SCAS582E - NOVEMBER 1996 - REVISED JUNE 1998

 Member of the Texas Instruments Widebus™ Family 	G OR L PACKAGE (TOP VIEW)		
 EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process 	1DIR [1 1B1 [2	48 1 0E	
 Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C 	1B2 3 GND 4	46 1 1A2 45 GND	
 Typical V_{OHV} (Output V_{OH} Undershoot) 2 V at V_{CC} = 3.3 V, T_A = 25°C 	1B3 [5 1B4 [6	44 1 1A3 43 1A4	
 Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC}) 	V _{CC} 7 1B5 8 1B6 9	42 V _{CC} 41 1 1A5 40 1A6	
 Power Off Disables Inputs/Outputs, Permitting Live Insertion 	GND [10 1B7 [11	39 GND 38 1A7	
 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) 	1B8	36 2A1 35 2A2	
 Latch-Up Performance Exceeds 250 mA Per JESD 17 	GND 15 2B3 16 2B4 17	34 GND 33 2A3 32 2A4	
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	V _{CC} 18 2B5 19 2B6 20	31 V _{CC} 30 2A5 29 2A6	
 All Outputs Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required 	GND 21 2B7 22 2B8 23	28 GND 27 2A7 26 2A8	
 Package Options Include Plastic 300-mil Shrink Small-Outline (L) and Thin Shrink Small-Outline (G) Packages 	2DIR [24	25 2 0 2 0 25	

NOTE: G is the abbreviated alias for the DGG package, and L is the abbreviated alias for the DL package.

description

This 16-bit (dual-octal) noninverting bus transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVCHR162245A is designed for asynchronous communication between data buses. The control-function implementation minimizes external timing requirements.

This device can be used as two 8-bit transceivers or one 16-bit transceiver. It allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.

All outputs, which are designed to sink up to 12 mA, include equivalent 26- Ω resistors to reduce overshoot and undershoot.

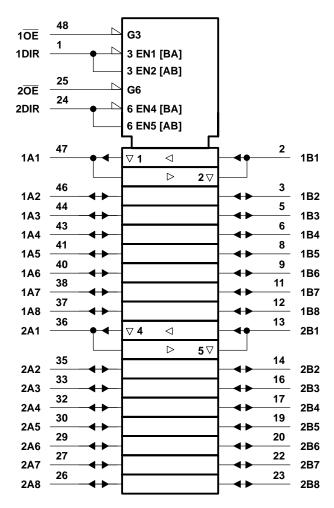
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

n date.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

description (continued)

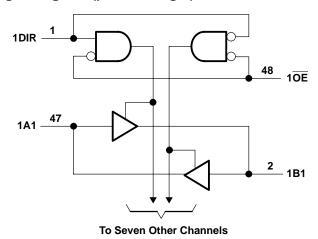
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

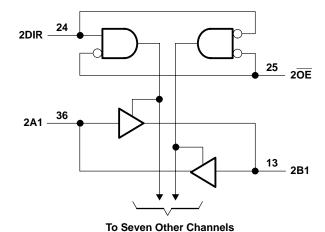

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74LVCHR162245A is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each 8-bit section)

INP	UTS	OPERATION	
OE	DIR	OPERATION	
L	L	B data to A bus	
L	Н	A data to B bus	
Н	X	Isolation	


logic symbol†



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)	0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): G package	89°C/W
L package	97°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
VCC	Cupply voltage	Operating	1.65	3.6	V	
	Supply voltage Data retention of	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}			
V_{IH}	High-level input voltage	High-level input voltage V _{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}		
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		
۷ _I	Input voltage	•	0	5.5	V	
	Output voltage	High or low state	0	Vcc	V	
VO		3 state	0	5.5	V	
		V _{CC} = 1.65 V		-2		
1	High-level output current	V _{CC} = 2.3 V		-4	mA	
ЮН		V _{CC} = 2.7 V		-8		
		V _{CC} = 3 V		-12		
		V _{CC} = 1.65 V		2		
1	Low-level output current	V _{CC} = 2.3 V	4		1.	
lOL		V _{CC} = 2.7 V		8	mA	
		V _{CC} = 3 V		12		
Δt/Δν	Input transition rise or fall rate	·	0	10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		VCC	MIN	TYP [†]	MAX	UNIT			
				1.65 V to 3.6 V	V _{CC} -0.	.2			
		I _{OH} = -2 mA		1.65 V	1.2				
		I _{OH} = -4 mA		2.3 V	1.7				
Vон		10H - 4111A		2.7 V	2.2			V	
		$I_{OH} = -6 \text{ mA}$		3 V	2.4				
		I _{OH} = -8 mA	2.7 V	2					
		$I_{OH} = -12 \text{ mA}$		3 V	2				
		$I_{OL} = 100 \mu A$		1.65 V to 3.6 V			0.2		
		$I_{OL} = 2 \text{ mA}$		1.65 V			0.45		
		I _{OL} = 4 mA		2.3 V			0.7		
VOL		10L = 4111A		2.7 V			0.4	V	
		$I_{OL} = 6 \text{ mA}$		3 V			0.55		
		$I_{OL} = 8 \text{ mA}$	2.7 V			0.6			
	I _{OL} = 12 mA		3 V			0.8			
lį	Control inputs	V _I = 0 to 5.5 V		3.6 V			±5	μΑ	
		V _I = 0.58 V		1.65 V	‡	‡			
		V _I = 1.07 V	1.05 V	‡					
		V _I = 0.7 V	2.3 V	45					
l(hold)	A or B ports	$V_{ } = 1.7 \text{ V}$		2.5 V	-45			μΑ	
	V _I = 0.8 V		3 V	75					
		V _I = 2 V		J	-75				
		V _I = 0 to 3.6 V§		36 V			±500		
l _{off}		V_I or $V_O = 5.5 V$		0			±10	μΑ	
l _{OZ} ¶	$V_{O} = 0 \text{ to } 5.5 \text{ V}$		3.6 V			±10	μΑ		
loo		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			20		
Icc		$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\text{\#}}$	10 = 0	3.0 V			20	μΑ	
ΔI_{CC} One input at $V_{CC} - 0.6 \text{ V}$,		One input at V _{CC} – 0.6 V, Oth	ner inputs at V _{CC} or GND	2.7 V to 3.6 V			500	μΑ	
Ci	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		3		pF	
C _{io}	A or B ports	$V_O = V_{CC}$ or GND				12		pF	

 $[\]frac{1}{1}$ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =		V _{CC} =		VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
	(1141 01)	(001701)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tpd	A or B	B or A	‡	‡	‡	‡		5.7	1.5	4.8	ns
t _{en}	ŌĒ	A or B	‡	‡	‡	‡		7.9	1.5	6.3	ns
t _{dis}	ŌĒ	A or B	‡	‡	‡	‡		8.3	2.2	7.4	ns

[‡] This information was not available at the time of publication.

[‡] This information was not available at the time of publication.

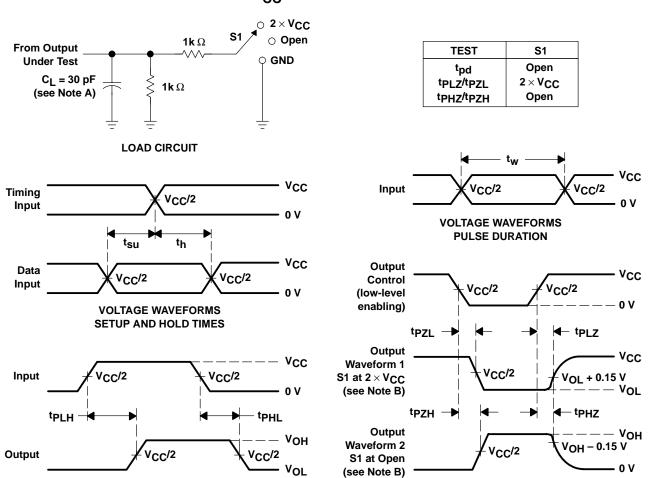
[§] This is the bus-hold maximum dynamic current required to switch the input from one state to another.

[¶] For I/O ports, the parameter IOZ includes the input leakage current, but not I_I(hold).

[#] This applies in the disabled state only.

SN74LVCHR162245A 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCASS82E - NOVEMBER 1996 - REVISED JUNE 1998

operating characteristics, $T_A = 25^{\circ}C$


PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT	
		CONDITIONS	TYP	TYP	TYP		
Const	Power dissipation capacitance	Outputs enabled	f = 10 MHz	†	†	39	pF
C _{pd}	per transceiver	Outputs disabled	I = IU MIHZ	†	†	4	pr

[†] This information was not available at the time of publication.

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r \leq$ 2 ns. $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.

VOLTAGE WAVEFORMS

PROPAGATION DELAY TIMES

- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms