improve EMI performance.

LED current sinks can be set with the PWM dimming resolution of up to 15 bits. Proprietary adaptive dimming mode allows higher system power saving. In addition, phase shifted LED PWM dimming allows reduced audible noise and smaller boost output capacitors.

The LP8556 has a full set of safety features that ensure robust operation of the device and external components. The set consists of input under-voltage lockout, thermal shutdown, over-current protection, up to six levels of over-voltage protection, LED open and short detection.

Block Diagram

FIGURE 2. LP8556 Block Diagram

Boost Converter Overview

OPERATION

The LP8556 boost DC/DC converter generates a 7V to approximately 43V boost output voltage from a 2.7V to 36V boost input voltage. The boost output voltage minimum, maximum value and range can be set digitally by pre-configuring EPROM memory (VBOOST_RANGE, VBOOST and VBOOST_MAX fields).

The converter is a magnetic switching PWM mode DC/DC boost converter with a current limit. It uses CPM (current programmed mode) control, where the inductor current is measured and controlled with the feedback. During startup, the soft-start function reduces the peak inductor current. LP8556 has an internal 20 MHz oscillator which is used for clocking the boost. The following figure shows the boost block diagram.

FIGURE 3. LP8556 Boost Converter Block Diagram

SETTING BOOST SWITCHING FREQUENCY

The LP8556 boost converter switching frequency can be set either by an external resistor (BOOST_FSET_EN = 1 selection), R_{FSET} , or by pre-configuring EPROM memory with the choice of boost frequency (BOOST_FREQ field). The *Table 1* table summarizes setting of the switching frequency. Note that the R_{FSET} is shared for setting the PWM dimming frequency in addition to setting the boost switching frequency. Setting the boost switching frequency and PWM dimming frequency using an external resistor is separately shown in *Table 4*.

TABLE	1. Configuring	Boost Switching	Frequency via EPROM
-------	----------------	------------------------	---------------------

R _{FSET} [Ω]	BOOST_FSET_EN	BOOST_FREQ[1:0]	f _{SW} [kHz]
don't care	0	00	312
don't care	0	01	625
don't care	0	10	1250
don't care	0	11	undefined
(Note 23)	1	don't care	(Note 23)

Note 23: See Table 4

OUTPUT VOLTAGE CONTROL

LP8556 supports two modes of controlling the Boost output voltage, Adaptive Boost Voltage Control and Manual Boost Output Control. Each of the two modes are detailed below.

ADAPTIVE CONTROL:

LP8556 supports a mode of output voltage control called Adaptive Boost Control mode. In this mode, the voltage at the LED pins is periodically monitored by the control loop and adaptively adjusted to the optimum value based on the comparator thresholds set using LED DRIVER_HEADROOM, LED_COMP_HYST, BOOST_STEP_UP, BOOST_STEP_DOWN fields in the EPROM. Settings under LED DRIVER_HEADROOM along with LED_COMP_HYST fields determine optimum boost voltage for a given condition. Boost voltage will be raised if the voltage measured at any of the LED strings falls below the threshold setting determined with LED DRIVER_HEADROOM field. Likewise, boost voltage will be lowered if the voltage measured at any of the LED strings is above the combined setting determined under LED DRIVER_HEADROOM and LED_COMP_HYST fields. LED_COMP_HYST field serves to fine tune the headroom voltage for a given peak LED current. The boost voltage up/down step size can be controlled with the BOOST_STEP_UP and BOOST_STEP_DN fields.

The initial boost voltage is configured with the VBOOST field. This field also sets the minimum boost voltage. The VBOOST_MAX field sets the maximum boost voltage. When an LED pin is open, the monitored voltage will never have enough headroom and the adaptive mode control loop will keep raising the boost voltage. The VBOOST_MAX field allows the boost voltage to be limited to stay under the voltage rating of the external components.

Note: Only LED strings that are enabled are monitored and PS_MODE field determines which LED strings are enabled.

This Adaptive mode is selected using ADAPTIVE bit set to 1 (CFGA EPROM Register) and is the recommended mode of boost control.

FIGURE 4. Boost Adaptive Control Principle

MANUAL CONTROL:

User can control the boost output voltage with the VBOOST EPROM field when adaptive mode is not used. The following expression shows the relationship between the boost output voltage and the VBOOST field: $V_{BOOST} = V_{BOOST_MIN} + 0.42*VBOOST[dec]$. The expression is only valid when the calculated values are between the minimum boost output voltage and the maximum boost output voltage. The minimum boost output voltage is set with the VBOOST_RANGE field. The maximum boost output voltage is set with the VBOOST_RANGE field. The maximum boost output voltage is set with the VBOOST_RANGE field.

EMI REDUCTION

The LP8556 features two EMI reduction schemes.

First scheme, Programmable Slew Rate Control, uses a combination of three drivers for boost switch. Enabling all three drivers allows boost switch on/off transition times to be the shortest. On the other hand, enabling just one driver allows boost switch on/ off transition times to be the longest. The longer the transition times, the lower the switching noise on the SW terminal. It should also be noted that the shortest transition times bring the best efficiency as the switching losses are the lowest.

EN_DRV2 and EN_DRV3 bits in the EPROM determine the boost switch driver configuration. Refer to the SW pin slew rate parameter listed under Boost Converter Electrical Characteristics for the slew rate options.

The second EMI reduction scheme is the spread spectrum scheme which deliberately spreads the frequency content of the boost switching waveform, which inherently has a narrow bandwidth, makes the switching waveform's bandwidth wider and ultimately reduces its EMI spectral density.

FIGURE 5. Principles of EMI Reduction Schemes

Brightness Control

LP8556 enables various methods of brightness control. The brightness can be controlled using an external PWM signal or the Brightness register accessible by users via an I²C interface or both. How these two input sources are selected and combined is set by the BRT_MODE EPROM bits and described in the following sections, *Figure 6*, and *Table 2*. The LP8556 can also be preconfigured via EPROM memory to allow direct and unaltered brightness control by an external PWM signal. This mode of operation is obtained by setting PWM_DIRECT EPROM bit to '1' (CFG5[7] = 1).

BRT_MODE = 00

With BRT_MODE = 00, the LED output is controlled by the PWM input duty cycle. The PWM detector block measures the duty cycle at the PWM pin and uses this 16-bit value to generate an internal to the device PWM data. Before the output is generated, the PWM data goes through the PWM Curve Shaper block. Then, the data goes into the Adaptive Dimming function which determines the range of the PWM and Current control as described in *OUTPUT DIMMING SCHEMES*. The outcome of the Adaptive Dimming function is 12-bit Current and / or up to 6 PWM output signals. The current is then passed through the non-linear compensation block while the output PWM signals are channeled through the Dither block.

BRT_MODE = 01

With BRT_MODE = 01, the PWM output is controlled by the PWM input duty cycle and the Brightness register. The PWM detector block measures the duty cycle at the PWM pin and uses this 16-bit value to generate the PWM data. Before the output is generated, the PWM data is first multiplied with BRT[7:0] register, then it goes through the PWM Curve Shaper block. Then, the data goes into the Adaptive Dimming function which determines the range of the PWM and Current control as described in *OUTPUT DIMMING SCHEMES*. The outcome of the Adaptive Dimming function is 12-bit Current and / or up to 6 PWM output signals. The current is then passed through the non-linear compensation block while the output PWM signals are channeled through the Dither block.

BRT_MODE = 10

With BRT_MODE = 10, the PWM output is controlled only by the Brightness register. From BRT[7:0] register, the data goes through the PWM Curve Shaper block. Then, the data goes into the Adaptive Dimming function which determines the range of the PWM and Current control as described in *OUTPUT DIMMING SCHEMES*. The outcome of the Adaptive Dimming function is 12-bit Current and / or up to 6 PWM output signals. The current is then passed through the non-linear compensation block while the output PWM signals are channeled through the Dither block.

BRT_MODE = 11

With BRT_MODE = 11, the PWM control signal path is similar to the path when BRT_MODE = 01 except that the PWM input signal is multiplied with BRT[7:0] data after the Curve Shaper block.

TABLE 2. Brightness Control Methods Truth Table

PWM_DIRECT	BRT_MODE [1:0]	Brightness Control Source	Output ILED Form
0	00	External PWM Signal	
0	01	External PWM Signal and Brightness Register (multiplied before Curve Shaper)	Adaptive. See OUTPUT
0	10	Brightness Register	DIMMING SCHEMES
0	11	External PWM Signal and Brightness Register (multiplied after Curve Shaper)	
1	don't care	External PWM Signal	Same as the external PWM input

FIGURE 6. Brightness Control Signal Path Block Diagrams

OUTPUT DIMMING SCHEMES

The LP8556 supports three types of output dimming control methods: PWM Control, Pure Current Control and Adaptive Dimming (Hybrid PWM & Current) Control.

PWM Control

PWM control is the traditional way of controlling the brightness using PWM of the outputs with a same LED current across the entire brightness range. Brightness control is achieved by varying the duty cycle proportional to the input PWM. PWM frequency is set either using an external set Resistor (R_{FSET}) or using the PWM_FREQ EPROM field. The maximum LED current is set either using an external set Resistor (R_{ISET}) and CURRENT and CURRENT_MAX EPROM bits or just using the CURRENT and CURRENT_MAX EPROM bits. Note that the output PWM signal is de-coupled and generated independent of the input PWM signal eliminating display flicker issues and allowing better noise immunity

Pure Current Control

In Pure Current Control mode, brightness control is achieved by changing the LED current proportionately from maximum value to a minimum value across the entire brightness range. Like in PWM Control mode, the maximum LED current is set either using an external set Resistor (R_{ISET}) and CURRENT and CURRENT_MAX EPROM bits or just using the CURRENT and CURRENT_MAX EPROM bits. Current resolution in this mode is 12-bits.

FIGURE 8. Pure Current / Analog Output Dimming Scheme

Adaptive Control

Adaptive dimming control combines PWM Control and Pure Current Control dimming methods. With the adaptive dimming, it is possible to achieve better optical efficiency from the LEDs compared to pure PWM control while still achieving smooth and accurate control at low brightness levels. Current resolution in this mode is 12-bits. Switch point from Current to PWM control can be set with the PWM_TO_I_THRESHOLD EPROM field from 0% to 100% of the brightness range to get good compromise between good matching of the LEDs brightness/white point at low brightness and good optical efficiency.

PWM frequency is set either using an external set Resistor (R_{FSET}) or using the PWM_FREQ EPROM bits. The maximum LED current is set either using an external set Resistor (R_{ISET}) and CURRENT and CURRENT_MAX EPROM bits or just using the CURRENT and CURRENT_MAX EPROM bits.

FIGURE 9. Adaptive Output Dimming Scheme

SETTING PWM DIMMING FREQUENCY

LP8556 PWM dimming frequency can be set either by an external resistor, R_{FSET} , or by pre-configuring EPROM Memory (CFG5 register, PWM_FREQ[3:0] bits). The *Table 3* table summarizes setting of the PWM dimming frequency. Note that the R_{FSET} is shared for setting the boost switching frequency, too. Setting the boost switching frequency and PWM dimming frequency using an external resistor is shown in *Table 4*.

R _{FSET} [kΩ]	PWM_FSET_EN	PWM_FREQ[3:0]	f _{PWM} [Hz] (Resolution)
		0000	4808 (12-bit)
		0001	6010 (11-bit)
		0010	7212 (11-bit)
		0011	8414 (11-bit)
		0100	9616 (11-bit)
		0101	12020 (10-bit)
		0110	13222 (10-bit)
-llt		0111	14424 (10-bit)
don i care	0	1000	15626 (10-bit)
		1001	16828 (10-bit)
		1010	18030 (10-bit)
		1011	19232 (10-bit)
		1100	24040 (9-bit)
		1101	28848 (9-bit)
		1110	33656 (9-bit)
		1111	38464 (9-bit)
(Note 24)	1	don't care	(Note 24)

TABLE 3.	Configuring	PWM	Dimmina	Frequency	/ via	EPROM
TABLE V.	Configuring		Dunning	1 loquono		

Note 24: See Table 4

R _{FSET} [kΩ] (Tolerance)	f _{sw} [kHz]	f _{PWM} [Hz] (Resolution)
Floating or FSET pin pulled HIGH	1250	9616 (11-bit)
470k - 1M (±5%)	312	2402 (12-bit)
300k, 330k (±5%)	312	4808 (12-bit)
200k (±5%)	312	6010 (11-bit)
147k, 150k, 154k, 158k (±1%)	312	9616 (11-bit)
121k (±1%)	312	12020 (10-bit)
100k (±1%)	312	14424 (10-bit)
86.6k (±1%)	312	16828 (10-bit)
75.0k (±1%)	312	19232 (10-bit)
63.4k (±1%)	625	2402 (12-bit)
52.3k, 53.6k (±1%)	625	4808 (12-bit)
44.2k, 45.3k (±1%)	625	6010 (11-bit)
39.2k (±1%)	625	9616 (11-bit)
34.0k (±1%)	625	12020 (10-bit)
30.1k (±1%)	625	14424 (10-bit)
26.1k (±1%)	625	16828 (10-bit)
23.2k (±1%)	625	19232 (10-bit)
20.5k (±1%)	1250	2402 (12-bit)
18.7k (±1%)	1250	4808 (12-bit)
16.5k (±1%)	1250	6010 (11-bit)
14.7k (±1%)	1250	9616 (11-bit)
13.0k (±1%)	1250	12020 (10-bit)
11.8k (±1%)	1250	14424 (10-bit)
10.7k (±1%)	1250	16828 (10-bit)
9.76k (±1%)	1250	19232 (10-bit)
FSET pin shorted to GND	1250	Same as PWM input

TABLE 4. Setting Switching and PWM Dimming Frequency with an External Resistor

PHASE SHIFT PWM SCHEME

Phase shift PWM scheme allows delaying the time when each LED driver is active. When the LED drivers are not activated simultaneously, the peak load current from the boost output is greatly decreased. This reduces the ripple seen on the boost output and allows smaller output capacitors. Reduced ripple also reduces the output ceramic capacitor audible ringing. PSPWM scheme also increases the load frequency seen on the boost output six times and therefore transfers the possible audible noise to the frequencies outside of the audible range.

Description of the PSPWM mode is seen in the following diagrams. PSPWM mode is set with <PS_MODE[2:0]> bits.

SLOPE AND ADVANCED SLOPE

Transition time between two brightness values can be programmed with EPROM bits <PWM_SLOPE[2:0]> from 0 to 500 ms. Same slope time is used for sloping up and down. With advanced slope the brightness changes can be made more pleasing to a human eye.

FIGURE 10. Sloper Operation

DITHERING

Special dithering scheme can be used during brightness changes and in steady state condition. It allows increased resolution and smaller average steps size during brightness changes. Dithering can be programmed with EPROM bits <DITHER[1:0]> from 0 to 3 bits. <STEADY_DITHER> EPROM bit sets whether the dithering is used also in steady state or only during slopes. Example below is for 1-bit dithering. E.g. for 3-bit dithering, every 8th pulse is made 1 LSB longer to increase the average value by 1/8th.

Fault Detection

LP8556 has fault detection for LED open and short conditions, UVLO, over-current and thermal shutdown. The cause for the fault can be read from status register. Reading the fault register will also reset the fault.

LED FAULT DETECTION

With LED fault detection, the voltages across the LED drivers are constantly monitored. Shorted or open LED strings are detected. **OPEN DETECT:** The logic uses the LOW comparators and the requested boost voltage to detect the OPEN condition. If the logic is asking the boost for the maximum allowed voltage and a LOW comparator is asserted, then the OPEN bit is set in the STATUS register (ADDR=02h). In normal operation, the adaptive headroom control loop raises the requested boost voltage when the LOW comparator is asserted. If it has raised it as high as it can and an LED string still needs more voltage, then it is assumed to be disconnected from the boost voltage (open or grounded). The actual boost voltage is not part of the OPEN condition decision; only the requested boost voltage and the LOW comparators.

SHORT DETECT: The logic uses all three comparators (HIGH, MID and LOW) to detect the SHORT condition. When the MID and LOW comparators are de-asserted, the headroom control loop considers that string to be optimized - enough headroom, but not excessive. If at least one LED string is optimized and at least one other LED string has its HIGH comparator asserted, then the SHORT condition is detected. It is important to note that the SHORT condition requires at least two strings for detection: one in the optimized headroom zone (LOW/MID/HIGH comparators all de-asserted) and one in the excessive headroom zone (HIGH comparator asserted).

Fault is cleared by reading the fault register.

UNDER-VOLTAGE DETECTION

LP8556 has detection for too-low VIN voltage. Threshold level for the voltage is set with EPROM register bits as shown in the following table:

UVLO_EN	UVLO_TH	Threshold (V)
0	don't care	OFF
1	0	2.5V
1	1	5.2V

TABLE 5. UVLO Truth Table

When under voltage is detected the LED outputs and the boost will shutdown and the corresponding fault bit is set in the fault register. The LEDs and the boost will start again when the voltage has increased above the threshold level. Hysteresis is implemented to threshold level to avoid continuous triggering of fault when threshold is reached.

Fault is cleared by setting the EN / VDDIO pin low or by reading the fault register.

OVER-CURRENT PROTECTION

LP8556 has detection for too-high loading on the boost converter. When over-current fault is detected, the the boost will shutdown and the corresponding fault bit is set in the fault register. The boost will start again when the current has dropped below the OCP threshold.

Fault is cleared by reading the fault register.

THERMAL SHUTDOWN

If the LP8556 reaches thermal shutdown temperature (150 $^{\circ}$ C) the LED outputs and boost will shut down to protect it from damage. Device will re-activate again when temperature drops below 130 $^{\circ}$ C degrees.

Fault is cleared by reading the fault register.

I²C-Compatible Serial Bus Interface

INTERFACE BUS OVERVIEW

The I²C-compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected to the bus. The two interface lines are the Serial Data Line (SDA) and the Serial Clock Line (SCL). These lines should be connected to a positive supply via a pull-up resistor and remain HIGH even when the bus is idle.

Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the SCL. The LP8556 can operate as an I²C slave.

DATA TRANSACTIONS

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock SCL. Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol permits a single data line to transfer both command/control information and data using the synchronous serial clock.

Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following sections provide further details of this process.

FIGURE 13. Start and Stop

The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start Condition is generated, the bus is considered busy and it retains this status until a certain time after a Stop Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition.

FIGURE 14. Start and Stop Conditions

In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction. This allows another device to be accessed, or a register read cycle.

ACKNOWLEDGE CYCLE

The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte transferred, and the acknowledge signal sent by the receiving device.

The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to receive the next byte.

"ACKNOWLEDGE AFTER EVERY BYTE" RULE

The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge signal after every byte received.

There is one exception to the "acknowledge after every byte" rule. When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging ("negative acknowledge") the last byte clocked out of the slave. This "negative acknowledge" still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

ADDRESSING TRANSFER FORMATS

Each device on the bus has a unique slave address. The LP8556 operates as a slave device with 7-bit address combined with data direction bit. Slave address is 2Ch as 7-bit or 58h for write and 59h for read in 8-bit format.

Before any data is transmitted, the master transmits the the slave I.D. The slave device should send an acknowledge signal on the SDA line, once it recognizes its address.

The slave address is the first seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the slave address — the eighth bit.

When the slave address is sent, each device in the system compares this slave address with its own. If there is a match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the R/W bit (1:read, 0:write), the device acts as a transmitter or a receiver.

FIGURE 15. I²C Chip Address (0x2C)

Control Register Write Cycle

- · Master device generates start condition.
- Master device sends slave address (7 bits) and the data direction bit (r/w = 0).
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- · Slave sends acknowledge signal.
- · Master sends data byte to be written to the addressed register.
- Slave sends acknowledge signal.
- If master will send further data bytes the control register address will be incremented by one after acknowledge signal.
- · Write cycle ends when the master creates stop condition.

Control Register Read Cycle

- Master device generates a start condition.
- Master device sends slave address (7 bits) and the data direction bit (r/w = 0).
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- Master device generates repeated start condition.
- Master sends the slave address (7 bits) and the data direction bit (r/w = 1).
- Slave sends acknowledge signal if the slave address is correct.
- Slave sends data byte from addressed register.
- If the master device sends acknowledge signal, the control register address will be incremented by one. Slave device sends
 data byte from addressed register.
- Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop condition.

	Address Mode
	<start condition=""></start>
	<slave address=""><r w="0">[Ack]</r></slave>
	<register addr.="">[Ack]</register>
Data Boad	<repeated condition="" start=""></repeated>
Dala Read	<slave address=""><r w="1">[Ack]</r></slave>
	[Register Data] <ack nack="" or=""></ack>
	additional reads from subsequent register address possible
	<stop condition=""></stop>
	<start condition=""></start>
	<slave address=""><r w="0">[Ack]</r></slave>
	<register addr.="">[Ack]</register>
Data whie	<register data="">[Ack]</register>
	additional writes to subsequent register address possible
	<stop condition=""></stop>

TABLE 6. Data Read and Write Cycles

<>Data from master [] Data from slave

TEXAS INSTRUMENTS

Register Read and Write Detail

30162647

Regi	ster Map									
ADDR	REGISTER	D7	D6	D5	D4	D3	D2	۶	DO	RESET
HOO	Brightness Control				BB	П[7:0]				0000 0000
01H	Device Control	FAST					BRT	MODE	BL_CTL	0000 0000
02H	Status	OPEN	SHORT	VREF_OK	VBOOST_OK	OVP	OCP	TSD	ΠΛΓΟ	0000 0000
НEO	₽	PANEL		2	1FG			REV		1111 1100
04H	Direct Control						G			0000 0000
05H	Temp MSB				TEM	P[10:3]				0000 0000
H90	Temp LSB		TEMP[2:0]							0000 0000
16H	LED Enable					LED	ĒN			0011 1111

36

.....

								· · · ·											<u> </u>						
	00					PWM_FSET_EN	HYSTERESIS	IER				RVED	DLTAGE	V				IP_HYST							
	D1	SERVED	ESERVED OOM_OFFSET		SERVED DOM_OFFSET		ESERVED OOM_OFFSET	SERVED DOM_OFFSET		ENT MSB	BOOST_FSET_EN		1 TIO	A_FREQ		BOOS	RESEF		DRIVER_HEADROON		SERVED		LED_CON		
	D2	RES	HEADRO		CURR	FILTER	STEADY_DITHER	PWN	VBOOST	SERVED	SERVED	HRESHOLD			RES		=AULT_TH	•							
	D3			RRENT LSB		BL_ON	H	RESERVED			BER	RES		ADAPTIVE	ESERVED		ESERVED	LED_F	REVISION						
	D4		RESERVED	CUI		UVLO_TH		THRESHOLD			EN_DRV2	VED	JUMP_EN	VED	В		В	DN	ш						
	5 D	RESERVED	VBOOST_RANGE		CURRENT_MAX		SLOPE		PS_MODE		EN_DRV3	RESER	×	RESER		ERVED		STEP							
	9 D		/ED			/ED		PWM_TO_I		REQ	/ED	/ED	VBOOST_MA	RESERVED		RES		ЪР							
ар	2 0	IBOOST_LIM_2X	VRASER		PDET_STDBY	VRASER	DESERVED		PWM_DIRECT	∃_TSOO8	VRASER	VRASERV		SSCLK_EN				STEP_(
M Memory M	REGISTER	CFG98	CFG9E	CFG0	CFG1	CFG2	CFG3	CFG4	CFG5	CFG6	CFG7	CFG8	CFG9	CFGA	CFGB	CFGC	CFGD	CFGE	CFGF						
EPRO	ADDR	98H	9EH	AOH	A1H	A2H	A3H	A4H	A5H	A6H	A7H	A8H	A9H	AAH	ABH	ACH	ADH	AEH	AFH						

Register Bit Explanations

BRIGHTNESS CONTROL

Address 00h

Reset value 0000 0000b

Brightness Control register

Drightiness ooi	introl register							
7	6	5	4	3	2	1	0	
			BRT[7	':0]				
			_					
Name	Bit	Access	Description					
BRT	7:0	R/W	Backlight PWM 8-bit linear control.					

DEVICE CONTROL

Address 01h

Reset value 0000 0000b

Device Contro	l register								
7	6	5	4	3	2	1	0		
FAST					BRT_M	ODE[1:0]	BL_CTL		
	-	-		-			-		
Name	Bit	Access	Description						
FAST	7		Skip refresh of trim and configuration registers from EPROMs when exiting the						
			low power STANDBY mode.						
			0 = read EPRO	Ms before retur	ning to the ACT	IVE state			
			1 = only read E	PROMs once o	n initial power-u	ıp.			
BRT_MODE	2:1	R/W	Brightness sou	rce mode Figure	e 6				
			00b = PWM inp	out only					
			01b = PWM inp	out and Brightne	ess register (cor	nbined before sh	aper block)		
			10b = Brightnes	ss register only					
			11b = PWM inp	out and Brightne	ess register (cor	nbined after shap	oer block)		
BL_CTL	0	R/W	Enable backlig	nt when Brightn	ess Register is	used to control b	rightness		
			(BRT_MODE =	= 10).					
			0 = Backlight d	isabled and chip	o turned off				
			1 = Backlight e	nabled and chip	turned on				
			This bit has no	effect when PW	/M pin control is	s selected for brig	htness control		
			(BRT_MODE =	= 00). In this mo	de the state of I	PWM pin enable	or disables the		
			chip.						

STATUS

Address 02h

Reset value 0000 0000b

Fault register						-			
7	6	5	4	3	2	1	0		
OPEN	SHORT	VREF_OK	VBOOST_OK	OVP	OCP	TSD	UVLO		
		•			*	•	-		
Name	Bit	Access	Description						
OPEN	7	R	LED open fault dete	ection					
			0 = No fault						
			1 = LED open fault	detected. The va	lue is not latch	ed.			
SHORT	6	R	LED short fault dete	ection					
			0 = No fault						
			1 = LED short fault	detected. The va	lue is not latch	ed.			
VREF_OK	5	R	Internal VREF node	e monitor status					
			1 = VREF voltage is	s OK.					
VBOOST_OK	4	R	Boost output voltag	e monitor status					
			0 = Boost output vo	ltage has not rea	ched its target	(VBOOST < \	/target - 2.5V)		
			1 = Boost output vo	Itage is OK. The	value is not lat	ched.			
OVP	3	R	Overvoltage protect	tion					
			0 = No fault						
			1 = Overvoltage cor	ndition occurred.	-ault is cleared	by reading the	e register 02h.		
OCP	2	R	Over current protect	tion					
			0 = No fault						
			1 = Over current de	tected in boost of	utput. OCP det	ection block n	nonitors the		
			boost output and if	the boost output h	has been too lo	w for more that	an 50 ms it will		
			generate OCP fault	and disable the be	oost. ⊢ault is cle	eared by readi	ng the register		
TOD			Thermal shutdown	ine lault boost wil	r startup again.	•			
150	I	К	I nermai shuldown						
				manated 150 °C	reached Dece				
			will be disabled unt	il the temperature	has dropped (down to 130 °	C Eault is		
			cleared by reading	this register.			5. T duit 15		
UVLO	0	R	Under voltage dete	ction					
	-		0 = No fault						
			$1 = Under voltage detected on the V_{pp} pin_Boost converter and LED output$						
			be disabled until V	voltage is abov	e the UVLO th	reshold voltag	e. Threshold		
			voltage is set with E	PROM bits. Faul	t is cleared by	reading this re	egister.		
		L			- 1	5	~		

IDENTIFICATION

Address 03h

Reset value 1111 1100b

Identification register

	· • 9.•.•	-	-				
7	6	5	4	3	2	1	0
PANEL		M	⁻ G[3:0]			REV[2:0]	
		_			-		
Name	Bit	Access	Description				
PANEL	7	R	Panel ID code				
MFG	6:3	R	Manufacturer ID	code			
REV	2:0	R	Revision ID code	9			

DIRECT CONTROL

Address 04h

Reset value 0000 0000b

Direct Control register

7	6	5	4	3	2	1	0		
			-	OUT	[5:0]	-	-		
		-	-						
Name	Bit	Access	Description						
OUT	5:0	R/W	Direct control of the LED outputs						
			0 = Normal operation. LED output are controlled with the adaptive dimming block						
			1 = LED output i	s forced to 100%	PWM.				

TEMP MSB

Address 05h

Reset value 0000 0000b

Temp MSB register											
7	6	5	4	3	2	1	0				
	TEMP[10:3]										
Name	Bit	Access	Description								
TEMP	TEMP 7:0 R Device internal temperature sensor reading first 8 MSB. MSB must be read before										
			LSB, because reading of MSB register latches the data.								

TEMP LSB

Address 06h

Reset value 0000 0000b

Temp LSB re	Temp LSB register										
7	6	5	4	3	2	1	0				
	TEMP[2:0]										
Name	Bit	Access	Description								
TEMP	TEMP 7:5 R Device internal temperature sensor reading last 3 LSB. MSB must be read before										
			LSB, because reading of MSB register latches the data.								

1

LED String Enable

Address 16h

Reset value 0011 1111b

Temp LSB register

	3	-	-	-	-	-	-		
7	6	5	4	3	2	1	0		
			LED_EN[5:0]						
Name	Bit	Access	Description						
LED_EN	5:0	R/W	Bits 5:0 corresp Bit value 1 = LE Bit value 0 = LE Note: To disable example, - for 5 disable 6th and that are generat	ond to LED String D String Enabled D String Disabled e string(s), it is rec String configurati 5th string. These red with the PS_W	s 6:1 respective commended to d on, disable 6th S bits are ANDed IODE logic.	ly. isable higher or String for 4 stri with the internal	der string(s). For ing configuration, I LED enable bits		

EPROM Bit Explanations

Device Configurations and Pre-configured EPROM Settings

ADDRESS	LP8556-E00	LP8556-E01	LP8556-E02	LP8556-E03	LP8556-E04	LP8556-E05 (<i>Note 25</i>)
98h[7]	0b	0b	0b	0b	0b	0b
9Eh	22h	22h	22h	24h	24h	22h
A0h	FFh	FFh	FFh	FFh	FFh	
A1h	CFh	4Fh	5Fh	BFh	3Fh	
A2h	2Fh	20h	20h	28h	2Fh	
A3h	5Eh	03h	5Eh	5Eh	5Eh	
A4h	72h	12h	72h	72h	72h	
A5h	14h	0Ch	04h	14h	04h	
A6h	80h	80h	80h	80h	80h	
A7h	FFh	FFh	FFh	FFh	FFh	
A8h	00h	00h	00h	00h	00h	
A9h	A0h	80h	60h	A0h	60h	
AAh	0Fh	0Fh	0Fh	0Fh	0Fh	
ABh	00h	00h	00h	00h	00h	
ACh	00h	00h	00h	00h	00h	
ADh	00h	00h	00h	00h	00h	
AEh	0Fh	0Fh	0Fh	0Fh	0Fh	
AFh	02h	02h	03h	02h	02h	

Note 25: LP8556-E05 is a device option with un-configured EPROM settings. This option is for users that desire programming the device by themselves. Bits 98h [7] and 9Eh[5] are always pre-configured.

Device Configurations and Pre-configured EPROM Settings Continued

ADDRESS	LP8556-E06	LP8556-E07	LP8556-E08	LP8556-E09	LP8556-E10	LP8556-E11
98h[7]	0b	0b	0b	0b	0b	
9Eh	22h	04h	22h	22h	24h	
A0h	FFh	FFh	FFh	FFh	EBh	
A1h	DBh	BFh	CFh	CFh	3Dh	
A2h	2Fh	0Dh	2Fh	2Fh	2Fh	
A3h	02h	02h	5Eh	5Eh	37h	
A4h	72h	72h	72h	72h	77h	
A5h	14h	20h	24h	04h	1Bh	
A6h	40h	4Eh	80h	80h	40h	
A7h	FFh	FEh	FFh	FFh	FEh	
A8h	21h	21h	00h	00h	21h	
A9h	DBh	C0h	A0h	A0h	9Bh	
AAh	0Fh	0Fh	0Fh	0Fh	3Fh	
ABh	00h	00h	00h	00h	00h	
ACh	00h	00h	00h	00h	00h	
ADh	00h	00h	00h	00h	00h	
AEh	0Fh	0Fh	0Fh	0Fh	0Fh	
AFh	02h	02h	02h	02h	00h	

Address 98h

CFG98 register									
7	6	5	4	3	2	1	0		
IBOOST_LIM_2X									
						-			
Name	Bit	Access			Description				
IBOOST_LIM_2X	7	R/W	Enable doubling the When IBOOST_LIN When IBOOST_LIN option is supported 12).	Enable doubling the boost inductor current limit. When IBOOST_LIM_2X = 0, the inductor current limit can be 0.9A, 1.2A, 1.5A or 1.8A When IBOOST_LIM_2X = 1, the inductor current limit can be 1.6A, 2.1A, or 2.6A (this option is supported only on LLP package and not on Micro SMD package. See (<i>Note</i>					

CFG9E

Address 9Eh

CFG9E register										
7	6	5	4	3	2	1	0			
		VBOOST_RANGE	HEADROOM_ADJ							
	-									
Name	Bit	Access	Description							
VBOOST_RANGE	5	R/W	Select VBC	DOST range.						
			When VBC	OST_RANGE	E = 0, the output vol	tage range is fro	m 7V to 34V			
			When VBC	OST_RANGE	E = 1, the output vol	tage range is fro	m 16V to 43V			
HEADROOM_OFF	3:0	R/W	LED driver	headroom off	set. This adjusts the	e LOW compara	tor threshold			
SET			together wi	ith LED_HEA	DROOM bits and co	ntributes to the I	MID comparator			
			threshold.							
			0000 = 460) mV						
			0001 = 390) mV						
			0010 = 320 mV							
			0100 = 250 mV							
			1000 = 180) mV						

Address A0h

CFG0 register											
7	6	5	4	3	2	1	0				
			CURRE	NT LSB[7:0]			-				
Name	Bit	Access			Description						
CURRENT LSB	7:0	R/W	The 8-bits in t allow LED cu maximum LE	his register (L rrent to be set	SB) along the 4-bits t in 12-bit fine steps using CEG1 Registe	defined in CFG . These 12-bits f er CUBBENT M	1 Register (MSB) further scale the MAX bits (denoted)				
			as IMAX). If	ISET EN = 0.	the LED current is	defined with the	bits as shown				
			below. If ISET		the external resisto	r connected to th	e ISET pin scales				
			the LED current as shown below.								
				ISET_EN = 0 ISET_EN = 1							
			0000 00	00 0000	0A	1	0A				
			0000 00	00 0001	(1/4095) x I _{MAX}	(1/4095) x I _{MAX} B	x 20000 x 1.2V /				
			0000 00	00 0010	(2/4095) x I _{MAX}	(2/4095) x I _{MAX} R	x 20000 x 1.2V /				
			0111 11	11 1111	(2047/4095) x	(2047/4095) >	(I _{MAX} x 20000 x				
					I _{MAX}	1.2V	/ R _{ISET}				
			1111 11	11 1101	(4093/4095) x	(4093/4095) >	k I _{MAX} x 20000 x				
			I _{MAX} 1.2V / R _{ISET}								
			1111 1111 1110 (4094/4095) x (4094/4095) x I _{MAX} x 20000 x								
					I _{MAX}	1.2V	/ R _{ISET}				
			1111 11	11 1111	(4095/4095) x	(4095/4095) >	(I _{MAX} x 20000 x				
					I _{MAX}	1.2V	/ R _{ISET}				

Address A1h

CFG1 register									
7	6	5	4	3 2 1 0					
PDET_STDBY	Cl	JRRENT_MAX[2:0]		CURRENT	MSB[11:8]			
Name	Bit	Access	Description						
PDET_STDBY	7	R/W	Enable Standby when PWM input is constant low (approx. 50 ms timeout).						
CURRENT_MAX	6:4	R/W	Set Maximum described in 1 000 = 5 mA 001 = 10 mA 010 = 15 mA 011 = 20 mA 100 = 23 mA 101 = 25 mA 110 = 30 mA 111 = 50 mA	n LED current the CFG0 Reg	as shown below. Ti ister.	his maximum cu	rrent is scaled as		
CURRENT MSB	3:0	R/W	These bits fo	rm the 4 MSB	bits for LED Currer	nt as described i	n CFG0 Register		

Address A2h

CFG2 register									
7	6	5	4 3 2 1 0						
RESERVED		UVLO_EN	UVLO_TH	BL_ON	ISET_EN	BOOST_ _FSET_EN	PWM_ _FSET_EN		
Name	Bit	Access	Description						
RESERVED	7:6	R/W							
UVLO_EN	5	R/W	Undervoltage	e lockout prote	ction enable.				
UVLO_TH	4	R/W	UVLO thresh 0 = 2.5V 1 = 5.2V	old levels:					
BL_ON	3	R/W	 Enable backlight. This bit must be set for PWM only control. 0 = Backlight disabled. This selection is recommended for systems with an I²C master. With an I²C master, the backlight can be controlled by writing to the register 01h. 1 = Backlight enabled. This selection is recommended for systems with PWM only control. 						
ISET_EN	2	R/W	Enable LED 0 = Resistor CURRENT_I 1 = Resistor CURRENT A	current set res is disabled and MAX EPROM is enabled and ND CURREN	istor. d current is se register bits. d current is set T_MAX EPRC	t with CURREN t with the R _{ISET} DM register bits	NT and resistor AND		
BOOST_FSET_EN	1	R/W	Enable configuration of the switching frequency via FSET pin. 0 = Configuration of the switching frequency via FSET pin is is disabled. The switching frequency is set with BOOST_FREQ EPROM register bits. 1 = Configuration of the switching frequency via FSET pin is is enabled.						
PWM_FSET_EN	0	R/W	 Enable configuration of the Switching frequency via FSET pints is enabled. Enable configuration of the PWM dimming frequency via FSET pin is is disabled. Configuration of the switching frequency via FSET pin is is disabled. The switching frequency is set with PWM_FREQ EPROM register bits. Configuration of the PWM dimming frequency via FSET pin is is enabled. 						

Address A3h

G3 register							
7	6	5	4	3	2	1	0
RESERVED		SLOPE[2:0]	FILTER[1:0]		R[1:0] PWM_INPUT_HYSTERESIS [1:0]		
				1			
Name	Bit	Access	Description				
RESERVED	7	R/W					
SLOPE	6:4	R/W	Select brigh 000 = 0 ms 001 = 1 ms 010 = 2 ms 011 = 50 ms 100 = 100 m 101 = 200 m 110 = 300 m 111 = 500 m	tness change tr (immediate cha s is is is is	ansition dura nge)	tion	
FILTER	3:2	R/W	Select brigh 00 = No filte 01 = light sn 10 = mediur 11 = heavy s	tness change tr ring. noothing n smoothing smoothing	ansition filter	ing strength	
PWM_INPUT_ _HYSTERESIS	1:0	R/W	PWM input I 00 = OFF 01 = 1-bit hy 10 = 1-bit hy 11 = 1-bit hy	nysteresis funct steresis with 1 steresis with 1 steresis with 8	ion. 3-bit resolutic 2-bit resolutic bit resolutior	on on	

Address A4h

CFG4 register	_									
7	6	5	4	3	2	1	0			
PWM	_TO_I_TH	RESHOLD[3:0]	RESERVED STEADY_ DITHER[1:0] DITHER							
Name	Bit	Access	Description							
PWM_TO_I_ _THRESHOLD	7:4	R/W	Select switch point between PWM and pure current dimming 0000 = current dimming across entire range 0001 = switch point at 10% of the maximum LED current. 0010 = switch point at 12.5% of the maximum LED current. 0011 = switch point at 15% of the maximum LED current. 0100 = switch point at 17.5% of the maximum LED current. 0101 = switch point at 17.5% of the maximum LED current. 0101 = switch point at 20% of the maximum LED current. 0110 = switch point at 22.5% of the maximum LED current. 0111 = switch point at 25% of the maximum LED current. 0102 = switch point at 33.33% of the maximum LED current. 1001 = switch point at 41.67% of the maximum LED current. 1001 = switch point at 41.67% of the maximum LED current.							
RESERVED	3	R/W								
STEADY_DITHER	2	R/W	Dither function method select: 0 = Dither only on transitions 1 = Dither at all times							
DITHER	1:0	R/W	Dither function control 00 = Dithering disabled 01 = 1-bit dithering 10 = 2-bit dithering 11 = 3-bit dithering							

Address A5h

CFG5 register			1				
7	6	5	4	3	2	1	0
PWM_DIRECT		PS_MODE[2:0]			PWM_	FREQ[3:0]	
Name	Bit	Access	Description				
PWM_DIRECT	7	R/W	Intended for	certain test mo	de purpose. V	Vhen enabled,	the entire pipeline
			is bypassed	and PWM outp	ut is connecte	ed with PWM ir	nput.
PS_MODE	6:4	R/W	Select PWM	output phase of	configuration:		
			000 = 6-phas	se, 6 drivers (0	°, 60°, 120°, 1	80°, 240°, 320)°)
			001 = 5-phas	se, 5 drivers (0	°, 72°, 144°, 2	16°, 288°, OF	F)
			010 = 4-phas	se, 4 drivers (0	°, 90°, 180°, 2	70°, OFF, OFI	F)
			011 = 3-phas	se, 3 drivers (0	°, 120°, 240°,	OFF, OFF, OF	F)
			100 = 2-phas	se, 2 drivers (0	°, 180°, OFF,	OFF, OFF, OF	F)
			101 = 3-phas	se, 6 drivers (0	°, 0°, 120°, 12	20°, 240°, 240°)
			110 = 2-phas	se, 6 drivers (0	°, 0°, 0°, 180°	, 180°, 180°)	
			111 = 1-phas	se, 6 drivers (0	°, 0°, 0°, 0°, 0	°, 0°)	
PWM_FREQ	3:0	R/W	0h = 4,808H	z (11-bit)			
			1h = 6,010H	z (10-bit)			
			2h = 7,212H	z (10-bit)			
			3h = 8,414H	z (10-bit)			
			4h = 9,616H	z (10-bit)			
			5h = 12,020H	Hz (9-bit)			
			6h = 13,222ł	Hz (9-bit)			
			7h = 14,424h	Hz (9-bit)			
			8h = 15,626H	Hz (9-bit)			
			9h = 16,828ł	Hz (9-bit)			
			Ah = 18,030	Hz (9-bit)			
			Bh = 19,232	Hz (9-bit)			
			Ch = 24,040	Hz (8-bit)			
			Dh = 28,848	Hz (8-bit)			
			Eh = 33,656	Hz (8-bit)			
			Fh = 38,464	Hz(8-bit)			

CFG6

Address A6h

CFG6 register									
7	6	5	4 3 2 1 0						
BOOST_FREQ	OST_FREQ[1:0] VBOOST[5:0]								
		-							
Name	Bit	Access	Description						
BOOST_FREQ	7:6	R/W	Set boost switching frequency when BOOST_FSET_EN = 0. 00 = 312 kHz 01 = 625 kHz 10 = 1250 kHz 11 = undefined						
VBOOST	5:0	R/W	Boost output initial voltage	voltage. Whe	n ADAPTIVE =	1, this is the b	oost minimum and		

Address A7h

CFG7 register									
7	6	5	4 3 2 1 0						
RESERVED		EN_DRV3	EN_DRV2	BOOST	_PFM_ OLD[1:0]	IBOOS	T_LIM[1:0]		
	2								
Name	Bit	Access	Description						
RESERVED	7:6								
EN_DRV3	5	R/W	Selects boost driver strength to set boost slew rate. See EMI Reduction section for more detail. 0 = Driver3 disabled 1 = Driver3 enabled						
EN_DRV2	4	R/W	Selects boos section for m 0 = Driver2 d 1 = Driver2 e	t driver strengt ore detail. isabled nabled	h to set boost	slew rate. See	e EMI Reduction		
RESERVED	3:2	R/W							
IBOOST_LIM	1:0	R/W	Select boost inductor current limit (IBOOST_LIM_2X = 0 / IBOOST_LIM_2X = 1) 00 = 0.9A / 1.6A 01 = 1.2A / 2.1A 10 = 1.5A / 2.6A 11 = 1.8A / not permitted						

Address A9h

CFG9 register									
7	6	5	4 3 2 1 0						
VBOO	ST_MAX[2:	0]	JUMP_EN	JUMP_THRE	SHOLD[1:0]	JUMP_V	OLTAGE[1:0]		
Name	Bit	Access	Description						
VBOOST_MAX	7:5	R/W	Select the m	aximum boost	voltage (typ v	alues)			
			(VBOOST_RANGE = 0 / VBOOST_RANGE = 1)						
			010 = NA / 2	1V					
			011 = NA / 25V						
			100 = 21V / 30V						
			101 = 25V / 34.5V						
			110 = 30V / 3	39V					
			111 = 34V / 4	43V					
JUMP_EN	4	R/W	Enable JUM	P detection on	the PWM inpu	ıt.			
JUMP_THRESHOLD	3:2	R/W	Select JUMF	threshold:					
			00 = 10%						
			01 = 30%						
			10 = 50%						
			11 = 70%						
JUMP_VOLTAGE	1:0	R/W	Select JUMP voltage:						
			00 = 0.5V						
			01 = 1V						
			10 = 2V						
			11 = 4V						

CFGA

Address AAh

CFGA register								
7	6	5	4 3 2 1 0					
SSCLK_EN	RESERVED	RESE	SERVED ADAPTIVE DRIVER_HEADROOM[2:0]				OOM[2:0]	
	-		_					
Name	Bit	Access	Description					
SSCLK_EN	7	R/W	Enable spread spectrum function.					
RESERVED	6	R/W						
RESERVED	5:4	R/W						
ADAPTIVE	3	R/W	Enable adaptive boost control.					
DRIVER_HEADROOM	2:0	R/W	LED driver h	eadroom contro	l. This sets th	e LOW compa	rator threshold and	
			contributes t	o the MID comp	parator thresh	old.		
			000 = HEAD	ROOM_OFFSE	ET + 875 mV			
			001 = HEAD	ROOM_OFFSE	ET + 750 mV			
			010 = HEAD	ROOM_OFFSE	ET + 625 mV			
			011 = HEAD	ROOM_OFFSE	ET + 500 mV			
			100 = HEAD	ROOM_OFFSE	ET + 375 mV			
			101 = HEAD	ROOM_OFFSE	ET + 250 mV			
			110 = HEAD	ROOM_OFFSE	ET + 125 mV			
			111 = HEAD	ROOM_OFFSE	ET mV			

CFGE

Address AEh

CFGE register									
7	6	5	4 3 2 1 0						
STEP_UP[1:0)]	STEP_DN	N[1:0]	LED_FAUL	T_TH[2:0]	LED_COM	/IP_HYST[1:0]		
				-		-			
Name	Bit	Access	Description						
STEP_UP	7:6	R/W	Adaptive hea	adroom UP ster	o size				
			01 = 210 mV	,					
			10 = 420 mV	,					
			11 = 840 mV	,					
STEP_DN	5:4	R/W	Adaptive hea	adroom DOWN	step size				
			00 = 105 mV	,					
			01 = 210 mV	,					
			10 = 420 mV	,					
			11 = 840 mV						
LED_FAULT_TH	3:2	R/W	LED headroo	om fault thresh	old. This sets	the HIGH com	parator threshold.		
			00 = 5V						
			01 = 4V						
			10 = 3V						
			11 = 2V						
LED_COMP_HYST	1:0	R/W	LED headror	n comparison ł	nysteresis. Th	is sets the MI	O comparator		
			threshold.						
			00 = DRIVE	R_HEADROOM	1 + 1000 mV				
			01 = DRIVE	R_HEADROOM	1 + 750 mV				
			10 = DRIVE	R_HEADROON	1 + 500 mV				
			11 = DRIVER	R_HEADROOM	1 + 250 mV				

CFGF

Address AFh

CFGF register							
7	6	5	4	3	2	1	0
REVISION							
Name	Bit	Access	Description				
REV	7:0	R/W	EPROM Settings Revision ID code				

Physical Dimensions inches (millimeters) unless otherwise noted

 $X1 = 1.715 \pm 0.03 \text{ mm}$ $X2 = 2.376 \pm 0.03 \text{ mm}$ $X3 = 0.600 \pm 0.075 \text{ mm}$

> NS Package Number TMD20EQA (See AN-1112 for PCB Design and Assembly Recommendations)

Notes