SDAS146B - JANUARY 1986 - REVISED JANUARY 1995

13 CLK

- Functionally Equivalent to AMD's AM29823
- Provide Extra Data Width Necessary for Wider Address/Data Paths or Buses With Parity
- Outputs Have Undershoot-Protection Circuitry
- Power-Up High-Impedance State
- Buffered Control Inputs Reduce dc Loading Effects
- Package Options Include Plastic Small-Outline (DW) Packages and Standard Plastic (NT) and Ceramic (JT) 300-mil DIPs

24 🛮 V_{CC} OE 1D 🛮 2 23 🛮 1Q 22 1 2Q 2D 🛮 3 3D 🛮 4 21 3Q 4D ∏5 20 4Q 5D ∏6 19 **∏** 5Q 6D **∏**7 18**∏** 6Q 7D 🛮 8 17 7Q 8D []9 16∏8Q 9D **∏**10 15∏9Q 14 CLKEN CLR [] 11

GND [] 12

SN54ALS29823 . . . JT PACKAGE

SN74ALS29823 . . . DW OR NT PACKAGE

(TOP VIEW)

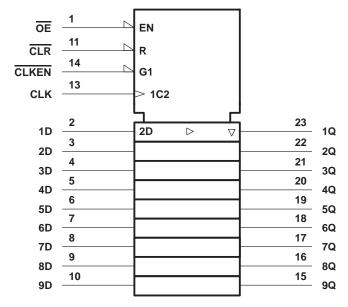
description

These 9-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive

or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers, parity bus interfacing, and working registers.

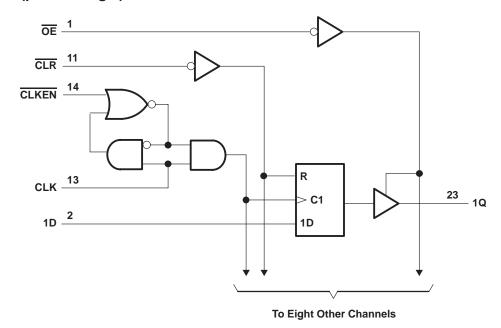
With the clock-enable (CLKEN) input low, the nine D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock (CLK) input. Taking CLKEN high disables the clock buffer, latching the outputs. The 'ALS29823 have noninverting data (D) inputs. Taking the clear (CLR) input low causes the nine Q outputs to go low independently of the clock.

A buffered output-enable (\$\overline{OE}\$) input places the nine outputs in either a normal logic state (high or low logic levels) or a high-impedance state. The outputs also are in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered down. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.


OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54ALS29823 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALS29823 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each flip-flop)


	INPUTS								
OE	CLR	CLKEN	Q						
L	L	Х	Х	Х	L				
L	Н	L	\uparrow	Н	Н				
L	Н	L	\uparrow	L	L				
L	Н	Н	Χ	Χ	Q ₀				
Н	Χ	Χ	Χ	Χ	Z				

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SDAS146B - JANUARY 1986 - REVISED JANUARY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC}		7 V
Input voltage, V _I		5.5 V
Voltage applied to a disabled high-impedance output		5.5 V
Operating free-air temperature range, T _A : SN54ALS29823	-55° C to	125°C
Storage temperature range	−65°C to	150°C

recommended operating conditions

			SN54ALS29823			UNIT	
			MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		4.5	5	5.5	V	
VIH	High-level input voltage		2			V	
VIL	Low-level input voltage				0.8	V	
lOH	High-level output current				-18	mA	
loL	Low-level output current				32	mA	
	Pulse duration	CLR low	7			ns	
t _W	ruise duration	CLK high or low	8			115	
		CLR inactive	7				
t _{su}	Setup time before CLK↑	Data	4			ns	
		CLKEN high or low	8				
.	Hald for a first OHAT	CLKEN	2			no	
th	Hold time after CLK↑ Data		4			ns	
TA	Operating free-air temperature		-55	25	125	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS					
PARAMETER	TEST CO	NDITIONS	MIN	TYP [‡]	MAX	UNIT	
VIK	$V_{CC} = 4.5 V$,	$I_{I} = -18 \text{ mA}$			-1.2	V	
Vou	V _{CC} = 4.5 V	$I_{OH} = -12 \text{ mA}$	2.4	3.3		V	
VOH	∨CC = 4.5 V	$I_{OH} = -18 \text{ mA}$	2			V	
VOL	$V_{CC} = 4.5 V$,	$I_{OL} = 32 \text{ mA}$		0.25	0.5	V	
lozh	$V_{CC} = 5.5 V$,	V _O = 2.4 V			50	μΑ	
lozL	V _{CC} = 5.5 V,	V _O = 0.4 V			-50	μΑ	
lį	$V_{CC} = 5.5 V$,	V _I = 5.5 V			0.1	mA	
lін	$V_{CC} = 5.5 V$,	$V_{I} = 2.7 \text{ V}$			20	μΑ	
I _{IL}	$V_{CC} = 5.5 V$,	$V_{I} = 0.4 V$			-0.5	mA	
los§	V _{CC} = 5.5 V,	V _O = 0	-75		-250	mA	
		Outputs high			90		
Icc	V _{CC} = 5.5 V	Outputs low			105	mA	
		Outputs open			115		

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SN54ALS29823, SN74ALS29823 9-BIT BUS-INTÉRFACE FLIP-FLOPS **WITH 3-STATE OUTPUTS**

SDAS146B - JANUARY 1986 - REVISED JANUARY 1995

switching characteristics (see Figure 1)

	FROM	TO V _{CC} = MIN to MAX		l to MAX [†] , o MAX [†]				
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	SN54AL	UNIT			
				MIN	MAX			
^t PLH	CLK	A O	0 50 - 5	2	11.5	ns		
^t PHL	CLK	Any Q	C _L = 50 pF	2	11.5	115		
^t PLH	CLK		C. 200 = E	2	21	ns		
^t PHL	CLK	Any Q	C _L = 300 pF	2	21	115		
^t PHL	CLR	Any Q	C _L = 50 pF	1	17.5	ns		
^t PZH	ŌĒ	A O	0 50 5	1	17	ns		
^t PZL	OE	Any Q $C_L = 50 \text{ pF}$		Ally Q CL		1	17	115
^t PZH	ŌĒ	A O	0 200 = 5	1	25	ns		
^t PZL	OE	Any Q	C _L = 300 pF	1	29.5	115		
^t PHZ	ŌĒ	A O	0 50 - 5	1	16	ns		
t _{PLZ}	OE	Any Q	C _L = 50 pF	1	14	115		
^t PHZ	[†] PHZ OE		C _L = 5 pF	1	12			
^t PLZ	OL	Any Q	O[= 3 μr	1	11	ns		

T For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage, V _{CC}		7 V
Input voltage, V _I		5.5 V
Voltage applied to a disabled 3-state output		5.5 V
Operating free-air temperature range, T _A : SN74ALS29823	0°C to	70°C
Storage temperature range	-65° C to	150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

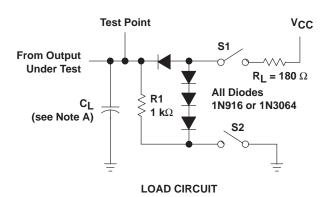
				SN7			
				MIN	NOM	MAX	UNIT
Vcc	Supply voltage			4.75	5	5.25	V
VIH	High-level input voltage			2			V
V _{IL}	Low-level input voltage					0.8	V
loH	High-level output current					-24	mA
lOL	Low-level output current					48	mA
	Pulse duration	CLR I	ow	5			ns
t _W	ruise duration	CLK h	igh or low	5			115
		CLR inactive		5			
t _{su}	Setup time before CLK↑	Data		2			ns
		CLKE	N high or low	6			
+,		CLKE	N	0			ns
^t h	Hold time after CLK↑	Data		2			115
TA	Operating free-air temperature			0	25	70	°C

SDAS146B - JANUARY 1986 - REVISED JANUARY 1995

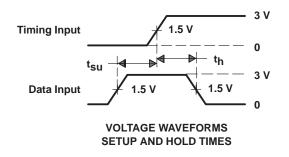
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

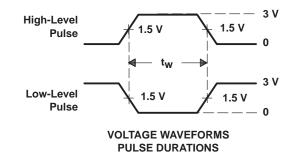
PARAMETER		SN7	SN74ALS29823			
PARAMETER	TEST CON	MIN	TYP	MAX	UNIT	
VIK	$V_{CC} = 4.75 V,$	$I_1 = -18 \text{ mA}$			-1.2	V
Vari	Vac = 4.75 V	$I_{OH} = -15 \text{ mA}$	2.4	3.3		V
VOH	V _{CC} = 4.75 V	$I_{OH} = -24 \text{ mA}$	2	3.1		V
V _{OL}	$V_{CC} = 4.75 V,$	$I_{OL} = 48 \text{ mA}$		0.35	0.5	V
lozh	$V_{CC} = 5.25 \text{ V},$	$V_0 = 2.4 \text{ V}$			20	μΑ
lozL	$V_{CC} = 5.25 \text{ V},$	V _O = 0.4 V			-20	μΑ
IĮ	V _{CC} = 5.25 V,	V _I = 5.5 V			0.1	mA
IIH	$V_{CC} = 5.25 \text{ V},$	V _I = 2.7 V			20	μΑ
IIL	V _{CC} = 5.25 V,	V _I = 0.4 V			-0.2	mA
los [‡]	V _{CC} = 5.25 V,	V _O = 0	-75		-250	mA
Icc	V _{CC} = 5.25 V,	Outputs open		80	115	mA

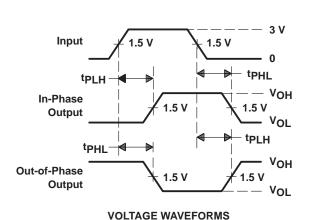
switching characteristics (see Figure 1)


	FROM	то	TO TEST CONDITIONS VCC = MIN to MAX TA = MIN to MAX		to MAX§, o MAX§	
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	SN74AL	UNIT	
				MIN	MAX	
^t PLH	CLK	A O	0. 50.55	2	10	ns
t _{PHL}	OLK	Any Q	C _L = 50 pF	2	10	115
t _{PLH}	CLK	A O	0 000 = 5		16	ns
t _{PHL}	CLK	Any Q	C _L = 300 pF	16		113
t _{PHL}	CLR	Any Q	C _L = 50 pF		12	ns
^t PZH	ŌĒ	A O	0 50 - 5		14	
tpzL	OE	Any Q	C _L = 50 pF		14	ns
^t PZH	ŌĒ	A O	0 000 - 5		20	ns
tpzL	OE	Any Q	C _L = 300 pF		23	
t _{PHZ}	\overline{OE} Any Q $C_L = 50 \text{ pF}$			14	no	
t _{PLZ}			CL = 50 pF		12	ns
^t PHZ	ŌĒ	Any Q	C: - 5 pE		9	no
t _{PLZ}	OE .	Ally Q	$C_L = 5 pF$		9	ns

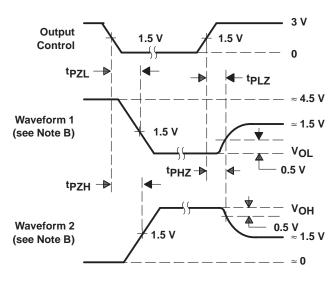
[§] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.


PARAMETER MEASUREMENT INFORMATION



SWITCH POSITION TABLE										
TEST	S1	S2								
t _{PLH}	Closed	Closed								
tPHL	Closed	Closed								
tPZH	Open	Closed								
tPZL	Closed	Open								
tPHZ	Closed	Closed								
tPLZ	Closed	Closed								


OLI BOOLTION TABLE

PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5$ ns. $t_f \leq 2.5$ ns.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

Product Folder: SN54ALS29823, 9-Bit Bus-Interface Flip-Flops With 3-State Outputs

Contact Us Buy A About TI A TI Worldwide my.TI

Products Applications Support Part Number

Search

Keyword

Part Number

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS | PRICING/AVAILABILITY/PKG

APPLICATION NOTES | USER GUIDES | MORE LITERATURE

PRODUCT SUPPORT: TRAINING

SN54ALS29823, 9-Bit Bus-Interface Flip-Flops With 3-State Outputs

DEVICE STATUS: ACTIVE

PARAMETER NAME	SN54ALS29823
Voltage Nodes (V)	5
Vcc range (V)	4.75 to 5.25
Input Level	TTL
Output Level	TTL
No. of Outputs	9
Logic	True

FEATURES ▲Back to Top

- Functionally Equivalent to AMD's AM29823
- Provide Extra Data Width Necessary for Wider Address/Data Paths or Buses With Parity
- Outputs Have Undershoot-Protection Circuitry
- · Power-Up High-Impedance State
- Buffered Control Inputs Reduce dc Loading Effects
- Package Options Include Plastic Small-Outline (DW) Packages and Standard Plastic (NT) and Ceramic (JT) 300-mil DIPs

DESCRIPTION ABack to Top

These 9-bit flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers, parity bus interfacing, and working registers.

With the clock-enable (CLKEN) input low, the nine D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock (CLK) input. Taking CLKEN high disables the clock buffer, latching the outputs. The 'ALS29823 have noninverting data (D) inputs. Taking the clear (CLR) input low causes the nine Q outputs to go low independently of the clock.

A buffered output-enable ($^{\circ}$ E) input places the nine outputs in either a normal logic state (high or low logic levels) or a high-impedance state. The outputs also are in the high-impedance state during power-up and power-down conditions. The outputs remain in the high-impedance state while the device is powered down. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN54ALS29823 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS29823 is characterized for operation from 0°C to 70°C.

TECHNICAL DOCUMENTS

▲Back to Top

Product Folder: SN54ALS29823, 9-Bit Bus-Interface Flip-Flops With 3-State Outputs

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET ▲Back to Top

Full datasheet in Acrobat PDF: sn54als29823.pdf (110 KB,Rev.B) (Updated: 01/01/1995)

APPLICATION NOTES ▲Back to Top

View Application Notes for <u>Digital Logic</u>

- Advanced Schottky (ALS and AS) Logic Families (SDAA010 Updated: 08/01/1995)
- Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) (SCBA012A Updated: 08/01/1997)
- Designing With Logic (Rev. C) (SDYA009C Updated: 06/01/1997)
- Evaluation of Nickel/Palladium/Gold-Finished Surface-Mount Integrated Circuits (SZZA026 Updated: 06/20/2001)
- Input and Output Characteristics of Digital Integrated Circuits (SDYA010 Updated: 10/01/1996)
- Live Insertion (SDYA012 Updated: 10/01/1996)
- TI IBIS File Creation, Validation, and Distribution Processes (SZZA034 Updated: 08/29/2002)
- Understanding and Interpreting Texas Instruments Standard-Logic Products Data Sh (Rev. A) (SZZA036A Updated: 02/27/2003)

MORE LITERATURE ▲Back to Top

- Enhanced Plastic Portfolio Brochure (SGZB004, 387 KB Updated: 08/19/2002)
- Logic Reference Guide (SCYB004, 1032 KB Updated: 10/23/2001)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000)
- Military Brief (SGYN138, 803 KB Updated: 10/10/2000)
- Overview of IEEE Std 91-1984, Explanation of Logic Symbols Training Booklet (Rev. A) (SDYZ001A, 138 KB Updated: 07/01/1996)
- Palladium Lead Finish User's Manual (SDYV001, 2041 KB Updated: 11/01/1996)
- QML Class V Space Products Military Brief (Rev. A) (SGZN001A, 257 KB Updated: 10/07/2002)

USER GUIDES ▲Back to Top

• LOGIC Pocket Data Book (SCYD013, 4837 KB - Updated: 12/05/2002)

PRICING/AVA	ILABILITY/	PKG PKG					Back to Top						
DEVICE INFORMATION Updated Daily										DISTRIBUTOR INVENTORY 00 AM GMT, 17 Apr 2003			
ORDERABLE DEVICE	<u>STATUS</u>	<u>PACKAGE</u> <u>TYPE PINS</u>	TEMP (°C)	DSCC NUMBER	PRODUCT CONTENT	BUDGETARY PRICING QTY \$US	STD PACK QTY	IN STOCK	IN PROGRESS QTY DATE	LEAD TIME	DISTRIBUTOR COMPANY REGION	IN STOCK	PURCHASE
5962- 9067501MLA	ACTIVE	CDIP (JT) 24	-55 TO 125		View Contents	1KU 11.94	1	<u>0</u> *	>10k 20 May	8 WKS	None Reported <u>View Distributors</u>		
SNJ54ALS29823JT	ACTIVE	<u>CDIP</u> (<u>JT)</u> 24	-55 TO 125	5962- 9067501MLA	View Contents	1KU 11.94	1	<u>674</u> *	>10k 20 May	8 WKS	None Reported <u>View Distributors</u>		

Table Data Updated on: 4/17/2003