
INTEGRATED CIRCUITS

Product specification Supersedes data of February 1996 IC24 Data Handbook 1997 Mar 18

74LVC574

FEATURES

- Wide supply voltage range of 1.2V to 3.6V
- In accordance with JEDEC standard no. 8-1A
- Inputs accept voltages up to 5.5V
- CMOS low power consumption
- Direct interface with TTL levels
- 8-bit positive edge-triggered register
- Independent register and 3-State buffer operation
- Output drive capability 50Ω transmission lines @ 85°C

DESCRIPTION

The 74LVC574 is a high-performance low-power, low-voltage Si-gate CMOS device and superior to most advanced CMOS compatible TTL families. Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of these devices as translators in a mixed 3.3V/5V environment.

The 74LV574 is an octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-State outputs for bus oriented applications. A clock (CP) and an output enable (OE) input are common to all flip-flops.

The eight flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition.

When OE is LOW, the contents of the eight flip-flops is available at the outputs. When OE is HIGH, the outputs go to the high impedance OFF-state. Operation of the OE input does not affect the state of the flip-flops. The '574' is functionally identical to the '374' but the '374' has a different pin arrangement.

QUICK REFERENCE DATA

GND = 0V: $T_{amb} = 25^{\circ}C$: $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay CP to Qn	$\begin{array}{l} C_{L}=50 p F \\ V_{CC}=3.3 V \end{array}$	4.8	ns
f _{max}	Maximum clock frequency	$C_{L} = 50 pF$ $V_{CC} = 3.3 V$	150	MHz
Cl	Input capacitance		5.0	pF
C _{PD}	Power dissipation capacitance per flip-flop	Notes 1 and 2	28	pF

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; C_L = output load capacity in pF; f_0 = output frequency in MHz; V_{CC} = supply voltage in V; $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$

2. The condition is $V_1 = GND$ to V_{CC}

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
20-Pin Plastic SO	-40°C to +85°C	74LVC574 D	74LVC574 D	SOT163-1
20-Pin Plastic SSOP Type II	-40°C to +85°C	74LVC574 DB	74LVC574 DB	SOT339-1
20-Pin Plastic TSSOP Type I	–40°C to +85°C	74LVC574 PW	74LVC574PW DH	SOT360-1

PIN DESCRIPTION

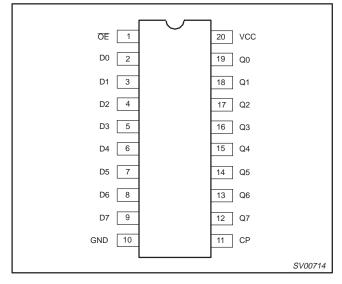
PIN NUMBER	SYMBOL	FUNCTION
1	ŌE	Output enabled input (active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0–D7	Data inputs
19, 18, 17, 16, 15, 14, 13, 12	Q0–Q7	3-State flip-flop outputs
10	GND	Ground (0V)
11	СР	Clock input (LOW-to-HIGH, edge-triggered)
20	VCC	Positive supply voltage

FUNCTION TABLE

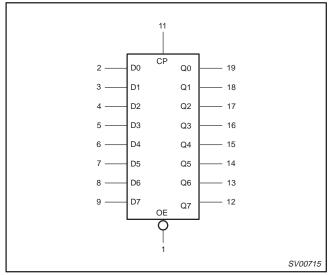
OPERATING	INPUTS			INTERNAL	OUTPUTS	
MODES	OE	СР	Dn	FLIP-FLOPS	Q0 to Q7	
Load and read register	L L	$\stackrel{\uparrow}{\uparrow}$	l h	L H	L H	
Load register and disable outputs	H H	$\stackrel{\uparrow}{\uparrow}$	l h	L H	Z Z	

H = HIGH voltage level

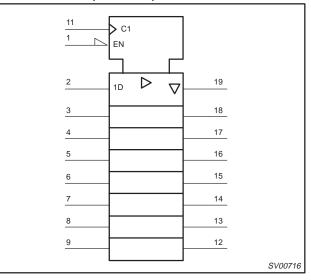
HIGH voltage level one set-up time prior to the LOW-to-HIGH h = CP transition

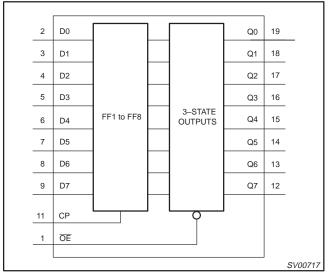

LOW voltage level 1

LOW voltage level one set-up time prior to the LOW-to-HIGH 1 = CP transition

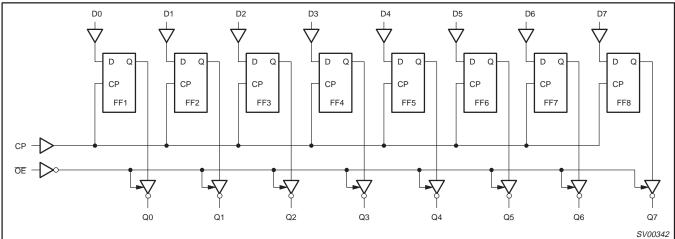

= High impedance OFF-state Z ↑

= LOW-to-HIGH clock transition


74LVC574


LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)



FUNCTIONAL DIAGRAM

74LVC574

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT	
STMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{CC}	DC supply voltage (for max. speed performance)		2.7	3.6	V
V _{CC}	DC supply voltage (for low-voltage applications)		1.2	3.6	V
VI	DC input voltage range		0	5.5	V
V _{I/O}	DC input voltage range for I/Os		0	V _{CC}	V
Vo	DC output voltage range		0	V _{CC}	V
T _{amb}	Operating free-air temperature range		-40	+85	°C
t _r , t _f	Input rise and fall times	V _{CC} = 1.2 to 2.7V V _{CC} = 2.7 to 3.6V	0 0	20 10	ns/V

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +6.5	V
I _{IK}	DC input diode current	V ₁ < 0	-50	mA
VI	DC input voltage	Note 2	-0.5 to +5.5	V
V _{I/O}	DC input voltage range for I/Os		–0.5 to V _{CC} +0.5	V
I _{OK}	DC output diode current	$V_{O} > V_{CC} \text{ or } V_{O} < 0$	± 50	mA
V _{OUT}	DC output voltage	Note 2	–0.5 to V _{CC} +0.5	V
I _{OUT}	DC output source or sink current	$V_{O} = 0$ to V_{CC}	± 50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA
T _{stg}	Storage temperature range		-60 to +150	°C
P _{TOT}	Power dissipation per package – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	500 500	mW

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74LVC574

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V).

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITION	NS	Temp = -				
				MIN	TYP ¹	MAX		
M		V _{CC} = 1.2V		V _{CC}			v	
VIH	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V		2.0] `	
M		V _{CC} = 1.2V				GND	v	
VIL	LOW level Input voltage	V _{CC} = 2.7 to 3.6V				0.8	1 ×	
		V_{CC} = 2.7V; V_{I} = V_{IH} or V_{IL} ; I_{O} =	-12mA	$V_{CC} - 0.5$				
M	HIGH level output voltage	V_{CC} = 3.0V; V_{I} = V_{IH} or V_{IL} ; I_{O} =	V _{CC} -0.2	V _{CC}		- v		
V _{OH}		V_{CC} = 3.0V; V_{I} = V_{IH} or V_{IL} ; I_{O} =	V _{CC} -0.6					
		V_{CC} = 3.0V; V_{I} = V_{IH} or V_{IL} ; I_{O} =	V _{CC} -1.0					
		V_{CC} = 2.7V; V_{I} = V_{IH} or V_{IL} ; I_{O} =	: 12mA			0.40		
V _{OL}	LOW level output voltage	$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 100\mu A$			0	0.20	v	
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 24mA$				0.55	1	
t _i	Input leakage current	V_{CC} = 3.6V; V_{I} = 5.5V or GND	Not for I/O pins		±0.1	±5	μΑ	
I _{IHZ} /I _{ILZ}	Input current for common I/O pins	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or } GND$			±0.1	±15	μΑ	
I _{OZ}	3-State output OFF-state current	V_{CC} = 3.6V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND			0.1	±10	μA	
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or GND}; I_O = 0$			0.1	20	μA	
ΔI_{CC}	Additional quiescent supply current per input pin	V_{CC} = 2.7V to 3.6V; V_{I} = V_{CC} –0	0.6V; I _O = 0		5	500	μA	

NOTE:

1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

AC CHARACTERISTICS

GND = 0 V; $t_r = t_f \le 2.5 \text{ ns}; C_L = 50 \text{ pF}$

			LIMITS						
SYMBOL	PARAMETER	WAVEFORM	VEFORM V _{CC} = 3.3V ±0.3V			V _{CC} =	= 2.7V	V _{CC} = 1.2V	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	TYP	
t _{PHL} /t _{PLH}	Propagation delay CP to Qn	Figures 1, 4	1.5	4.8	8.5	1.5	9.5	21	ns
t _{PZH} /t _{PZL}	3-State output enable time $\overline{\text{OE}}$ to Qn	Figures 2, 4	1.5	4.0	7.5	1.5	8.0	17	ns
t _{PHZ} /t _{PLZ}	3-State output disable time OE to Qn	Figures 2, 4	1.5	3.5	6.0	1.5	6.5	8.0	ns
t _W	Clock pulse width HIGH or LOW	Figure 1	-	3.0	-	-	-	-	ns
t _{su}	Set-up time Dn to CP	Figure 3	1.0	0.3	-	1.0	-	-	ns
t _h	Hold time Dn to CP	Figure 3	1.0	-0.2	-	1.0	-	-	ns
f _{max}	Maximum clock pulse frequency	Figure 1	75	150	_	-	_	-	MHz

NOTE:

1. These typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

74LVC574

AC WAVEFORMS

 $V_M = 1.5V$ at $V_{CC} \ge 2.7V$ $V_M = 0.5V * V_{CC}$ at $V_{CC} < 2.7V$ V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

 $\begin{array}{l} \mathsf{V}_X = \mathsf{V}_{OL} + 0.3 \mathsf{V} \text{ at } \mathsf{V}_{CC} \geq 2.7 \mathsf{V}; \ \mathsf{V}_X = \mathsf{V}_{OL} + 0.1 \mathsf{V}_{CC} \text{ at } \mathsf{V}_{CC} < 2.7 \mathsf{V} \\ \mathsf{V}_Y = \mathsf{V}_{OH} - 0.3 \mathsf{V} \text{ at } \mathsf{V}_{CC} \geq 2.7 \mathsf{V}; \ \mathsf{V}_Y = \mathsf{V}_{OH} - 0.1 \mathsf{V}_{CC} \text{ at } \mathsf{V}_{CC} < 2.7 \mathsf{V} \\ \end{array}$

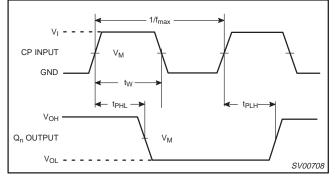


Figure 1. Clock (CP) to output (Qn) propagation delays, the clock pulse (CP), and the maximum clock pulse frequency

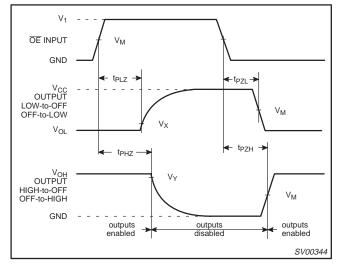


Figure 2. 3-State enable and disable times

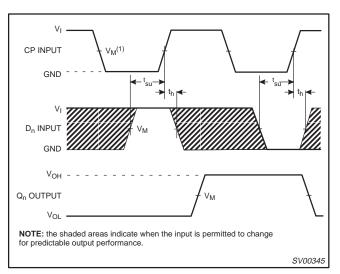


Figure 3. Data set-up and hold times for the Dn input to the CP input

TEST CIRCUIT

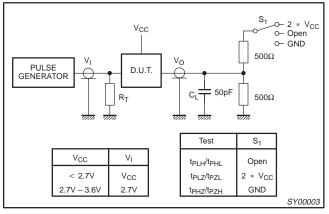
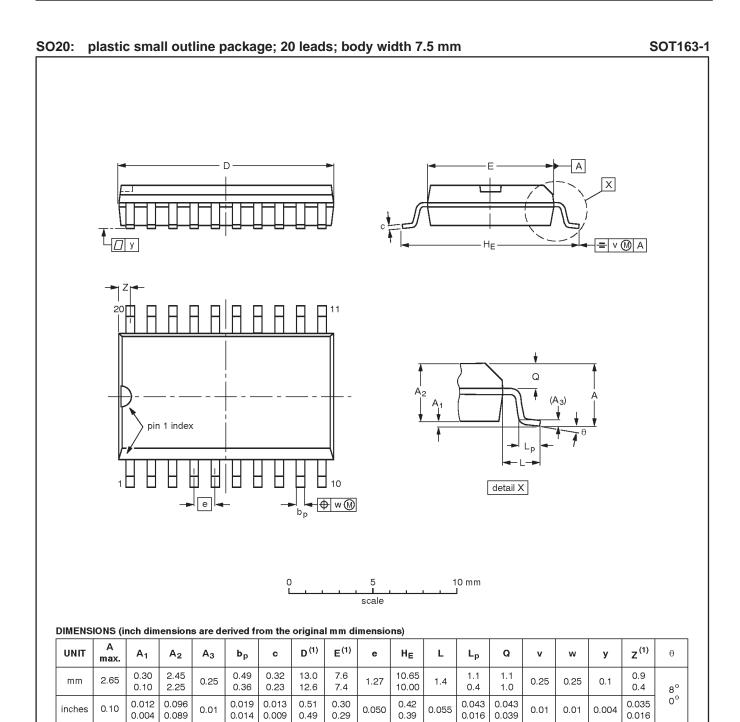
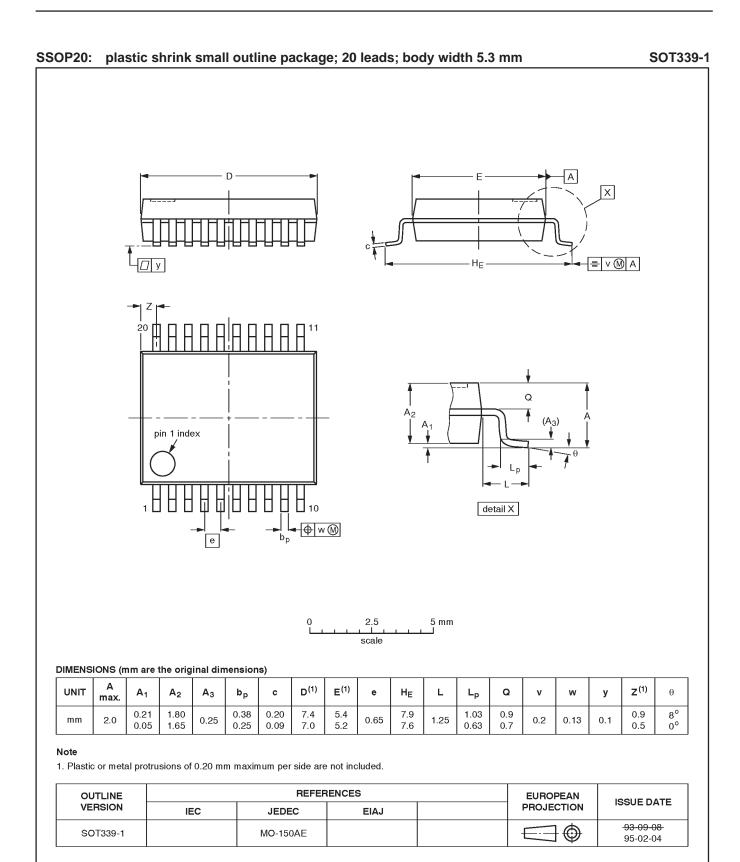
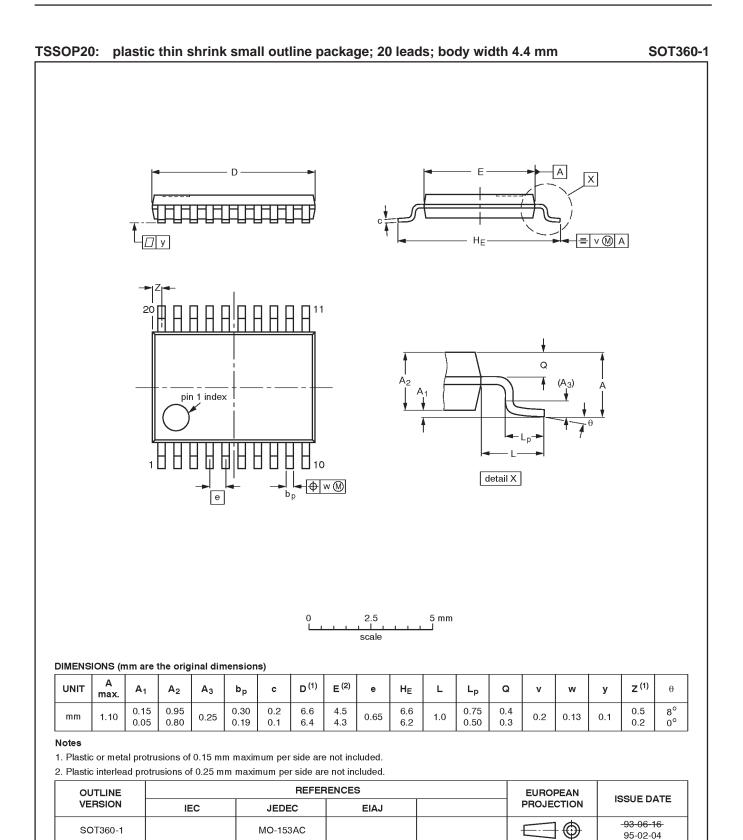



Figure 4. Load circuitry for switching times

74LVC574



Note


1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013AC				-92-11-17 95-01-24

74LVC574

74LVC574

74LVC574

DEFINITIONS				
Data Sheet Identification	Product Status	Definition		
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.		
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.		
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.		

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

Let's make things better.

