transforming specialty electronics

512K x 8 SRAM

3.3 VOLT HIGH SPEED SRAM with **CENTER POWER PINOUT**

AVAILABLE AS MILITARY SPECIFICATIONS

- •MIL-STD-883 for Ceramic
- •Extended Temperature Plastic (COTS)

FEATURES

OPTIONS

- Ultra High Speed Asynchronous Operation
- Fully Static, No Clocks
- · Multiple center power and ground pins for improved noise immunity
- Easy memory expansion with CE\ and OE\
- · All inputs and outputs are TTL-compatible
- Single +3.3V Power Supply +/- 0.3V
- Data Retention Functionality Testing
- · Cost Efficient Plastic Packaging

• 2V data retention/low power*

- Extended Testing Over -55°C to +125°C for plastics
- RoHS Compliant Options Available

•	Timing		
	10ns access	-10	
	12ns access	-12	
	15ns access	-15	
	20ns access	-20	
	25ns access	-25	
•	Operating Temperature Ranges		
	883C (-55°C to +125°C)	/883C	
	Military (-55°C to +125°C)	/XT	
	Industrial (-40°C to +85°C)	/IT	
	Poskoga(s)		
•	Package(s)	Б	NI 207
	Ceramic Flatpack	F	No. 307
	Ceramic LCC	EC	No. 210
	Plastic SOJ (400 mils wide)	DJ	

MARKING

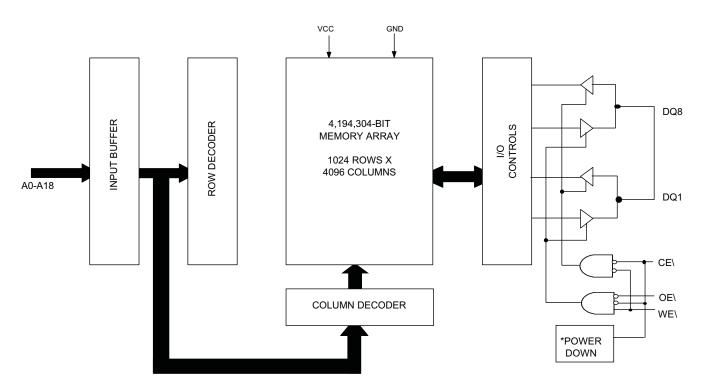
For more products and information please visit our web site at www.micross.com

L

PIN ASSIGNMENT (Top View) 36-Pin PSOJ (DJ) 36-Pin CLCC (EC) 36 T NC 35 A18 A1 [34 A17 A2 [АЗ П 33 A16 A4 [32 T A15 31 OE CE [30 1/07 1/00 F 29 7 1/06 1/01 E 28 GND Vcc [(/O2 [27 Voc 26 7 1/05 VO3 ☐ 12 WE ☐ 13 25 1/04 24 A14 23 A13 AS [22 A12 A6 [] A7 [21 A11 20 A10 A8 [] 19 NC 36-Pin Flat Pack (F) 35 A18 34 A17 A2 3 [33 A16 A3 4 [A4 5 [7 31 DE∖ CE/ 6 [30 1/07 1/00 7 7 29 1/06 1/01 8 🗆 VCC 9 [28 VSS VSS 10 27 VCC 1/02 11 26 1/05 1/03 12 25 1/04 WE\ 13 24 A14 _ 7 23 A13 A5 14 22 A12 A6 15 [A7 16 21 A11 ______20 A10 19 NC

transforming specialty electronics

GENERAL DESCRIPTION


The AS5LC512K8 is a 3.3V high speed SRAM. It offers flexibility in high-speed memory applications, with chip enable (CE\) and output enable (OE\) capabilities. These features can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE\) and CE\ inputs are both LOW. Reading is accomplished when WE\ remains HIGH and CE\ and OE\ go LOW.

As a option, the device can be supplied offering a reduced power standby mode, allowing system designers to meet low standby power requirements. This device operates from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible.

The AS5LC512K8DJ offers the convenience and reliability of the AS5LC512K8 SRAM and has the cost advantage of a plastic encapsulation. TSOPII with copper lead frames offers superior thermal performance.

FUNCTIONAL BLOCK DIAGRAM

^{*}On the low voltage Data Retention option.

TRUTH TABLE

MODE	OE\	CE\	WE\	I/O	POWER
STANDBY	Χ	Н	Χ	HIGH-Z	STANDBY
READ	L	L	Η	Q	ACTIVE
NOT SELECTED	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Χ	Ĺ	Ĺ	D	ACTIVE

X = Don't Care

PIN FUNCTIONS

A0 - A18	Address Inputs
WE\	Write Enable
CE\	Chip Enable
OE\	Output Enable
I/O ₀ - I/O ₇	Data Inputs/Outputs
V _{cc}	Power
V _{SS}	Ground
NC	No Connection

transforming specialty electronics

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	
Vcc	5V to 4.0V
Storage Temperature	65°C to +150°C
Short Circuit Output Current (per I/O)	20mA
Voltage on any Pin Relative to Vss	5V to 4.6V
Maximum Junction Temperature**	+150°C
Power Dissipation	1W

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This v is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-55^{\circ}C \le T_{_A} \le +125^{\circ}C \& -40^{\circ}C \le T_{_A} \le +85^{\circ}C ; Vcc = 3.3V \pm 0.3\%)$

						MAX				
DESCRIPTION	COND	ITIONS	SYM	-10	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	110		I _{CCSP}	90	80	70	60	55	mA	3, 2
		"L" Version Only	I _{CCLP}	1	60	50	40	35	mA	
	$CE \ge V_{IH}$, All other inputs $\le V_{IL}$, $Vcc = MAX$, $f = 0$, $Outputs Open$		I _{SBTSP}	30	20	20	20	20	mA	
Power Supply		"L" Version Only	I _{SBTLP}	1	15	15	15	15	mA	
Current: Standby	V _{IN} ≤Vss	2V; Vcc = MAX s +0.2V or -0.2V; f = 0	I _{SBCSP}	20	15	15	15	15	mA	
		"L" Version Only	I _{SBCLP}	-	9	9	9	9	mA	1

DESCRIPTION	CONDITIONS	SYM	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		V_{IH}	2.2	Vcc +0.3	V	1
Input Low (Logic 0) Voltage		V_{IL}	-0.3	8.0	>	1
Input Leakage Current	$0V \le V_{IN} \le Vcc$	ILI	-2	2	μΑ	
Output Leakage Current	Output(s) Disabled $0V \le V_{OUT} \le V_{CC}$	I _{LO}	-2	2	μΑ	
Output High Voltage	I _{OH} = -4 .0 mA	V_{OH}	2.4		>	1
Output Low Voltage	I _{OL} = 8 mA	V_{OL}		0.5	٧	1

CAPACITANCE

PARAMETER	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C, f = 1MHz	Cı	8	pF	4
Output Capactiance	$V_{IN} = 0$	Со	6	pF	4

^{**} Junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow, and humidity.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(-55^{\circ}C \le T_A \le +125^{\circ}C \text{ or } -40^{\circ}C \text{ to } +85^{\circ}C; \text{ Vcc} = 3.3 \text{V} \pm 0.3\%)$

DESCRIPTION	SYM		10	-1	12	-1	15	-2	20	-2	25	LIMITS	NOTES
		MIN	MAX	UNITS	NOTES								
READ CYCLE													
Read Cycle Time	t _{RC}	10		12		15		20		25		ns	
Address Access Time	t _{AA}		10		12		15		20		25	ns	
Chip Enable Access Time	t _{ACE}		10		12		15		20		25	ns	
Output Hold From Address Change	t _{OH}	2		2		2		2		2		ns	
Chip Enable to Output in Low-Z	t _{LZCE}	2		2		2		2		2		ns	4, 6, 7
Chip Disable to Output in High-Z	t _{HZCE}		4		6		7		8		9	ns	4, 6, 7
Output Enable Acess Time	t _{AOE}		4.5		6		7		8		9	ns	
Output Enable to Output in Low-Z	t _{LZOE}	0		0		0		0		0		ns	4, 6, 7
Output Disable to Output in High-Z	t _{HZOE}		4		6		7		8		9	ns	4, 6, 7
WRITE CYCLE					•								
WRITE Cycle Time	t _{WC}	10		12		15		20		25		ns	
Chip Enable to End of Write	t _{CW}	8		8		10		12		13		ns	
Address Valid to End of Write	t _{AW}	8		8		10		12		13		ns	
Address Setup Time	t _{AS}	0		0		0		0		0		ns	
Address Hold From End of Write	t _{AH}	0		0		0		0		0		ns	
WRITE Pulse Width	t _{WP}	8		10		12		15		15		ns	
Data Setup Time	t _{DS}	6		6		7		8		8		ns	
Data Hold Time	t _{DH}	1		1		1		1		1		ns	
Write Disable to Output in Low-Z	t _{LZWE}	2		2		2		2		2		ns	4, 6, 7
Write Enable to Output in High-Z	t _{HZWE}		5		5		6		7		7	ns	4, 6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1 5Vl
Output load	See Figures 1 and 2
_	- 1

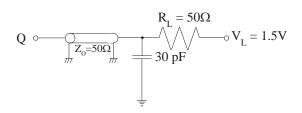


Fig. 1 Output Load Equivalent

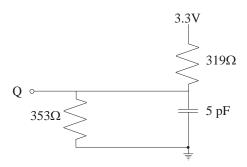
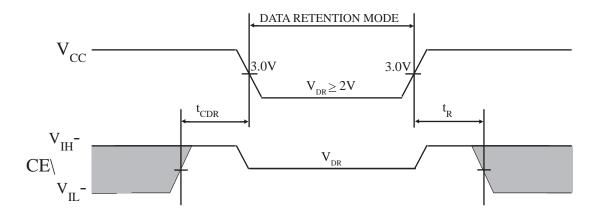


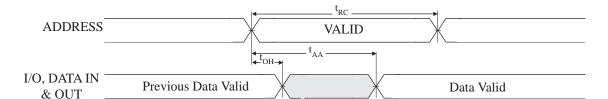
Fig. 2 Output Load Equivalent

NOTES

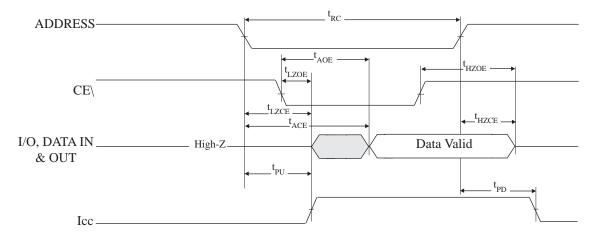

- All voltages referenced to V_{ss} (GND).
- I_{cc} limit shown is for absolute worst case switching of ADDR, ADDR\, ADDR, etc.
- I_{cc} is dependent on output loading and cycle rates.
- This parameter is guaranteed but not tested.
- Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. LZCE, LZWE, LZOE, HZCE, HZOE and HZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ±200mV from steady state voltage.
- 7. At any given temperature and voltage condition, 'HZCE is less than 'LZCE, and 'HZWE is less than tLZWE.
- 8. WE\ is HIGH for READ cycle.

- Device is continuously selected. Chip enables and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. 'RC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Output enable (OE\) is inactive (HIGH).
- 14. Output enable (OE\) is active (LOW).
- 15. ASI does not warrant functionality nor reliability of any product in which the junction temperature exceeds 150°C. Care should be taken to limit power to acceptable levels.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIO	SYM	MIN	MAX	UNITS	NOTES	
	CE\ > V_{CC} -0.2V $V_{IN} > V_{CC}$ -0.2 or 0.	V_{DR}	2		٧		
	VIN > VCC -0.2 01 0.	/IN > VCC -U.2 OF U.2V					
Data Retention Current		Vcc = 2.0V	I _{CCDR}		6.5	mA	
Chip Deselect to Data			t _{CDR}	0		ns	4
Operation Recovery Time			t _R	20		ms	4, 11

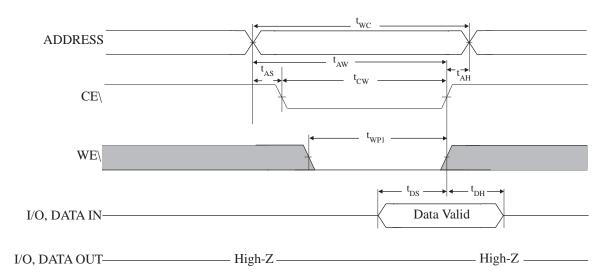
LOW V_{cc} DATA RETENTION WAVEFORM


READ CYCLE NO. 11,2

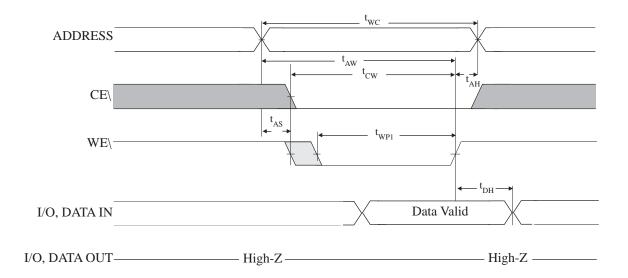
(Address Controlled, $CE = OE = V_{II}$, $WE = V_{IH}$)

READ CYCLE NO. 2

$$(WE \setminus = V_{IH})$$


NOTES:

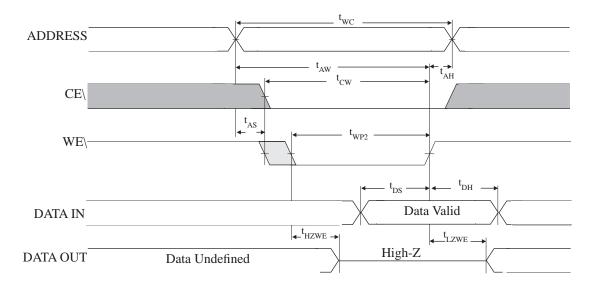
- 1. WE\ is HIGH for READ cycle.
- 2. Device is continuously selected. Chip enables and output enables are held in their active state.


WRITE CYCLE NO. 11

(CE Controlled)

WRITE CYCLE NO. 2^{1, 2}

(Write Enabled Controlled)

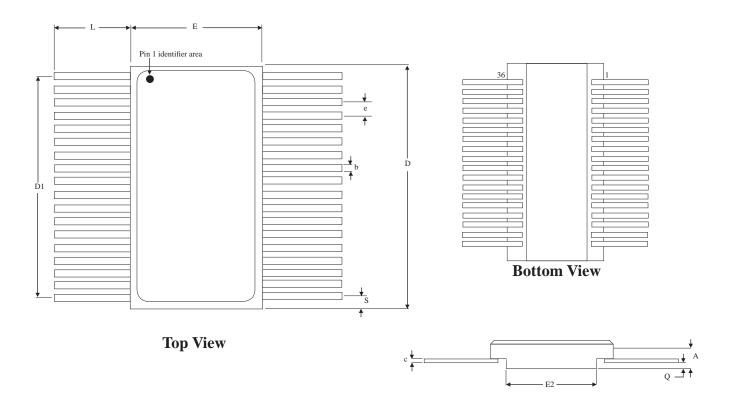


NOTES:

- 1. Chip enable and write enable can initiate and terminate a WRITE cycle.
- Output enable (OE\) is inactive (HIGH).

WRITE CYCLE NO. 31, 2, 3

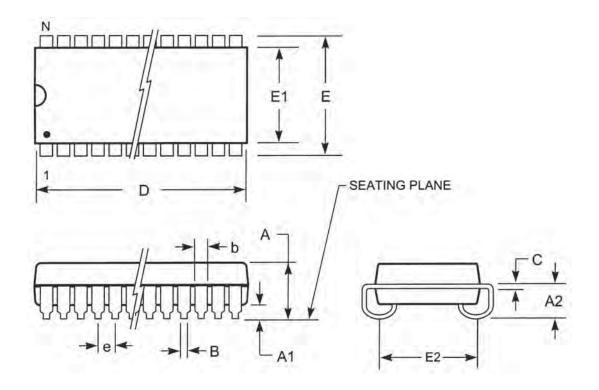
(WE Controlled)


NOTES:

- 1. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , and t_{HZWE} is less than t_{LZWE} .

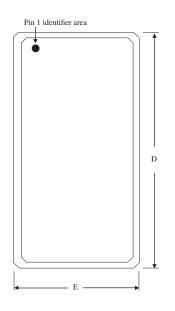
 2. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 3. Output enable (OE\) is active (LOW).

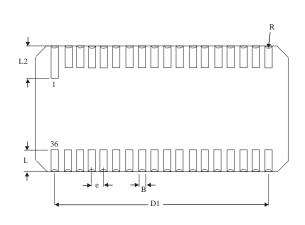
MECHANICAL DEFINITIONS*

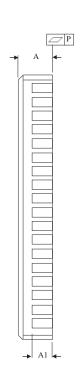

Micross Case #307 (Package Designator F)

	MICROSS SPECIFICATIONS							
SYMBOL	MIN	MAX						
Α	0.096	0.125						
b	0.015	0.022						
С	0.003	0.009						
D	0.910	0.930						
D1	0.840	0.860						
E	0.505	0.515						
E2	0.385	0.397						
е	0.050) BSC						
L	0.250	0.370						
Q	0.020	0.045						

MECHANICAL DEFINITIONS*


Package Designator DJ




	MICROSS SPECIFICATIONS							
SYMBOL	MIN	MAX						
Α	0.128	0.148						
A1	0.025							
A2	0.082							
В	0.015	0.020						
b	0.026	0.032						
С	0.007	0.013						
D	0.920	0.930						
E	0.435	0.445						
E1	0.395	0.405						
E2	0.370 BSC							
е	0.050 BSC							

MECHANICAL DEFINITIONS*

Micross Case #210 (Package Designator EC)

	MICROSS SPECIFICATIONS		
SYMBOL	MIN	MAX	
Α	0.080	0.100	
A1	0.054	0.066	
В	0.022	0.028	
D	0.910	0.930	
D1	0.840	0.860	
E	0.445	0.460	
е	0.050 BSC		
L	0.100 TYP		
L2	0.115	0.135	
Р		0.006	
R	0.009 TYP		

ORDERING INFORMATION

36-Pin Ceramic Flat Pack

EXAMPLE: AS5LC512K8F-12L/XT

Device Number	Package Type	Speed ns	Options**	Process
AS5LC512K8	F	-10	L	/*
AS5LC512K8	F	-12	L	/*
AS5LC512K8	F	-15	L	/*
AS5LC512K8	F	-25	L	/*

36-Pin Plastic PSOJ

EXAMPLE: AS5LC512K8DJ-20L/IT

Device Number	Package Type	Speed ns	Options**	Process
AS5LC512K8	DJ	-12	L	/*
AS5LC512K8	DJ	-15	L	/*
AS5LC512K8	DJ	-20	L	/*
AS5LC512K8	DJ	-25	L	/*

36-Pin Ceramic CLCC

EXAMPLE: AS5LC512K8EC-15L/IT

Device Number	Package Type	Speed ns	Options**	Process
AS5LC512K8	EC	-12	L	/*
AS5LC512K8	EC	-15	L	/*
AS5LC512K8	EC	-20	L	/*
AS5LC512K8	EC	-25	L	/*

*AVAILABLE PROCESSES

 $IT = Industrial \ Temperature \ Range \\ XT = Extended \ Temperature \ Range \\ 883C = Full \ Military \ Processing^1 \\ -55^{\circ}C \ to +125^{\circ}C \\ -$

**OPTIONS DEFINITIONS

L = 2V Data Retention / Low Power

NOTES: 1. 883C process available with ceramic packaging only.

DOCUMENT TITLE

512K x 8 SRAM 3.3 VOLT HIGH SPEED SRAM with CENTER POWER PINOUT

<u>Rev #</u> 2.1	History Pg 1: Changed 0.3% to 0.3V	Release Date August 2009	<u>Status</u> Release
2.2	Updated Micross Information	January 2010	Release
2.3	Expanded package offering to include Copper Lead Frames and RoHS Compliancy, added -10 speed option, Reduced C_L from 9pF to 8pF, corrected t_{HZWE} from min's to max's on page 4, corrected 4.5V reference points on data retention waveform to 3.0V, pg. 6	March 2011	Release
2.4	Removed Cu-lead frame option	October 2013	Release