T-45.23-13

54/7493A 54LS/74LS93

DIVIDE-BY-SIXTEEN COUNTER

CP₁ 1 14 CPo 13 NC MR₂ 3 12 Q₀ NC 4 11 O3 Vcc 5 10 GND NC 6 9 Q; NC 7 8 Q2

CONNECTION DIAGRAM PINOUT A

DESCRIPTION — The '93 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divideby-eight. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

ORDERING CODE: See Section 9

	u 000	E. OCC OCCION 5		
	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	OUT	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	TYPE
Plastic DIP (P)	А	7493APC, 74LS93PC		9A
Ceramic DIP (D)	А	7493ADC, 74LS93DC	5493ADM, 54LS93DM	6A
Flatpak (F)	Α	7493AFC, 74LS93FC	5493AFM, 54LS93FM	31

LOGIC SYMBOL

Vcc = Pin 5 GND = Pin 10 NC = Pins 4, 6, 7, 13

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
CP ₀	÷2 Section Clock Input (Active Falling Edge)	2.0/2.0	1,0/1.5
ĈP₁	÷5 Section Clock Input (Active Falling Edge)	2.0/2.0	1.0/1.0
MR ₁ , MR ₂	Asynchronous Master Reset Inputs (Active HIGH)	1.0/1.0	0.5/0.25
Q_0	÷2 Section Output*	20/10	10/5.0 (2.5)
Q ₁ — Q ₃	÷8 Section Outputs	20/10	10/5.0 (2.5)

*The Q0 output is guaranteed to drive the full rated fan-out plus the $\overline{\text{CP}}_1$ input.

93

FUNCTIONAL DESCRIPTION — The '93 is a 4-bit ripple type binary counter. It consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-eight section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q₀ output of each device is designed and specified to drive the rated fan-out plus the $\overline{CP_1}$ input of the device. A gated AND asynchronous Master Reset (MR $_1$, MR $_2$) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

- A. 4-Bit Ripple Counter The output Q_0 must be externally connected to input \overline{CP}_1 . The input count pulses are applied to input $\overline{CP_0}$. Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q₀, Q₁, Q₂, and Q₃ outputs as shown in the Truth Table.
- B. 3-Bit Ripple Counter The input count pulses are applied to input $\overline{\mathbb{CP}}_1$. Simultaneous frequency divisions of 2, 4, and 8 are available at the Q1, Q2, and Q3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

MODE SELECTION

	SET		OUT	rput	S
MR ₁	MR ₂	Q ₀	Qı	Q ₂	Q ₃
H	H H L	L	Co	L unt unt unt	L

H = HIGH Voltage Level L = LOW Voltage Level

TRUTH TABLE

7710711 77222							
COUNT	OUTPUTS						
COOM	Q ₀	Q ₁	Q ₂	Q ₃			
0	L	L	L	L			
1	Н	L	Ł	L			
2	L	Н	L	L			
3	Н	Н	L	L			
4	L	L	Н	L			
5	Н	L	Н	L			
6	L	Н	Н	L			
7	Н	Н	Н	L			
8	L	L	L	Н			
9	Н	L	L	Н			
10	L	Н	L	Н			
11	Н	Н	L	Н			
12	L	L.	Н	Н			
13	Н	L	Н	н			
14	L	Н	Н	H			
15	Н	Н	Н	Н			

NOTE: Output Qo connected to CP1.

LOGIC DIAGRAM

E-14 1153

4-121 A -- -- 05493-2×

T-45-23-13

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
		Min	Max	Min	Max		
hн	Input HIGH Current CP ₀ or CP ₁		1.0		0.2	mA	V _{CC} = Max, V _{IN} = 5.5 V
lcc	Power Supply Current		39		15	mA	Vcc = Max

AC CHARACTERISTICS: Vcc = +5.0 V. Ta = +25°C (See Section 3 for waveforms and load configurations)

SYMBOL		54/74	54/74LS		CONDITIONS
	PARAMETER	C _L = 15 pF R _L = 400 Ω	C _L = 15 pF	UNITS	
		Min Max	Min Max		
f _{max}	Maximum Count Frequency CP ₀ Input	32	32	MHz	Figs. 3-1; 3-9
f _{max}	Maximum Count Frequency CP ₁ Input	16	16	MHz	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₀ to Q ₀	16 18	16 18	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₀ to Q ₃	70 70	70 70	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₁ to Q ₁	16 21	16 21	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP 1 to Q ₂	32 35	32 35	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₁ to Q ₃	51 51	51 51	ns	Figs. 3-1, 3-9
tpHL	Propagation Delay MR to Q _n	40	40	ns	Figs, 3-1, 3-17

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
	TAILAINET EIT	Min	Max	Min	Max	00	
t _w (H)	CP₀ Pulse Width HIGH	15		15		ns	Fig. 3-9
tw (H)	CP ₁ Pulse Width HIGH	30		30		ns	Fig. 3-9
tw (H)	MR Pulse Width HIGH	15		15		ns	Fig. 3-17
trec	Recovery Time, MR to CP	25		25		ns	Fig. 3-17