FEATURES:

- Bus switches provide zero delay paths
- Low switch on-resistance
- TTL-compatible input and output levels
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- Hot insertion capability
- Very low power dissipation
- Available in SSOP and TSSOP packages

DESCRIPTION:

The FST163232 belong to IDT's family of Bus switches. Bus switch devices perform the function of connecting or isolating two ports without providing any inherent current sink or source capability. Thus they generate little or no noise of their own while providing a low resistance path for an external driver. These devices connect input and output ports through an n-channel FET. When the gate-to-source junction of this FET is adequately forward-biased the device conducts and the resistance between input and output ports is small. Without adequate bias on the gate-to-source junction of the FET, the FET is turned off, therefore with no Vcc applied, the device has hot insertion capability.

The low on-resistance and simplicity of the connection between inputand output ports reduces the delay in this path to close to zero.

The FST163232 provides three 16-bit TTL- compatible ports that support 2:1 multiplexing. The $\mathrm{S}_{0,1}$ pins control mux select and switch enable/disable. The $\mathrm{S}_{0}, 1$ inputs are synchronous and clocked on the rising edge of CLK when CLKEN is low.

Port A can be connected to port B1 or port B2 or both ports B1 and B2.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +7	V
TsTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	Maximum Continuous Channel Current	128	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc, Control, and Switch terminals.

CAPACITANCE ${ }^{(1)}$

Symbol	Parameter		Conditions $^{(2)}$	Typ.	Unit
CIN	Control Input Capacitance			6	pF
CI/O	Switch Input/Output Capacitance	A Port	Switch Off	17	pF
	B Port	Switch Off	12		

NOTES:

1. Capacitance is characterized but not tested.
2. $T_{A}=25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}, \mathrm{VIN}=0 \mathrm{~V}$, Vout $=0 \mathrm{~V}$.

PIN DESCRIPTION

Pin Names	I/0	Description
A1	I/O	Bus A1
B1, B2	I/O	Buses B1, B2
So, 1	1	Control Pins
CLK	1	Clock Input. Clocks S0, 1 on Rising Edge.
$\overline{\text { CLKEN }}$	I	Clock Enable Input

FUNCTIONTABLE(1)

S1	So	CLK	$\overline{\text { CLKEN }}$	Description
X	X	X	H	LastState
L	L	\uparrow	L	Disconnect
L	H	\uparrow	L	A to B1 and A to B2
H	L	\uparrow	L	A to B1 or B1 to A
H	H	\uparrow	L	A to B2 or B2 to A

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
Z = High-Impedance
$\uparrow=$ LOW-to-HIGH Transition

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Control Input HIGH Voltage	Guaranteed Logic HIGH for Control Inputs		2	-	-	V
VIL	Control Input LOW Voltage	Guaranteed Logic LOW for Control Inputs		-	-	0.8	V
11 H	Control Input HIGH Current	Vcc = Max.	$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
IIL	Control Input LOW Current		$\mathrm{VI}=$ GND	-	-	± 1	
IozH	Current During Bus Switch Disconnect	$\mathrm{Vcc}=\mathrm{Max} ., \mathrm{Vo}=0$ to 5 V		-	-	± 1	$\mu \mathrm{A}$
Iozl				-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{VcC}=\mathrm{Min} ., \mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
IofF	Switch Power Off Leakage	$\mathrm{Vcc}=0 \mathrm{~V}$, VIN or Vo $\leq 5.5 \mathrm{~V}$		-	-	± 1	$\mu \mathrm{A}$
ICC	Quiescent Power Supply Current	VCC = Max., VIN = GND or Vcc		-	0.1	3	$\mu \mathrm{A}$

BUS SWITCH IMPEDANCE OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Ron	Switch On Resistance ${ }^{(2)}$	Vcc $=$ Min., Vin $=0 \mathrm{~V}$, Ion $=64 \mathrm{~mA}$	-	4	7	Ω
		$\mathrm{Vcc}=$ Min., VII $=0 \mathrm{~V}$, ION $=30 \mathrm{~mA}$	-	4	7	
		$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{VIN}=2.4 \mathrm{~V}$, $\mathrm{IoN}=15 \mathrm{~mA}$	-	6	15	
los	Short Circuit Current, A to $\mathrm{B}^{(3)}$	$\mathrm{A}(\mathrm{B})=0 \mathrm{~V}, \mathrm{~B}(\mathrm{~A})=\mathrm{Vcc}$	100	-	-	mA

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The voltage drop between the indicated ports divided by the current through the switch.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ.(2)	Max.	Unit
$\Delta \mathrm{lcc}$	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{VCC}=\operatorname{Max} . \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \end{aligned}$		-	0.5	1.5	mA
ICCD	Dynamic Power Supply Current $(4,5)$	Vcc = Max. Clock Pin Toggling 50\% Duty Cycle 16 Switches Toggling One Select Toggling at 50% of CLK Frequency	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$				$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} / \end{gathered}$
ICCD	Dynamic Power Supply Current 4,5)	Vcc = Max. Clock Pin Toggling 50\% Duty Cycle 32 Switches Toggling Two Select Pins Toggling at 50% of CLK Frequency	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$				$\begin{gathered} \mu \mathrm{Al} \\ \mathrm{MHz} / \end{gathered}$
Ic	Total Power Supply Current(6)	$\begin{aligned} & \text { VCC = Max. } \\ & \text { fCP = 10MHz (CLK) } \\ & 50 \% \text { Duty Cycle } \\ & \overline{C L K E N}=\text { LOW } \\ & \text { So }=\text { HIGH or LOW } \\ & \mathrm{fi}^{2}=2.5 \mathrm{MHz}(\mathrm{~S} 1) \\ & 16 \text { Switches Toggling } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCc} \\ & \mathrm{VIN}=\mathrm{GND} \\ & \hline \mathrm{VIN}=\mathrm{Vcc} \\ & \mathrm{VIN}=3.4 \mathrm{~V} \end{aligned}$				mA
		$\begin{aligned} & \text { VCC = Max. } \\ & \text { fCP = 10MHz (CLK) } \\ & 50 \% \text { Duty Cycle } \\ & \overline{\text { CLKEN }}=\text { LOW } \\ & \text { S1 = HIGH } \\ & \text { fi }=2.5 \mathrm{MHz} \text { (So) } \\ & 16 \text { MUXes Exchanging } \end{aligned}$	$\begin{aligned} & \hline \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \\ & \hline \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=3.4 \mathrm{~V} \end{aligned}$				
		$\begin{aligned} & \text { VCC = Max. } \\ & \text { fCP = 10MHz (CLK) } \\ & 50 \% \text { Duty Cycle } \\ & \text { CLKEN }=\text { LOW } \\ & \text { S1 = LOW } \\ & \text { fi }=2.5 \mathrm{MHz}(\mathrm{So}) \\ & 32 \text { Switches Toggling } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \\ & \hline \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=3.4 \mathrm{~V} \end{aligned}$				

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type. $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
2. Typical values are at $\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input $(V \operatorname{Vin}=3.4 \mathrm{~V})$. All other inputs at Vcc or GND . Switch inputs do not contribute to $\Delta \mathrm{lcc}$.
4. This parameter represents the current required to switch the internal capacitance of the control inputs at the specified frequency.

Switch inputs generate no significant power supply currents as they transition. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. $C_{P D}=I \mathrm{CCD} / \mathrm{VCC}$

CpD $=$ Power Dissipation Capacitance
6. IC = IQUIESCENT + InPuTS + IDYNaMIC

IC = ICC $+\triangle I C C D H N T+\operatorname{ICCD}$ (fiN)
IcC = Quiescent Current
$\Delta \mathrm{lcC}=$ Power Supply Current for a TTL High Input $(\mathrm{VIN}=3.4 \mathrm{~V})$
DH = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{fi}_{\mathrm{i}}=$ Control Input Frequency
$\mathrm{N}=$ Number of Control Inputs Toggling at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Description ${ }^{(1)}$	$\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$			$\mathrm{Vcc}=4 \mathrm{~V}$		Unit
		Min.	Typ.	Max.	Min.	Max.	
tPLH tPHL	DataPropagation Delay A to B, B to $A^{(2)}$	-	-	0.25	-	0.25	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Switch CONNECT Delay CLK \uparrow to $\mathrm{A}-\mathrm{B}_{1}$ or $\mathrm{A}-\mathrm{B}_{2}$	1.5	-	5.8	-	6.1	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Switch CONNECT Delay CLK \uparrow to $\mathrm{B}_{1}-\mathrm{B} 2$	1.5	-	7.9	-	8.5	ns
$\begin{aligned} & \text { tPHz } \\ & \text { tPLZ } \end{aligned}$	Switch DISCONNECT Delay CLK \uparrow to A, B	1.9	-	6.2	-	5.8	ns
BX	Switch EXCHANGE Delay $\mathrm{CLK} \uparrow$ from $\mathrm{A}-\mathrm{B}_{1}\left(\mathrm{~B}_{2}\right)$ to $\mathrm{A}-\mathrm{B}_{2}\left(\mathrm{~B}_{1}\right)$	1.8	-	6.2	-	6.8	ns
tsu	Clock Enable Set-Up Time $\overline{\text { CLKEN }}$ to CLK \uparrow	1.9	-	-	2.2	-	ns
th	Clock Enable Hold Time $\overline{C L K E N}$ after CLK \uparrow	1	-	-	1.9	-	ns
tsu	Select Set-Up Time So, S1 to CLK \uparrow	1.9	-	-	2.2	-	ns
tH	Select Hold Time So, S1 after CLK \uparrow	1	-	-	0.5	-	ns
IQcıl	Charge Injection During Switch DISCONNECT CLK \uparrow to $\mathrm{A}, \mathrm{B}^{(3)}$	-	1.5	-	-	-	pC
\|Qdcil	Charge Injection During Switch Exchange CLK \uparrow to $A, B^{(3)}$	-	0.5	-	-	-	pC

NOTES:

1. See test circuits and waveforms.
2. The bus switch contributes no Propagation Delay other than the RC Delay of the load interacting with the RC of the switch.
3. IQcil is the charge injection for a single switch DISCONNECT and applies to either single switches or multiplexers. IQdcll is the charge injection for a multiplexer as the multiplexed port switches from one path to another. Charge injection is reduced because the injection from the DISCONNECT of the first path is compensated by the CONNECT of the second path.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs
SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:
$C L=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

Charge Injection

NOTES:

1. Select is used with multiplexers for measuring IQdcll during multiplexer select. During all other tests Enable is used.
2. Used with multiplexers to measure IQdcil only.
3. Charge Injection $=\Delta$ Vout $C L$, with Enable toggling for IQcil or Select toggling for IQdcil. Δ Vout is the change in Vout and is measured with a $10 \mathrm{M} \Omega$ probe.

Propagation Delay

Set-up, Hold, and Release Times

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.

ORDERING INFORMATION

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

