Advance Information # 128K x 24 Bit Static Random Access Memory The MCM6341 is a 3,145,728—bit static random access memory organized as 131,072 words of 24 bits. Static design eliminates the need for external clocks or timing strobes. The MCM6341 is equipped with chip enable $(\overline{E1}, E2, \overline{E3})$ and output enable (\overline{G}) pins, allowing for greater system flexibility and eliminating bus contention problems. The MCM6341 is available in a 119-bump PBGA package. - Single 3.3 V Power Supply - Fast Access Time: 10/11/12/15 ns - Equal Address and Chip Enable Access Time - All Inputs and Outputs are TTL Compatible - Three-State Outputs - Power Operation: 280/275/270/260 mA Maximum, Active AC - Commercial Temperature (0°C to 70°C) and Industrial Temperature (– 40°C to 85°C) Options # MCM6341 | PIN NAMES | |--| | A Address Inputs W Write Enable G Output Enable E1, E2, E3 Chip Enable DQ Data Input/Output NC No Connection VDD +3.3 V Power Supply VSS Ground | ### **BLOCK DIAGRAM** This document contains information on a new product. Specifications and information herein are subject to change without notice. REV 5 1/26/99 ### **PIN ASSIGNMENT** 119-BUMP PBGA TOP VIEW MCM6341 ### **TRUTH TABLE** (X = Don't Care) | Ē1 | E2 | E3 | G | W | Mode | I/O Pin | Cycle | Current | |----|----|----|---|---|-----------------|----------------------------|-------|------------| | Н | Х | Х | Х | Х | Not Selected | High–Z | _ | ISB1, ISB2 | | Х | L | Х | Х | Х | Not Selected | High–Z | _ | ISB1, ISB2 | | Х | Х | Н | Х | Х | Not Selected | Not Selected High-Z — | | ISB1, ISB2 | | L | Н | L | Н | Н | Output Disabled | High–Z | _ | IDDA | | L | Н | L | L | Н | Read | Read D _{out} Read | | IDDA | | L | Н | L | Х | L | Write | High–Z | Write | IDDA | ### **ABSOLUTE MAXIMUM RATINGS** (See Note) | Rating | Symbol | Value | Unit | |---|------------------------------------|-------------------------------|------| | Power Supply Voltage Relative to V _{SS} | v_{DD} | - 0.5 to 5.0 | V | | Voltage Relative to V _{SS} for Any Pin
Except V _{DD} | V _{in} , V _{out} | -0.5 to V _{DD} + 0.5 | ٧ | | Output Current (per I/O) | l _{out} | ± 20 | mA | | Power Dissipation | PD | 1.0 | W | | Temperature Under Bias Commercial Industrial | T _{bias} | – 10 to 85
– 45 to 90 | °C | | Storage Temperature — Plastic | T _{stg} | – 55 to 150 | °C | NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high—impedance circuits. This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained. ### **PRODUCT CONFIGURATIONS** | | | | Power | Supply | |--------------|------------|------------|-------------|----------| | Part No. | Commercial | Industrial | + 10%, - 5% | ± 10% | | MCM6341ZP10 | ~ | | | ~ | | MCM6341ZP11 | ~ | | | ~ | | MCM6341ZP12 | ~ | | | ~ | | MCM6341ZP15 | ~ | | | ~ | | SCM6341ZP11A | | V | | ~ | | SCM6341ZP12A | | V | | V | | SCM6341ZP15A | | ~ | | <i>V</i> | MOTOROLA FAST SRAM MCM6341 ### DC OPERATING CONDITIONS AND CHARACTERISTICS $(V_{DD} = 3.3 V \pm 10\%, T_{A} = 0 \text{ to } 70^{\circ}\text{C})$ $(T_A = -40 \text{ to } 85^{\circ}\text{C for Industrial Temperature Offering})$ ### **RECOMMENDED OPERATING CONDITIONS** | Parameter | Symbol | Min | Тур | Max | Unit | |--|-----------------|--------|-----|-------------------------|------| | Supply Voltage (Operating Voltage Range) | V_{DD} | 3.0 | 3.3 | 3.6 | ٧ | | Input High Voltage | V _{IH} | 2.2 | _ | V _{DD} + 0.3** | ٧ | | Input Low Voltage | V _{IL} | - 0.5* | _ | 0.8 | V | ### DC CHARACTERISTICS (See Note) | Parameter | Symbol | Min | Max | Unit | |--|---------------------|-----|-------|------| | Input Leakage Current (All Inputs, V _{in} = 0 to V _{DD}) | l _{lkg(l)} | _ | ± 1.0 | μΑ | | Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{DD}) | l _{lkg(O)} | _ | ± 1.0 | μΑ | | Output Low Voltage (I _{OL} = + 8.0 mA) | V _{OL} | _ | 0.4 | ٧ | | Output High Voltage (I _{OH} = - 4.0 mA) | V _{OH} | 2.4 | _ | V | NOTE: $\overline{E1}$, E2, and $\overline{E3}$ are represented by \overline{E} in this data sheet. E2 is of opposite polarity to $\overline{E1}$ and $\overline{E3}$. ### POWER SUPPLY CURRENTS (See Note) | Parameter | Symbol | 0 to 70°C | – 40 to
85°C | Unit | | |--|--|------------------|--------------------------|--------------------------|----| | AC Active Supply Current (I _{out} = 0 mA, V _{DD} = max) | MCM6341-10
MCM6341-11
MCM6341-12
MCM6341-15 | I _{DD} | 250
240
230
220 | 290
285
280
270 | mA | | AC Standby Current ($V_{DD} = max$, $\overline{E} = V_{IH}$, No other restrictions on other inputs) | MCM6341-10
MCM6341-11
MCM6341-12
MCM6341-15 | ^I SB1 | 50
50
50
45 | 55
55
55
50 | mA | | CMOS Standby Current ($\overline{E} \ge V_{DD} - 0.2 \text{ V}, V_{in} \le V_{SS} + 0.2 \text{ (}V_{DD} = \text{max}, f = 0 \text{ MHz)}$ | I _{SB2} | 10 | 10 | mA | | NOTE: $\overline{E1}$, E2, and $\overline{E3}$ are represented by \overline{E} in this data sheet. E2 is of opposite polarity to $\overline{E1}$ and $\overline{E3}$. ### **CAPACITANCE** (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested) | | Parameter | Symbol | Тур | Max | Unit | |--------------------------|---|------------------------------------|--------|--------|------| | Input Capacitance | All Inputs Except Clocks and DQs $\overline{E}, \overline{G}, \overline{W}$ | C _{in}
C _{ck} | 4
5 | 6
8 | pF | | Input/Output Capacitance | DQ | C _{I/O} | 5 | 8 | pF | MCM6341 MOTOROLA FAST SRAM $[\]label{eq:VIL} *V_{IL}$ (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 2.0 ns). *V_{IH}$ (max) = V_{DD} + 0.3 V dc; V_{IH} (max) = V_{DD} + 2.0 V ac (pulse width ≤ 2.0 ns). *V_{IH}$ (max) = V_{DD} + 2.0 V ac (pulse width ≤ 2.0 ### **AC OPERATING CONDITIONS AND CHARACTERISTICS** $(V_{DD}=3.3~V\pm10\%,~T_{A}=0~to~70^{\circ}C)$ (TA = $-40~to~85^{\circ}C$ for Industrial Temperature Offering) | Input Pulse Levels 0 to 3.0 V | Output Timing Measurement Reference Level 1.5 V | |--|---| | Input Rise/Fall Time | Output Load See Figure 1 | | Input Timing Measurement Reference Level 1.5 V | | ### READ CYCLE TIMING (See Notes 1, 2, and 3) | | | мсм6 | MCM6341-10 | | MCM6341-11 | | MCM6341-12 | | 341–15 | | | |-------------------------------------|-------------------|------|------------|-----|------------|-----|------------|-----|--------|------|---------| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | Notes | | Read Cycle Time | [†] AVAV | 10 | _ | 11 | _ | 12 | _ | 15 | _ | ns | 4 | | Address Access Time | [†] AVQV | _ | 10 | _ | 11 | _ | 12 | _ | 15 | ns | | | Enable Access Time | ^t ELQV | _ | 10 | _ | 11 | _ | 12 | _ | 15 | ns | 5 | | Output Enable Access Time | ^t GLQV | _ | 4 | _ | 4 | _ | 4 | _ | 4 | ns | | | Output Hold from Address Change | ^t AXQX | 3 | _ | 3 | _ | 3 | _ | 3 | _ | ns | | | Enable Low to Output Active | ^t ELQX | 3 | _ | 3 | _ | 3 | _ | 3 | _ | ns | 6, 7, 8 | | Output Enable Low to Output Active | ^t GLQX | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | 6, 7, 8 | | Enable High to Output High-Z | ^t EHQZ | 0 | 5 | 0 | 6 | 0 | 6 | 0 | 7 | ns | 6, 7, 8 | | Output Enable High to Output High-Z | ^t GHQZ | 0 | 5 | 0 | 6 | 0 | 6 | 0 | 7 | ns | 6, 7, 8 | ### NOTES: - 1. W is high for read cycle. - 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles. - 3. $\overline{E1}$, E2, and $\overline{E3}$ are represented by \overline{E} in this data sheet. E2 is of opposite polarity to $\overline{E1}$ and $\overline{E3}$. - 4. All read cycle timings are referenced from the last valid address to the first transitioning address. - 5. Addresses valid prior to or coincident with \overline{E} going low. - 6. At any given voltage and temperature, t_{EHQZ} max < t_{ELQX} min, and t_{GHQZ} max < t_{GLQX} min, both for a given device and from device to device. - 7. Transition is measured $\pm\,200~\text{mV}$ from steady–state voltage. - 8. This parameter is sampled and not 100% tested. - 9. Device is continuously selected ($\overline{E} \le V_{|L}$, $\overline{G} \le V_{|L}$). Figure 1. AC Test Load MOTOROLA FAST SRAM MCM6341 ### READ CYCLE 1 (See Note 9) ### READ CYCLE 2 (See Notes 3 and 5) WRITE CYCLE 1 (W Controlled; See Notes 1, 2, 3, and 4) | | | MCM6341-10 | | мсм6 | MCM6341-11 | | MCM6341-12 | | MCM6341-15 | | | |--|-------------------|------------|-----|------|------------|-----|------------|-----|------------|------|---------| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | Notes | | Write Cycle Time | †AVAV | 10 | _ | 11 | _ | 12 | _ | 15 | _ | ns | 5 | | Address Setup Time | ^t AVWL | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | | | Address Valid to End of Write | [†] AVWH | 9 | _ | 10 | _ | 10 | _ | 12 | _ | ns | | | Address Valid to End of Write (G High) | [†] AVWH | 8 | _ | 9 | _ | 9 | _ | 10 | _ | ns | | | Write Pulse Width | tWLWH
tWLEH | 9 | _ | 10 | _ | 10 | _ | 12 | _ | ns | | | Write Pulse Width (G High) | tWLWH
tWLEH | 8 | _ | 9 | _ | 9 | _ | 10 | _ | ns | | | Data Valid to End of Write | tDVWH | 4 | _ | 5 | _ | 5 | _ | 6 | _ | ns | | | Data Hold Time | tWHDX | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | | | Write Low to Data High-Z | tWLQZ | 0 | 3.5 | 0 | 3.5 | 0 | 3.5 | 0 | 3.5 | ns | 6, 7, 8 | | Write High to Output Active | tWHQX | 3 | _ | 3 | _ | 3 | _ | 3 | _ | ns | 6, 7, 8 | | Write Recovery Time | twhax | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | | ### NOTES: - 1. A write occurs during the overlap of \overline{E} low and \overline{W} low. - 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles. - 3. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high-impedance state. - 4. $\overline{E1}$, $\overline{E2}$, and $\overline{E3}$ are represented by \overline{E} in this data sheet. $\overline{E2}$ is of opposite polarity to $\overline{E1}$ and $\overline{E3}$. - 5. All write cycle timings are referenced from the last valid address to the first transitioning address. - 6. Transition is measured ± 200 mV from steady-state voltage. - 7. This parameter is sampled and not 100% tested. - 8. At any given voltage and temperature, tWLQZ max < tWHQX min both for a given device and from device to device. MOTOROLA FAST SRAM MCM6341 WRITE CYCLE 2 (E Controlled; See Notes 1, 2, 3, and 4) | | | MCM6341-10 | | МСМ6 | 341–11 | MCM6341-12 | | MCM6341-15 | | | | |--|---|------------|-----|------|--------|------------|-----|------------|-----|------|-------| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | Notes | | Write Cycle Time | [†] AVAV | 10 | _ | 11 | _ | 12 | _ | 15 | _ | ns | 5 | | Address Setup Time | ^t AVEL | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | | | Address Valid to End of Write | ^t AVEH | 9 | _ | 10 | _ | 10 | _ | 12 | _ | ns | | | Address Valid to End of Write (G High) | ^t AVEH | 8 | _ | 9 | _ | 9 | _ | 10 | _ | ns | | | Enable Pulse Width | ^t ELEH,
^t ELWH | 9 | _ | 10 | _ | 10 | _ | 12 | _ | ns | 6, 7 | | Enable Pulse Width (G High) | ^t ELEH,
^t ELWH | 8 | _ | 9 | _ | 9 | _ | 10 | _ | ns | 6, 7 | | Data Valid to End of Write | ^t DVEH | 4 | _ | 5 | _ | 5 | _ | 6 | _ | ns | | | Data Hold Time | ^t EHDX | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | | | Write Recovery Time | ^t EHAX | 0 | _ | 0 | _ | 0 | _ | 0 | _ | ns | | ### NOTES: - 1. A write occurs during the overlap of \overline{E} low and \overline{W} low. - 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles. - 3. If \overline{G} goes low coincident with or after \overline{W} goes low, the output will remain in a high-impedance state. - 4. $\overline{E1}$, $\overline{E2}$, and $\overline{E3}$ are represented by \overline{E} in this data sheet. $\overline{E2}$ is of opposite polarity to $\overline{E1}$ and $\overline{E3}$. - 5. All write cycle timing is referenced from the last valid address to the first transitioning address. - 6. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high–impedance condition. - 7. If \overline{E} goes high coincident with or before \overline{W} goes high, the output will remain in a high-impedance condition. # TAVAV A (ADDRESS) E (CHIP ENABLE) TAVEH TELEH TELEH TELEH TOVEH DATA VALID HIGH-Z WRITE CYCLE 2 (E Controlled; See Notes 1, 2, 3, and 4) ## MCM6341 Q (DATA OUT) - ### **ORDERING INFORMATION** (Order by Full Part Number) Full Commercial Part Numbers — MCM6341ZP10 MCM6341ZP11 MCM6341ZP12 MCM6341ZP15 Full Industrial Temperature Part Numbers — SCM6341ZP11A SCM6341ZP12A SCM6341ZP15A ### **PACKAGE DIMENSIONS** **ZP PACKAGE** 119-PBGA CASE 999-02 SIDE VIEW ### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. ALL DIMENSIONS IN MILLIMETERS. 3. DIMENSION & IS THE MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A. 4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. | | MILLIMETERS | | |-----|-------------|-------| | DIM | MIN | MAX | | Α | l | 2.40 | | A1 | 0.50 | 0.70 | | A2 | 1.30 | 1.70 | | A3 | 0.80 | 1.00 | | D | 22.00 BSC | | | D1 | 20.32 BSC | | | D2 | 19.40 | 19.60 | | E | 14.00 BSC | | | E1 | 7.62 BSC | | | E2 | 11.90 | 12.10 | | b | 0.60 | 0.90 | | е | 1.27 BSC | | | | | | MOTOROLA FAST SRAM MCM6341 SEATING PLANE Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and Poportunity/Affirmative Action Employer. ### How to reach us: **USA/EUROPE/Locations Not Listed:** Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447 Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 Motorola Fax Back System - US & Canada ONLY 1-800-774-1848 - http://sps.motorola.com/mfax/ HOME PAGE: http://motorola.com/sps/ Mfax is a trademark of Motorola, Inc. JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T., Hong Kong. 852-26629298 CUSTOMER FOCUS CENTER: 1-800-521-6274 MCM6341/D