8M-BIT ZEROSB ${ }^{\text {TM }}$ SRAM PIPELINED OPERATION

Description

The $\mu \mathrm{PD} 4481162$ is a 524,288 -word by 16 -bit, the $\mu \mathrm{PD} 4481182$ is a 524,288 -word by 18 -bit, the $\mu \mathrm{PD} 4481322$ is a 262,144 -word by 32 -bit and the μ PD4481362 is a 262,144 -word by 36 -bit ZEROSB static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.
The μ PD4481162, μ PD4481182, μ PD4481322 and μ PD4481362 are optimized to eliminate dead cycles for read to write, or write to read transitions. These ZEROSB static RAMs integrate unique synchronous peripheral circuitry, 2-bit burst counter and output buffer as well as SRAM core. All input registers are controlled by a positive edge of the single clock input (CLK).
The μ PD4481162, $\mu \mathrm{PD} 4481182, \mu \mathrm{PD} 4481322$ and $\mu \mathrm{PD} 4481362$ are suitable for applications which require synchronous operation, high speed, low voltage, high density and wide bit configuration, such as buffer memory. ZZ has to be set LOW at the normal operation. When ZZ is set HIGH, the SRAM enters Power Down State ("Sleep"). In the "Sleep" state, the SRAM internal state is preserved. When ZZ is set LOW again, the SRAM resumes normal operation.
The μ PD4481162, μ PD4481182, μ PD4481322 and μ PD4481362 are packaged in 100-pin PLASTIC LQFP with a 1.4 mm package thickness or 165-pin TAPE FBGA for high density and low capacitive loading.

Features

- Low voltage core supply (A version : $\mathrm{V}_{\mathrm{DD}}=3.3 \pm 0.165 \mathrm{~V}, \mathrm{C}$ version : $\mathrm{V}_{\mathrm{DD}}=2.5 \pm 0.125 \mathrm{~V}$)
- Synchronous operation
- 100 percent bus utilization
- Internally self-timed write control
- Burst read / write : Interleaved burst and linear burst sequence
- Fully registered inputs and outputs for pipelined operation
- All registers triggered off positive clock edge
- 3.3V or 2.5V LVTTL Compatible : All inputs and outputs
- Fast clock access time : $3.2 \mathrm{~ns}(200 \mathrm{MHz}), 3.5 \mathrm{~ns}(167 \mathrm{MHz}), 4.2 \mathrm{~ns}(133 \mathrm{MHz})$
- Asynchronous output enable :/G
- Burst sequence selectable : MODE
- Sleep mode : ZZ (ZZ = Open or Low : Normal operation)
- Separate byte write enable : /BW1 - /BW4 (μ PD4481322 and μ PD4481362), /BW1 - /BW2 (μ PD4481162 and μ PD4481182)
- Three chip enables for easy depth expansion
- Common I/O using three state outputs

Ordering Information
(1/2)

Part number	Access Time ns	Clock Frequency MHz	Core Supply Voltage V	I/O Interface	Package
μ PD4481162GF-A50	3.2	200	3.3 ± 0.165	$3.3 \mathrm{~V} \text { or } 2.5 \mathrm{~V}$ LVTTL	100-pin PLASTIC LQFP (14 x 20)
μ PD4481162GF-A60	3.5	167			
μ PD4481162GF-A75	4.2	133			
μ PD4481182GF-A50	3.2	200			
μ PD4481182GF-A60	3.5	167			
μ PD4481182GF-A75	4.2	133			
μ PD4481322GF-A50	3.2	200			
μ PD4481322GF-A60	3.5	167			
μ PD4481322GF-A75	4.2	133			
μ PD4481362GF-A50	3.2	200			
μ PD4481362GF-A60	3.5	167			
μ PD4481362GF-A75	4.2	133			
$\mu \mathrm{PD} 4481162 \mathrm{GF}-\mathrm{C} 50$	3.2	200	2.5 ± 0.125	2.5 V	
$\mu \mathrm{PD} 4481162 \mathrm{GF}-\mathrm{C} 60$	3.5	167		LVTTL	
$\mu \mathrm{PD} 4481162 \mathrm{GF}-\mathrm{C} 75$	4.2	133			
$\mu \mathrm{PD} 4481182 \mathrm{GF}-\mathrm{C} 50$	3.2	200			
$\mu \mathrm{PD} 4481182 \mathrm{GF}-\mathrm{C} 60$	3.5	167			
μ PD4481182GF-C75	4.2	133			
μ PD4481322GF-C50	3.2	200			
$\mu \mathrm{PD} 4481322 \mathrm{GF}-\mathrm{C} 60$	3.5	167			
$\mu \mathrm{PD} 4481322 \mathrm{GF}-\mathrm{C} 75$	4.2	133			
μ PD4481362GF-C50	3.2	200			
μ PD4481362GF-C60	3.5	167			
μ PD4481362GF-C75	4.2	133			
μ PD4481162F9-A50-EQx	3.2	200	3.3 ± 0.165	$3.3 \mathrm{~V} \text { or } 2.5 \mathrm{~V}$ LVTTL	
μ PD4481162F9-A60-EQx	3.5	167			
μ PD4481162F9-A75-EQx	4.2	133			
$\mu \mathrm{PD} 4481182 \mathrm{F9}$-A50-EQx	3.2	200			
$\mu \mathrm{PD} 4481182 \mathrm{F9}$-A60-EQx	3.5	167			
μ PD4481182F9-A75-EQx	4.2	133			
$\mu \mathrm{PD} 4481322 \mathrm{F9}$-A50-EQx	3.2	200			
μ PD4481322F9-A60-EQx	3.5	167			
$\mu \mathrm{PD} 4481322 \mathrm{F9}-\mathrm{A} 75-\mathrm{EQx}$	4.2	133			
$\mu \mathrm{PD} 4481362 \mathrm{~F} 9-\mathrm{A} 50-\mathrm{EQx}$	3.2	200			
μ PD4481362F9-A60-EQx	3.5	167			
μ PD4481362F9-A75-EQx	4.2	133			

Remark "EQx" of part number is package specifications. However, this is not available.

Part number	Access Time ns	Clock Frequency MHz	Core Supply Voltage V	I/O Interface	Package
μ PD4481162F9-C50-EQx	3.2	200	2.5 ± 0.125	2.5 V	LVTTL

Remark "EQx" of part number is package specifications. However, this is not available.

Pin Configurations (Marking Side)

$/ x \times x$ indicates active low signal.

100-pin PLASTIC LQFP (14×20)
[μ PD4481162GF, μ PD4481182GF]

Remark Refer to Package Drawings for 1-pin index mark.

Pin Identifications

[μ PD4481162GF, μ PD4481182GF]

Symbol	Pin No.	Description
A0-A18	$\begin{aligned} & 37,36,35,34,33,32,100,99,82,81 \\ & 44,45,46,47,48,49,50,83,80 \end{aligned}$	Synchronous Address Input
I/O1-I/O16	$58,59,62,63,68,69,72,73,8,9,12,13$, 18, 19, 22, 23	Synchronous Data In, Synchronous / Asynchronous Data Out
I/OP1, NC ${ }^{\text {Note }}$	74	Synchronous Data In (Parity),
I/OP2, NC ${ }^{\text {Note }}$	24	Synchronous / Asynchronous Data Out (Parity)
ADV	85	Synchronous Address Load / Advance Input
/CE, CE2, /CE2	98, 97, 92	Synchronous Chip Enable Input
/WE	88	Synchronous Write Enable Input
/BW1, /BW2	93, 94	Synchronous Byte Write Enable Input
/G	86	Asynchronous Output Enable Input
CLK	89	Clock Input
/CKE	87	Synchronous Clock Enable Input
MODE	31	Asynchronous Burst Sequence Select Input Have to tied to VDD or Vss during normal operation
ZZ	64	Asynchronous Power Down State Input
VDD	14, 15, 16, 41, 65, 66, 91	Power Supply
Vss	17, 40, 67, 90	Ground
VdoQ	4, 11, 20, 27, 54, 61, 70, 77	Output Buffer Power Supply
VssQ	5, 10, 21, 26, 55, 60, 71, 76	Output Buffer Ground
NC	$1,2,3,6,7,25,28,29,30,38,39,42,43$, $51,52,53,56,57,75,78,79,84,95,96$	No Connection

Note NC (No Connection) is used in the μ PD4481162GF.
I/OP1 - I/OP2 are used in the μ PD4481182GF.

100-pin PLASTIC LQFP (14×20)
[μ PD4481322GF, μ PD4481362GF]

Remark Refer to Package Drawings for 1-pin index mark.
[μ PD4481322GF, μ PD4481362GF]

Symbol	Pin No.	Description
A0-A17	$\begin{aligned} & 37,36,35,34,33,32,100,99,82,81,44, \\ & 45,46,47,48,49,50,83 \end{aligned}$	Synchronous Address Input
I/O1- I/O32	$\begin{aligned} & 52,53,56,57,58,59,62,63,68,69,72, \\ & 73,74,75,78,79,2,3,6,7,8,9,12,13, \\ & 18,19,22,23,24,25,28,29 \end{aligned}$	Synchronous Data In, Synchronous / Asynchronous Data Out
I/OP1, NC ${ }^{\text {Note }}$	51	Synchronous Data In (Parity), Synchronous / Asynchronous Data Out (Parity)
I/OP2, NC ${ }^{\text {Note }}$	80	
I/OP3, NC ${ }^{\text {Note }}$	1	
I/OP4, NC ${ }^{\text {Note }}$	30	
ADV	85	Synchronous Address Load / Advance Input
/CE, CE2, /CE2	98, 97, 92	Synchronous Chip Enable Input
M WE	88	Synchronous Write Enable Input
/BW1 - /BW4	93, 94, 95, 96	Synchronous Byte Write Enable Input
/G	86	Asynchronous Output Enable Input
CLK	89	Clock Input
/CKE	87	Synchronous Clock Enable Input
MODE	31	Asynchronous Burst Sequence Select Input Have to tied to Vdd or Vss during normal operation
ZZ	64	Asynchronous Power Down State Input
VDD	14, 15, 16, 41, 65, 66, 91	Power Supply
Vss	17, 40, 67, 90	Ground
VDDQ	4, 11, 20, 27, 54, 61, 70, 77	Output Buffer Power Supply
VssQ	5, 10, 21, 26, 55, 60, 71, 76	Output Buffer Ground
NC	38, 39, 42, 43, 84	No Connection

Note NC (No Connection) is used in the μ PD4481322GF.
I/OP1 - I/OP4 are used in the μ PD4481362GF.

165-pin TAPE FBGA
[μ PD4481162F9-EQx, μ PD4481182F9-EQx]

Top View

	1	2	3	4	5	6	7	8	9	10	11
A	NC	A7	/CE	/BW2	NC	/CE2	/CKE	ADV	A17	A8	A18
B	NC	A6	CE2	NC	/BW1	CLK	WE	/G	NC	A9	NC
C	NC	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	I/OP1
D	NC	I/O9	VDDQ	VDD	Vss	Vss	Vss	Vod	VdoQ	NC	I/O8
E	NC	1/010	VDDQ	VDD	Vss	Vss	Vss	VDD	VdoQ	NC	1/07
F	NC	1/011	VDDQ	Vdo	Vss	Vss	Vss	VDD	VDDQ	NC	1/O6
G	NC	l/O12	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/05
H	NC	VDD	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	zZ
J	1/013	NC	VDDQ	V ${ }_{\text {D }}$	Vss	Vss	Vss	VDD	VDDQ	I/O4	NC
K	1/014	NC	VdDQ	VDD	Vss	Vss	Vss	Vdd	VodQ	1/03	NC
L	1/015	NC	VdDQ	Vod	Vss	Vss	Vss	VDD	VdoQ	I/O2	NC
M	I/O16	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VdoQ	I/O1	NC
N	1/OP2	NC	VDDQ	Vss	NC	NC	VDD	Vss	VdoQ	NC	NC
P	NC	NC	A5	A2	TDI	A1	TDO	A10	A13	A14	NC
R	MODE	NC	A4	A3	TMS	A0	TCK	A11	A12	A15	A16

[μ PD4481162F9-EQx, μ PD4481182F9-EQx]

Symbol	Pin No.	Description
A0-A18	6R, 6P, 4P, 4R, 3R, 3P, 2B, 2A, 10A, 10B, 8P, 8R, 9R, 9P, 10P, 10R, 11R, 9A, 11A	Synchronous Address Input
I/O1-I/O16	10M, 10L, 10K, 10J, 11G, 11F, 11E, 11D, 2D, 2E, 2F, 2G, 1J, 1K, 1L, 1M	Synchronous Data In, Synchronous / Asynchronous Data Out
I/OP1, NC ${ }^{\text {Note }}$	11C	Synchronous Data In (Parity)
I/OP2, NC ${ }^{\text {Note }}$	1 N	Synchronous / Asynchronous Data Out (Parity)
ADV	8A	Synchronous Address Load / Advance Input
/CE, CE2, /CE2	3A, 3B, 6A	Synchronous Chip Enable Input
WE	4H	Synchronous Write Enable Input
/BW1, /BW2	5B, 4A	Synchronous Byte Write Enable Input
/G	8B	Asynchronous Output Enable Input
CLK	6B	Clock Input
/CKE	7A	Synchronous Clock Enable Input
MODE	1R	Asynchronous Burst Sequence Select Input Have to tied to V_{DD} or V_{ss} during normal operation
ZZ	11H	Asynchronous Power Down State Input
V DD	$2 \mathrm{H}, 4 \mathrm{D}, 4 \mathrm{E}, 4 \mathrm{~F}, 4 \mathrm{G}, 4 \mathrm{H}, 4 \mathrm{~J}, 4 \mathrm{~K}, 4 \mathrm{~L}, 4 \mathrm{M}, 7 \mathrm{~N}, 8 \mathrm{D}$, 8E, 8F, 8G, 8H, 8J, 8K, 8L, 8M	Power Supply
Vss	$4 \mathrm{C}, 4 \mathrm{~N}, 5 \mathrm{C}, 5 \mathrm{D}, 5 \mathrm{E}, 5 \mathrm{~F}, 5 \mathrm{G}, 5 \mathrm{H}, 5 \mathrm{~J}, 5 \mathrm{~K}, 5 \mathrm{~L}, 5 \mathrm{M}$, 6C, 6D, 6E, 6F, 6G, 6H, 6J, 6K, 6L, 6M, 7C, 7D, 7E, 7F, 7G, 7H, 7J, 7K, 7L, 7M, 8C, 8N	Ground
VDDQ	$3 C, 3 D, 3 E, 3 F, 3 G, 3 J, 3 K, 3 L, 3 M, 3 N, 9 C, 9 D$, $9 E, 9 F, 9 G, 9 J, 9 K, 9 L, 9 M, 9 N$	Output Buffer Power Supply
NC	$1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}, 1 \mathrm{G}, 1 \mathrm{H}, 1 \mathrm{P}, 2 \mathrm{C}, 2 \mathrm{~J}, 2 \mathrm{~K}$, 2L, 2M, 2N, 2P, 2R, 3H, 4B, 5A, 5N, 6N, 9B, 9H, 10C, 10D, 10E, 10F, 10G, 10H, 10N, 11B, 11J, 11K, 11L, 11M, 11N, 11P	No Connection
TMS	5R	Test Mode Select (JTAG)
TDI	5P	Test Data Input (JTAG)
TCK	7R	Test Clock Input (JTAG)
TDO	7P	Test Data Output (JTAG)

Note NC (No Connection) is used in the μ PD4481162F9-EQx.
I/OP1 - I/OP2 are used in the μ PD4481182F9-EQx .

165-pin TAPE FBGA
[μ PD4481322F9-EQx, μ PD4481362F9-EQx]

Top View

	1	2	3	4	5	6	7	8	9	10	11
A	NC	A7	/CE	/BW3	/BW2	/CE2	/CKE	ADV	A17	A8	NC
B	NC	A6	CE2	/BW4	/BW1	CLK	WE	/G	NC	A9	NC
C	I/OP3	NC	VodQ	Vss	Vss	Vss	Vss	Vss	VdoQ	NC	1/OP2
D	I/O18	1/O17	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/O16	1/015
E	I/O20	I/O19	VodQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/O14	1/013
F	I/O22	I/O21	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/012	1/011
G	I/O24	I/O23	VDDQ	Vdo	Vss	Vss	Vss	VDD	VDDQ	1/O10	I/O9
H	NC	VDD	NC	Vdo	Vss	Vss	Vss	Vod	NC	NC	ZZ
J	I/O26	I/O25	VodQ	Vdo	Vss	Vss	Vss	Vod	VodQ	I/O8	1/07
K	I/O28	I/O27	VDDQ	VDD	Vss	Vss	Vss	Vod	VodQ	1/06	I/O5
L	I/O30	I/O29	VodQ	Vod	Vss	Vss	Vss	Vod	VdoQ	I/O4	1/03
M	I/O32	I/O31	VDDQ	Vod	Vss	Vss	Vss	Vod	VdoQ	I/O2	I/O1
N	I/OP4	NC	VDDQ	Vss	NC	NC	VDD	Vss	VDDQ	NC	1/OP1
P	NC	NC	A5	A2	TDI	A1	TDO	A10	A13	A14	NC
R	MODE	NC	A4	A3	TMS	A0	TCK	A11	A12	A15	A16

[μ PD4481322F9-EQx, μ PD4481362F9-EQx]

Symbol	Pin No.	Description
A0-A17	$6 R, 6 P, 4 P, 4 R, 3 R, 3 P, 2 B, 2 A, 10 A, 10 B, 8 P, 8 R$, 9R, 9P, 10P, 10R, 11R, 9A	Synchronous Address Input
I/O1-I/O32	11M, 10M, 11L, 10L, 11K, 10K, 11J, 10J, 11G, 10G, 11F, 10F, 11E, 10E, 11D, 10D, 2D, 1D, 2E, $1 \mathrm{E}, 2 \mathrm{~F}, 1 \mathrm{~F}, 2 \mathrm{G}, 1 \mathrm{G}, 2 \mathrm{~J}, 1 \mathrm{~J}, 2 \mathrm{~K}, 1 \mathrm{~K}, 2 \mathrm{~L}, 1 \mathrm{~L}, 2 \mathrm{M}, 1 \mathrm{M}$	Synchronous Data In, Synchronous / Asynchronous Data Out
I/OP1, NC ${ }^{\text {Note }}$	11 N	Synchronous Data In (Parity),
I/OP2, NC ${ }^{\text {Note }}$	11C	Synchronous / Asynchronous Data Out (Parity)
I/OP3, NC ${ }^{\text {Note }}$	1 C	
I/OP4, NC ${ }^{\text {Note }}$	1 N	
ADV	8A	Synchronous Address Load / Advance Input
/CE, CE2, /CE2	3A, 3B, 6A	Synchronous Chip Enable Input
WE	7B	Synchronous Write Enable Input
/BW1 - /BW4	5B, 5A, 4A, 4B	Synchronous Byte Write Enable Input
/G	8B	Asynchronous Output Enable Input
CLK	6B	Clock Input
/CKE	7A	Synchronous Clock Enable Input
MODE	1R	Asynchronous Burst Sequence Select Input Have to tied to $V_{D D}$ or $V_{S s}$ during normal operation
ZZ	11H	Asynchronous Power Down State Input
VDD	$2 \mathrm{H}, 4 \mathrm{D}, 4 \mathrm{E}, 4 \mathrm{~F}, 4 \mathrm{G}, 4 \mathrm{H}, 4 \mathrm{~J}, 4 \mathrm{~K}, 4 \mathrm{~L}, 4 \mathrm{M}, 7 \mathrm{~N}, 8 \mathrm{D}$, 8E, 8F, 8G, 8H, 8J, 8K, 8L, 8M	Power Supply
Vss	4C, 4N, 5C, 5D, 5E, 5F, 5G, 5H, 5J, 5K, 5L, 5M, 6C, 6D, 6E, 6F, 6G, 6H, 6J, 6K, 6L, 6M, 7C, 7D, $7 \mathrm{E}, 7 \mathrm{~F}, 7 \mathrm{G}, 7 \mathrm{H}, 7 \mathrm{~J}, 7 \mathrm{~K}, 7 \mathrm{~L}, 7 \mathrm{M}, 8 \mathrm{C}, 8 \mathrm{~N}$	Ground
VDDQ	3C, 3D, 3E, 3F, 3G, 3J, 3K, 3L, 3M, 3N, 9C, 9D, 9E, 9F, 9G, 9J, 9K, 9L, 9M, 9N	Output Buffer Power Supply
NC	$1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{H}, 1 \mathrm{P}, 2 \mathrm{C}, 2 \mathrm{~N}, 2 \mathrm{P}, 2 \mathrm{R}, 3 \mathrm{H}, 5 \mathrm{~N}, 6 \mathrm{~N}, 9 \mathrm{~B}$, $9 \mathrm{H}, 10 \mathrm{C}, 10 \mathrm{H}, 10 \mathrm{~N}, 11 \mathrm{~A}, 11 \mathrm{~B}, 11 \mathrm{P}$	No Connection
TMS	5R	Test Mode Select (JTAG)
TDI	5P	Test Data Input (JTAG)
TCK	7R	Test Clock Input (JTAG)
TDO	7P	Test Data Output (JTAG)

Note NC (No Connection) is used in the μ PD4481322F9-EQx.
I/OP1 - I/OP4 are used in the μ PD4481362F9-EQx.

Block Diagrams

[μ PD4481162, μ PD4481182]

Burst Sequence

[μ PD4481162, μ PD4481182]
Interleaved Burst Sequence Table (MODE = Open or VDD)

External Address	A18-A2, A1, A0
1st Burst Address	A18-A2, A1, /A0
2nd Burst Address	A18-A2, /A1, A0
3rd Burst Address	A18-A2, /A1, /A0

Linear Burst Sequence Table (MODE = Vss)

External Address	A18-A2, 0, 0	A18-A2, 0, 1	A18-A2, 1, 0	A18-A2, 1, 1
1st Burst Address	A18-A2, 0, 1	A18-A2, 1, 0	A18-A2, 1, 1	A18-A2, 0, 0
2nd Burst Address	A18-A2, 1, 0	A18-A2, 1, 1	A18-A2, 0, 0	A18-A2, 0, 1
3rd Burst Address	A18-A2, 1, 1	A18-A2, 0, 0	A18-A2, 0, 1	A18-A2, 1, 0

[μ PD4481322, μ PD4481362]

[μ PD4481322, μ PD4481362]
Interleaved Burst Sequence Table (MODE = Open or Vod)

External Address	A17-A2, A1, A0
1st Burst Address	A17-A2, A1, /A0
2nd Burst Address	A17 - A2, /A1, A0
3rd Burst Address	A17-A2, /A1, /A0

Linear Burst Sequence Table (MODE = Vss)

External Address	A17-A2, 0, 0	A17-A2, 0, 1	A17-A2, 1, 0	A17-A2, 1, 1
1st Burst Address	A17-A2, 0, 1	A17-A2, 1, 0	A17-A2, 1, 1	A17-A2, 0, 0
2nd Burst Address	A17-A2, 1, 0	A17-A2, 1, 1	A17-A2, 0, 0	A17-A2, 0, 1
3rd Burst Address	A17-A2, 1, 1	A17-A2, 0, 0	A17-A2, 0, 1	A17-A2, 1, 0

State Diagram

Command	Operation
DS	Deselect
Read	New Read
Write	New Write
Burst	Burst Read, Burst Write or Continue Deselect

Remarks 1. States change on the rising edge of the clock.
2. A Stall of Ignore Clock Edge cycle is not shown in the above diagram. This is because /CKE HIGH only blocks the clock (CLK) input and does not change the state of the device.

Asynchronous Truth Table

Operation	/G	I/O
Read Cycle	L	Data-Out
Read Cycle	H	Hi-Z
Write Cycle	\times	Hi-Z, Data-In
Deselected	\times	Hi-Z

Remark \times : don't care

Synchronous Truth Table

Operation	CCE	CE2	/CE2	ADV	ME	$/ \mathrm{BWs}$	/CKE	CLK	I / O	Address	Note
Deselected	H	\times	\times	L	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	None	1
Deselected	\times	L	\times	L	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	None	
Deselected	\times	\times	H	L	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	None	1
Continue Deselected	\times	\times	\times	H	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	None	1
Read Cycle / Begin Burst	L	H	L	L	H	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	Data-Out	External	
Read Cycle / Continue Burst	\times	\times	\times	H	\times	\times	L	$\mathrm{L} \rightarrow \mathrm{H}$	Data-Out	Next	
Write Cycle / Begin Burst	L	H	L	L	L	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Data-In	External	
Write Cycle / Continue Burst	\times	\times	\times	H	\times	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Data-In	Next	
Write Cycle / Write Abort	L	H	L	L	L	H	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	External	
Write Cycle / Write Abort	\times	\times	\times	H	\times	H	L	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{Hi}-\mathrm{Z}$	Next	
Stall / Ignore Clock Edge	\times	\times	\times	\times	\times	\times	H	$\mathrm{L} \rightarrow \mathrm{H}$	-	Current	2

Notes 1. Deselect status is held until new "Begin Burst" entry.
2. If an Ignore Clock Edge command occurs during a read operation, the I/O bus will remain active (Low-Z). If it occurs during a write cycle, the bus will remain $\mathrm{Hi}-\mathrm{Z}$. No write operation will be performed during the Ignore Clock Edge cycle.

Remarks 1. \times : don't care
2. $/ B W s=L$ means any one or more byte write enables (/BW $1, / \mathrm{BW} 2$, /BW3 or /BW4) are LOW. /BWs = H means all byte write enables (/BW1, /BW2, /BW3 or /BW4) are HIGH.

Partial Truth Table for Write Enables

[μ PD4481162, μ PD4481182]

Operation	ME	/BW1	/BW2
Read Cycle	H	\times	\times
Write Cycle / Byte 1 (I/O [1:8], I/OP1)	L	L	H
Write Cycle / Byte 2 (I/O [9:16], I/OP2)	L	H	L
Write Cycle / All Bytes	L	L	L
Write Abort / NOP	L	H	H

Remark \times : don't care
[μ PD4481322, μ PD4481362]

Operation	ME	/BW1	/BW2	/BW3	/BW4
Read Cycle	H	\times	\times	\times	\times
Write Cycle / Byte 1 (I/O [1:8], I/OP1)	L	L	H	H	H
Write Cycle / Byte 2 (I/O [9:16], I/OP2)	L	H	L	H	H
Write Cycle / Byte 3 (I/O [17:24], I/OP3)	L	H	H	L	H
Write Cycle / Byte 4 (I/O [25:32], I/OP4)	L	H	H	H	L
Write Cycle / All Bytes	L	L	L	L	L
Write Abort / NOP	L	H	H	H	H

Remark \times : don't care

ZZ (Sleep) Truth Table

ZZ	Chip Status
$\leq 0.2 \mathrm{~V}$	Active
Open	Active
$\geq \mathrm{V} D D-0.2 \mathrm{~V}$	Sleep

Electrical Specifications

Absolute Maximum Ratings

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	for A version	VdD		-0.5		+4.0	V
	for C version			-0.5		+3.0	
Output supply voltage		VdoQ		-0.5		Vdo	V
Input voltage		VIN		$-0.5{ }^{\text {Note }}$		VDD +0.5	V
Input / Output voltage		VIo		$-0.5{ }^{\text {Note }}$		VDDQ + 0.5	V
Operating ambient temperature		T_{A}		0		70	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$		-55		+125	${ }^{\circ} \mathrm{C}$

Note -2.0 V (MIN.) (Pulse width : 2 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

for A Version [μ PD4481162-Axx, μ PD4481182-Axx, μ PD4481322-Axx, μ PD4481362-Axx]

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	VdD		3.135	3.3	3.465	V
2.5 V LVTTL Interface						
Output supply voltage	VddQ		2.375	2.5	2.9	V
High level input voltage	V_{IH}		1.7		$V_{\text {do }}+0.3$	V
Low level input voltage	VIL		$-0.3{ }^{\text {Note }}$		+0.7	V
3.3 V LVTTL Interface						
Output supply voltage	VdoQ		3.135	3.3	3.465	V
High level input voltage	V_{H}		2.0		VdoQ + 0.3	V
Low level input voltage	VIL		$-0.3{ }^{\text {Note }}$		+0.8	V

Note $-0.8 \mathrm{~V}(\mathrm{MIN}).($ Pulse width : 2 ns)
for C Version [μ PD4481162-Cxx, μ PD4481182-Cxx, μ PD4481322-Cxx, μ PD4481362-Cxx]

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	V_{DD}		2.375	2.5	2.625	V
Output supply voltage	V_{DD}		2.375	2.5	2.625	V
High level input voltage	V_{H}		1.7		$\mathrm{~V}_{\mathrm{DDQ}}+0.3$	V
Low level input voltage	V_{IL}		$-0.3^{\text {Note }}$		+0.7	V

Note $-0.8 \mathrm{~V}(\mathrm{MIN}$.$) (Pulse width : 2 \mathrm{~ns}$)

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VDD}=3.3 \pm 0.165 \mathrm{~V}$ or $2.5 \pm 0.125 \mathrm{~V}$)

Parameter	Symbol	Test condition		MIN.	TYP.	MAX.	Unit
Input leakage current	ILI	V IN (except ZZ, MODE) $=0 \mathrm{~V}$ to $\mathrm{V}_{\text {di }}$		-2		+2	$\mu \mathrm{A}$
I/O leakage current	ILo	$\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {do }}$ Q, Outputs are disabled.		-2		+2	$\mu \mathrm{A}$
Operating supply current	IdD	Device selected, Cycle = MAX.$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{I}_{\mathrm{IO}}=0 \mathrm{~mA} \end{aligned}$	-A50, -C50			400	mA
			-A60, -C60			350	
			-A75, -C75			300	
Standby supply current	IsB	Device deselected, Cycle $=0 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{IH}}$, All inputs are static.				TBD	mA
	IsB1	Device deselected, Cycle $=0 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$, $\mathrm{V}_{\mathrm{I}} \leq \leq 0.2 \mathrm{~V}$, All inputs are static.				TBD	
	IsB2	Device deselected, Cycle = MAX . $\mathrm{V}_{\text {In }} \leq \mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {IH }}$				130	
Power down supply current	Isbzz	$\mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}, \mathrm{~V}_{\text {IO }} \leq \mathrm{V}_{\mathrm{DD}} \mathrm{Q}+0.2 \mathrm{~V}$				TBD	mA
2.5 V LVTTL Interface							
High level output voltage	Voh	$\mathrm{IOH}=-2.0 \mathrm{~mA}$		1.7			V
		$\mathrm{loL}=-1.0 \mathrm{~mA}$		2.1			
Low level output voltage	Vol	$\mathrm{IOH}=+2.0 \mathrm{~mA}$				0.7	V
		$\mathrm{loL}=+1.0 \mathrm{~mA}$				0.4	
3.3 V LVTTL Interface							
High level output voltage	Voh	$\mathrm{IoH}=-4.0 \mathrm{~mA}$		2.4			V
Low level output voltage	Vol	$\mathrm{loL}=+8.0 \mathrm{~mA}$				0.4	V

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	C_{IN}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			5.0	pF
Input / Output capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	$\mathrm{V}_{/ \mathrm{O}}=0 \mathrm{~V}$			8.0	pF
Clock input capacitance	$\mathrm{C}_{\mathrm{clk}}$	$\mathrm{V}_{\mathrm{clk}}=0 \mathrm{~V}$			6.0	pF

Remark These parameters are not 100% tested.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VdD}=3.3 \pm 0.165 \mathrm{~V}$ or $2.5 \pm 0.125 \mathrm{~V}$)

AC Test Conditions

2.5 V LVTTL Interface

Input waveform (Rise / Fall time $\leq 2.4 \mathrm{~ns}$)

Output waveform

3.3 V LVTTL Interface

Input waveform (Rise / Fall time ≤ 3.0 ns)

Output waveform

Output load condition

CL: 30 pF
5 pF (TKHQX1, TKHQX2, TGLQX, TGHQZ, TKHQZ)

Figure External load at test

Remark CL includes capacitances of the probe and jig, and stray capacitances.

Read and Write Cycle

Parameter		Symbol		$\begin{aligned} & -\mathrm{A} 50,-\mathrm{C} 50 \\ & (200 \mathrm{MHz}) \end{aligned}$		$\begin{aligned} & -\mathrm{A} 60,-\mathrm{C} 60 \\ & (167 \mathrm{MHz}) \end{aligned}$		$\begin{aligned} & -\mathrm{A} 75,-\mathrm{C} 75 \\ & (133 \mathrm{MHz}) \end{aligned}$		Unit	Notes
		Standard	Alias	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Cycle time		TKHKH	TCYC	5	-	6	-	7.5	-	ns	
Clock access time		TKHQV	TCD	-	3.2	-	3.5	-	4.2	ns	
Output enable access time		TGLQV	TOE	-	3.2	-	3.5	-	4.2	ns	
Clock high to output active		TKHQX1	TDC1	1.5	-	1.5	-	1.5	-	ns	1, 2
Clock high to output change		TKHQX2	TDC2	1.5	-	1.5	-	1.5	-	ns	
Output enable to output active		TGLQX	TOLZ	0	-	0	-	0	-	ns	1
Output disable to output $\mathrm{Hi}-\mathrm{Z}$		TGHQZ	TOHZ	0	3.2	0	3.5	0	4.2	ns	1
Clock high to output Hi-Z		TKHQZ	TCZ	1.5	3.2	1.5	3.5	1.5	3.5	ns	1, 2
Clock high pulse width		TKHKL	TCH	1.8	-	1.8	-	2.2	-	ns	
Clock low pulse width		TKLKH	TCL	1.8	-	1.8	-	2.2	-	ns	
Setup times	Address	TAVKH	TAS	1.5	-	1.5	-	1.5	-	ns	
	Address status	TADSVKH	TSS								
	Data in	TDVKH	TDS								
	Write enable	TWVKH	TWS								
	Address advance	TADVVKH	-								
	Chip enable	TEVKH	-								
Hold times	Address	TKHAX	TAH	0.5	-	0.5	-	0.5	-	ns	
	Address status	TKHADSX	TSH								
	Data in	TKHDX	TDH								
	Write enable	TKHWX	TWH								
	Address advance	TKHADVX	-								
	Chip enable	TKHEX	-								
Power down entry time		TZZE	TZZE	10	-	12	-	15	-	ns	
Power down recovery time		TZZR	TZZR	10	-	12	-	15	-	ns	

Notes 1. Transition is measured $\pm 200 \mathrm{mV}$ from steady state.
2. To avoid bus contention, the output buffers are designed such that TKHQZ (device turn-off) is faster than TKHQX1 (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because TKHQX1 is a min. parameter that is worse case at totally different conditions ($0^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}$ max.) than TKHQZ, which is a max. parameter (worse case at $70^{\circ} \mathrm{C}, V_{d D} \min$.).

READ / WRITE CYCLE

Notes 1. /CEs refers to /CE, CE2 and /CE2. When /CEs is LOW, /CE and /CE2 are LOW and CE2 is HIGH. When /CEs is HIGH, /CE and /CE2 are HIGH and CE2 is LOW.
2. /BWs refers to /BW1, /BW2, /BW3 and /BW4. When /BWs is LOW, any one or more byte write enables (/BW1, /BW2, /BW3 or /BW4) are LOW.

NOP, STALL AND DESELECT CYCLE

POWER DOWN (ZZ) CYCLE

Note
WE or /CEs must be held HIGH at CLK rising edge (clock edge No. 2 and No. 3 in this figure) prior to power down state entry.

JTAG Specification

The μ PD4481162, μ PD4481182, μ PD4481322 and μ PD4481362 support a limited set of JTAG functions as in IEEE standard 1149.1.

Test Access Port (TAP) Pins

Pin Name	Description
TCK	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	Test Mode Select. This is the command input for the TAP controller state machine.
TDI	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is deter-mined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.
TDO	Test Data Output. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.

JTAG DC Characteristics ($\mathrm{Tj}=0$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
JTAG input high voltage	VIH		2.0		$\mathrm{VDD}+0.3$	V	
JTAG input low voltage	VIL		-0.3		+0.8	V	
JTAG output high voltage	VOH	$\mathrm{IOH}=-8 \mathrm{~mA}$	2.4		-	V	
JTAG output low voltage	VOL	$\mathrm{IOL}=8 \mathrm{~mA}$	-		0.4	V	

JTAG AC Test Conditions ($\mathrm{Tj}=0$ to $70^{\circ} \mathrm{C}$)

Input waveform (rise / fall time = 1 ns (20 to 80%)

Output waveform

Output load (VTT=1.5 V)

JTAG AC Characteristics ($\mathrm{Tj}=0$ to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Note						
Clock cycle time (TCK)	tTHTH		100		-	ns
Clock phase time (TCK)	tTHTL / tTLTH		40		-	ns
Setup time (TMS / TDI)	tmVTH / tDVTH		10		-	ns
Hold time (TMS / TDI)	tTHMX / tTHDX		10		-	ns
TCK low to TDO valid (TDO)	tTLQv		-		20	ns

JTAG Timing Diagram

Scan Register Definition (1)

Register name	Description
Instruction register	The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The shift register bit nearest TDO (i.e., first to be shifted out) is defined as bit 1. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Scan Register Definition (2)

Register name	$512 \mathrm{~K} \times 16 / 18$	$256 \mathrm{~K} \times 16 / 18$	Unit
Instruction register	3	3	bit
Bypass register	1	1	bit
ID register	32	32	bit
Boundary register	51	70	bit

ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μ PD4481162	$512 \mathrm{~K} \times 16$	XXXX	0000000000001000	00000010000	1
μ PD4481182	$512 \mathrm{~K} \times 18$	XXXX	0000000000001001	00000010000	1
μ PD4481322	$256 \mathrm{~K} \times 16$	XXXX	0000000000001010	00000010000	1
μ PD4481362	$256 \mathrm{~K} \times 18$	XXXX	0000000000001011	00000010000	1

SCAN Exit Order

[μ PD4481162F9-EQx / μ PD4481182F9-EQx (512K words by $16 / 18$ bits)]

Bit no.	Signal name	Bump ID
1	A10	TBD
2	A11	TBD
3	A12	TBD
4	A13	TBD
5	A14	TBD
6	A15	TBD
7	A16	TBD
8	I/O	TBD
9	I/O	TBD
10	I/O	TBD
11	I/O	TBD
12	ZZ	TBD
13	I/O	TBD
14	I/O	TBD
15	I/O	TBD
16	I/O	TBD
17	I/O	TBD
18	A18	TBD
19	A9	TBD
20	A8	TBD
21	A17	TBD
22	NC	TBD
23	ADV	TBD
24	/G	TBD
25	/CKE	TBD

Bit no.	Signal name	Bump ID
26	ME	TBD
27	CLK	TBD
28	$/$ CE2	TBD
29	$/ B W 1$	TBD
30	$/ B W 2$	TBD
31	CE2	TBD
32	$/ C E$	TBD
33	A7	TBD
34	A6	TBD
35	I/O	TBD
36	I/O	TBD
37	I/O	TBD
38	I/O	TBD
39	NC	TBD
40	I/O	TBD
41	I/O	TBD
42	I/O	TBD
43	I/O	TBD
44	I/O	TBD
45	MODE	TBD
46	A5	TBD
47	A4	TBD
48	A3	TBD
49	A2	TBD
50	A1	TBD
51	A0	TBD

[μ PD4481322F9-EQx / μ PD4481362F9-EQx (256 K words by $32 / 36$ bits)]

Bit no.	Signal name	Bump ID
1	A10	TBD
2	A11	TBD
3	A12	TBD
4	A13	TBD
5	A14	TBD
6	A15	TBD
7	A16	TBD
8	I/O	TBD
9	I/O	TBD
10	I/O	TBD
11	I/O	TBD
12	I/O	TBD
13	I/O	TBD
14	I/O	TBD
15	I/O	TBD
16	I/O	TBD
17	ZZ	TBD
18	I/O	TBD
19	I/O	TBD
20	I/O	TBD
21	I/O	TBD
22	I/O	TBD
23	I/O	TBD
24	I/O	TBD
25	I/O	TBD
26	I/O	TBD
27	A9	TBD
28	A8	TBD
29	A17	TBD
30	NC	TBD
31	ADV	TBD
32	/G	TBD
33	/CKE	TBD
34	ME	TBD
35	CLK	TBD

Bit no.	Signal name	Bump ID
36	/CE2	TBD
37	/BW1	TBD
38	/BW2	TBD
39	/BW3	TBD
40	/BW4	TBD
41	CE2	TBD
42	/CE	TBD
43	A7	TBD
44	A6	TBD
45	1/O	TBD
46	1/0	TBD
47	I/O	TBD
48	1/O	TBD
49	I/O	TBD
50	1/O	TBD
51	1/0	TBD
52	1/0	TBD
53	1/O	TBD
54	NC	TBD
55	1/O	TBD
56	I/O	TBD
57	1/0	TBD
58	1/0	TBD
59	I/O	TBD
60	1/0	TBD
61	1/0	TBD
62	I/O	TBD
63	I/O	TBD
64	MODE	TBD
65	A5	TBD
66	A4	TBD
67	A3	TBD
68	A2	TBD
69	A1	TBD
70	A0	TBD

JTAG Instructions

Instructions	Description
EXTEST	EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register, whatever length it may be in the device, is loaded with all logic 0s. EXTEST is not implemented in this device. Therefore this device is not 1149.1 compliant. Nevertheless, this RAMs TAP does respond to an all zeros instruction, as follows. With the EXTEST (000) instruction loaded in the instruction register the RAM responds just as it does in response to the SAMPLE instruction, except the RAM output are forced to Hi-Z any time the instruction is loaded.
IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
SYPASS	The BYPASS instruction is loaded in the instruction register when the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE-Z	Sample is a Standard 1149.1 mandatory public instruction. When the sample instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and I/O buffers into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tch). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins. This functionality is not Standard 1149.1 compliant.
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive	
drive state (Hi-Z) and the boundary register is connected between TDI and TDO when the TAP controller	
is moved to the shift-DR state.	

JTAG Instruction Cording

IR2	IR1	IR0	Instruction	Note
0	0	0	EXTEST	1
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	1
0	1	1	BYPASS	
1	0	0	SAMPLE	
1	0	1	BYPASS	
1	1	1	BYPASS	

Note 1. TRISTATE all data drivers and CAPTURE the pad values into a SERIAL SCAN LATCH.

TAP Controller State Diagram

Disabling the Test Access Port

It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs.

TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1 , and may be left unconnected. But they may also be tied to VDD through a 1 k resistor.

TDO should be left unconnected.
Test Logic Operation (Instruction Scan)

Output Inactive Output from Instruction Register
TDO Output Inactive
Test Logic Operation (Data Scan)
(

Package Drawings

100-PIN PLASTIC LQFP (14x20)

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	22.0 ± 0.2
B	20.0 ± 0.2
C	14.0 ± 0.2
D	16.0 ± 0.2
F	0.825
G	0.575
H	$0.32_{-0.07}^{+0.08}$
I	0.13
J	0.65 (T.P.)
K	1.0 ± 0.2
L	0.5 ± 0.2
M	$0.17_{-0.05}^{+0.06}$
N	0.10
P	1.4
Q	0.125 ± 0.075
R	$3^{\circ}{ }_{-3^{\circ}}^{\circ}$
S	1.7 MAX.
	S100GF-65-8ET-1

165-PIN TAPE FBGA (13x15)

TBD

Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of the $\mu \mathrm{PD} 4481162,4481182,4481322$ and 4481362.

Types of Surface Mount Devices

μ PD4481162GF	$: 100-$ pin PLASTIC LQFP (14×20)
μ PD4481182GF	$: 100-$ pin PLASTIC LQFP (14×20)
μ PD4481322GF	$: 100-$ pin PLASTIC LQFP (14×20)
μ PD4481362GF	$: 100-$ pin PLASTIC LQFP (14×20)
μ PD4481162F9-EQx	$: 165-$ pin TAPE FBGA (13×15)
μ PD4481182F9-EQx	$: 165-$ pin TAPE FBGA (13×15)
μ PD4481322F9-EQx	$: 165-$ pin TAPE FBGA (13×15)
μ PD4481362F9-EQx	$: 165-$ pin TAPE FBGA (13×15)

[MEMO]
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VdD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

ZEROSB is a trademark of NEC Corporation.

- The information in this document is current as of June, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

