ヘnational semiconductor

 100355

 100355

 Low Power Quad Multiplexer/Latch

 Low Power Quad Multiplexer/Latch}

General Description

The 100355 contains four transparent latches, each of which can accept and store data from two sources. When both Enable ($\overline{\mathrm{E}}_{n}$) inputs are LOW, the data that appears at an output is controlled by the Select $\left(\mathrm{S}_{n}\right)$ inputs, as shown in the Operating Mode table. In addition to routing data from either D_{0} or D_{1}, the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_{0} or D_{1} to an output. The Select inputs can be tied together for applications requiring only that data be steered from either D_{0} or D_{1}. A positive-going signal on either Enable input latches the out-
puts. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Features

- Greater than 40% power reduction of the 100155
- 2000V ESD protection
- Pin/function compatible with 100155
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V
- Standard Microcircuit Drawing
(SMD) 5962-9165401

Logic Symbol

Pin Names	Description
$\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$	Enable Inputs (Active LOW)
$\bar{S}_{0}, \mathrm{~S}_{1}$	Select Inputs
MR	Master Reset
$\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}}$	Data Inputs
$\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$	Data Outputs
$\overline{\mathrm{Q}}_{\mathrm{a}}-\bar{Q}_{\mathrm{d}}$	Complementary Data Outputs

Connection Diagrams

24-Pin DIP

24-Pin Quad Cerpak

Logic Diagram

Operating Mode Table

Controls				Outputs
$\overline{\mathbf{E}}_{\mathbf{1}}$	$\overline{\mathbf{E}}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\overline{\mathbf{S}}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{n}}$
H	X	X	X	Latched (Note 1)
X	H	X	X	Latched (Note 1)
L	L	L	L	D $_{0 x}$
L	L	H	L	$\mathrm{D}_{0 x}+\mathrm{D}_{1 \mathrm{x}}$
L	L	L	H	L
L	L	H	H	$\mathrm{D}_{1 x}$

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Note 1: Stores data present before $\overline{\mathrm{E}}$ went HIGH

Truth Table

Inputs								Outputs	
MR	$\overline{\mathbf{E}}_{\mathbf{1}}$	$\overline{\mathbf{E}}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\overline{\mathbf{S}}_{\mathbf{0}}$	$\mathbf{D}_{\mathbf{1 x}}$	$\mathbf{D}_{\mathbf{0 x}}$	$\overline{\mathbf{Q}}_{\mathbf{x}}$	$\mathbf{Q}_{\mathbf{x}}$	
H	X	X	X	X	X	X	H	L	
L	L	L	H	H	H	X	L	H	
L	L	L	H	H	L	X	H	L	
L	L	L	L	L	X	H	L	H	
L	L	L	L	L	X	L	H	L	
L	L	L	L	H	X	X	H	L	
L	L	L	H	L	H	X	L	H	
L	L	L	H	L	X	H	L	H	
L	L	L	H	L	L	L	H	L	
L	H	X	X	X	X	X	Latched (Note 1)		
X	H	X	X	X	X	Latched (Note 1)			

Absolute Maximum Ratings (Note 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Above which the useful life may be impaired.

Storage Temperature ($\mathrm{T}_{\text {STG }}$) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Maximum Junction Temperature (T_{J}) Ceramic
V_{EE} Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH)
$+175^{\circ} \mathrm{C}$
-7.0 V to +0.5 V V_{EE} to +0.5 V

Recommended Operating Conditions

Case Temperature (T_{C}
Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{EE})
-5.7 V to -4.2 V
Note 2: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 3: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Max	Units	T_{C}	Conditions		Notes	
V_{OH}	Output HIGH Voltage	-1025	-870	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	(Notes 4, 5, 6)	
		-1085	-870	mV	$-55^{\circ} \mathrm{C}$				
V_{OL}	Output LOW Voltage	-1830	-1620	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
		-1830	-1555	mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035		mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH (Min) }} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$	Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$	(Notes 4, 5, 6)	
		-1085		mV	$-55^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1610	mV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
			-1555	mV	$-55^{\circ} \mathrm{C}$				
V_{IH}	Input HIGH Voltage	-1165	-870	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Guaranteed HIGH Signal for ALL Inputs		$\begin{gathered} (\text { Notes 4, 5, } \\ 6,7) \end{gathered}$	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1475	mV	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$	Guaranteed LOW Signal for ALL Inputs		$\begin{gathered} (\text { Notes 4, 5, } \\ 6,7) \end{gathered}$	
IIL	Input LOW Current	0.50		$\mu \mathrm{A}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \\ & \hline \end{aligned}$		(Notes 4, 5, 6)	
I_{H}	Input HIGH Current $\begin{aligned} & \overline{\mathrm{S}}_{0}, \mathrm{~S}_{1} \\ & \overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2} \\ & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \mathrm{MR} \end{aligned}$		$\begin{aligned} & 220 \\ & 350 \\ & 340 \\ & 430 \end{aligned}$	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})} \end{aligned}$		(Notes 4, 5, 6)	
	$\begin{aligned} & \overline{\mathrm{S}}_{0}, \mathrm{~S}_{1} \\ & \overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2} \\ & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \mathrm{MR} \end{aligned}$		$\begin{aligned} & \hline 320 \\ & 500 \\ & 490 \\ & 630 \end{aligned}$	$\mu \mathrm{A}$	$-55^{\circ} \mathrm{C}$				
I_{EE}	Power Supply Current	-95	-32	mA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Inputs Open		(Notes 4, 5, 6)	

Note 4: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.
Note 5: Screen tested 100% on each device at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$ Temp., Subgroups $1,2,3,7$, and 8 .
Note 6: Sample tested (Method 5005, Table 1) on each Mfg. lot at $+25^{\circ},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temp., Subgroups $1,2,3,7$, and 8 .
Note 7: Guaranteed by applying specified input condition and testing $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$

Military Version

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}}$ to Output (Transparent Mode)	0.40	2.30	0.50	2.20	0.50	2.60	ns	Figures 1, 2	(Notes 8, 9, 10)
$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{S}}_{0}, \mathrm{~S}_{1}$ to Output (Transparent Mode)	0.60	3.00	0.80	2.70	0.80	3.20	ns		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{1}, \bar{E}_{2} to Output	0.50	2.60	0.60	2.30	0.70	2.70	ns		
$\mathrm{t}_{\mathrm{PLH}}$ $t_{\text {PHL }}$	Propagation Delay MR to Output	0.60	2.80	0.70	2.60	0.70	2.90	ns	Figures 1, 3	(Notes 8, 9, 10)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	1.90	0.40	1.90	0.40	1.90	ns	Figures 1, 2	(Note 11)
t_{s}	Setup Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \mathrm{~S}_{0}, \mathrm{~S}_{1} \\ & \text { MR (Release Time) } \end{aligned}$	$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$		ns	Figure 4 Figure 3	(Note 11)
t_{H}	Hold Time $\begin{aligned} & \mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}} \\ & \mathrm{~S}_{0}, \mathrm{~S}_{1} \\ & \hline \end{aligned}$	$\begin{array}{r} 0.40 \\ 0.00 \\ \hline \end{array}$		$\begin{aligned} & 0.40 \\ & 0.00 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.40 \\ & 0.00 \\ & \hline \end{aligned}$		ns	Figure 4	(Note 11)
$\overline{t_{\text {pw }}(\mathrm{L})}$	Pulse Width LOW $\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$	2.00		2.00		2.00		ns	Figure 2	(Note 11)
$\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3	(Note 11)

Note 8: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals $-55^{\circ} \mathrm{C}$), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures
Note 9: Screen tested 100% on each device at $+25^{\circ} \mathrm{C}$, Temperature only, Subgroup A9
Note 10: Sample tested (Method 5005, Table 1) on each Mfg. lot at $+25^{\circ}$, Subgroup A9, and at $+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ Temp., Subgroups A10 \& A11.
Note 11: Not tested at $+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ Temperature (design characterization data).

Test Circuit

Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length 50Ω impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
All unused outputs are loaded with 50Ω to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol
FIGURE 1. AC Test Circuit
(Using Quad Cerpak)

Switching Waveforms

FIGURE 2. Enable Timing

Switching Waveforms (Continued)

\square

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Ceramic Dual-In-Line Package (D)
NS Package Number J24E

W24B (REV D)
24-Lead Ceramic Flatpak (F)
NS Package Number W24C
LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

\square
\square

100355

Low Power Quad Multiplexer/Latch

Contents

- General Description
- Features
- Datasheet
- Package Availability, Models, Samples
\& Pricing

General Description

The 100355 contains four transparent latches, each of which can accept and store data from two sources. When both Enable $\left(E \#_{n}\right)$ inputs are LOW, the data that appears at an output is controlled by the Select $\left(\mathrm{S}_{\mathrm{n}}\right)$ inputs, as shown in the Operating Mode table. In addition to routing data from either D_{0} or D_{1}, the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_{0} or D_{1} to an output. The Select inputs can be tied together for applications requiring only that data be steered from either D_{0} or D_{1}. A positive-going signal on either Enable input latches the outputs. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs LOW. All inputs have 50 k Ohm pulldown resistors.

Features

- Greater than 40% power reduction of the 100155
- 2000 V ESD protection
- Pin/function compatible with 100155
- Voltage compensated operating range $=-4.2 \mathrm{~V}$ to -5.7 V
- Standard Microcircuit Drawing (SMD) 5962-9165401

Datasheet

Title	Size (in Kbytes)	Date		Download	Receive via Email
100355 Low Power Quad Multiplexer/Latch	148 Kbytes	17-Aug-98	View Online	Download	Receive via Email
100355 Mil-Aero Datasheet MN100355-X	108 Kbytes		View Online	Download	Receive via Email

Please use Adobe Acrobat to view PDF file(s).
If you have trouble printing, see Printing Problems.

Package Availability, Models, Samples \& Pricing

Part Number	Package		Status	Models		 Electronic Orders	Budgetary Pricing		$\left\lvert\, \begin{gathered} \text { Std } \\ \text { Pack } \\ \text { Size } \end{gathered}\right.$	Package Marking
	Type	\# pins		SPICE	IBIS		Quantity	\$US each		
5962-9165401MXA	Cerdip	24	Full production	N/A	N/A		50+	\$38.0000	tube of 15	$[\operatorname{logo}] \phi \mathrm{Z} \phi \mathrm{S} \phi 4 \phi \mathrm{~A} \$ \mathrm{E}$ $100355 \mathrm{DMQB} / \mathrm{Q}$ $5962-9165401 \mathrm{MXA}$
5962-9165401MYA	Cerquad	24	Full production	N/A	N/A	区	50+	\$40.5000	$\left\lvert\, \begin{array}{\|c\|} \hline \text { tube } \\ \text { of } \\ 14 \end{array}\right.$	$[$ logo $]$ Z $\phi S \$ 44$ A Q\$E 100355 FMQB 5962 -9165401 MYA
5962-9165401VXA	Cerdip	24	Full production	N/A	N/A	.	50+	\$265.0000	tube of 15	

5962-9165401VYA	Cerquad	24	Full production	N/A	N/A		50+	\$265.0000	tube of 14	$\begin{gathered} \hline[\operatorname{logo}] \phi \mathrm{Z} \phi S \phi 4 \phi \mathrm{~A} \\ 100355 \mathrm{~W}- \\ \text { QMLV } 5962 \\ -9165401 \\ \text { VYA \$E } \\ \hline \end{gathered}$
100355 MW8	wafer		Full production	N/A	N/A				N/A	-

[Information as of 1-Sep-2000]

Quick Search	Parametric	$\underline{\text { System }}$	Product	Home
	$\underline{\text { Search }}$	$\underline{\text { Diagrams }}$	$\underline{\text { Tree }}$	$\underline{4}$

About Languages . About the Site . About "Cookies" National is QS 9000 Certified . Privacy/Security Copyright © National Semiconductor Corporation

- Preferences . Feedback

