IINCH-POUND |

MIL-M-38510/341E 28 April 1989 SUPERSEDING MIL-M-38510/341D 16 June 1986

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, ADVANCED SCHOTTKY TTL, FLIP-FLOPS, CASCADABLE, MONOLITHIC SILICON

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

1.1 <u>Scope</u>. This specification covers the detail requirements for monolithic silicon, Advanced Schottky TTL, flip flop microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided and are reflected in the complete part number.

1.2 <u>Part or identifying number (PIN)</u>. The PIN shall be in accordance with MIL-M-38510, and as specified herein.

1.2.1 Device types. The device types shall be as follows:

Device type	Circuit
01	Dual D-type positive edge-triggered flip-flop
02	Dual JK positive edge-triggered flip-flop
03	Dual JK negative edge-triggered flip-flop
04	Quad D-type positive edge-triggered flip-flop
05	Octal D-type positive edge-triggered flip-flop with three-state outputs
06	Octal D-type positive edge-triggered flip-flop with three-state inverted outputs
07	Hex D-type positive edge-triggered flip-flop
08	Parallel D-type positive edge-triggered register (with enable)
09	Quad parallel positive edge-triggered register (with enable)
10	Octal D-type positive edge-triggered flip-flop with three-state outputs
11	Octal D-type positive edge-triggered flip-flop with three-state inverted outputs

1.2.2 Device class. The device class shall be the product assurance level as defined in MIL-M-38510.

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Rome Air Development Center (RBE-2), Griffiss AFB, NY 13441-5700, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A <u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is <u>unlimited</u>.

1

.

1/ Must withstand the added P_D due to short circuit test; e.g., I_{OS}.
2/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883.

Width of clock pulse low:	
Device type O1	6.0 ns minimum
Device type O2	5.0 ns minimum
Device type 03	5.0 ns minimum
Device type 04	6.0 ns minimum
Device type 05	8.0 ns minimum
Device type 06	6.0 ns minimum
Device type 07	7.5 ns minimum
Device type 08	5.0 ns minimum
Device type 09	5.0 ns minimum
Device types 10, 11	5.0 ns minimum
Width of cot pulso.	J.O AS MINIMUM
Device type 01	A O na minimum
Device type 02	4.0 ns minimum
Device type 02	4.0 ns minimum
	5.0 ns minimum
Width of clear pulse:	
Device type 01	4.0 ns minimum
Device type 02	4.0 ns minimum
Device type 03	5.0 ns minimum
Width of master reset pulse: Device type 04	
Device type 04	5.0 ns minimum
Device type 07	6.5 ns minimum
Setup time J, K, or D high to clock pulse:	
Device type 01	3.0 ns minimum
Device type 02	3.0 ns minimum
Device type U3	5.0 ns minimum
Device type 04	3.0 ns minimum
Device type 05	2.5 ns minimum
Device type 06	2.0 ns minimum
Device type 07	
	5.0 ns minimum
	4.0 ns minimum
Device type 09	3.0 ns minimum
Device type 10	3.0 ns minimum
Device type 11	2.5 ns minimum
Setup time J, K, or D low to clock pulse:	
Device type O1	4.0 ns minimum
Device type 02	3.0 ns minimum
Device type 03	2.5 ns minimum
Device type 04	4.0 ns minimum
Device type 05	2.0 ns minimum
Device type O6	2.5 ns minimum
Device type 07	5.0 ns minimum
Device type 08	4.0 ns minimum
Device type 09	3.0 ns minimum
Device type 10	
Device type 11	2.5 ns minimum
Hold time I = K = E = E = E = E = E = E = E = E = E	3.0 ns minimum
Hold time J, K, or D high to clock pulse:	
Device type 01	2.0 ns minimum
	1.0 ns minimum
Device type 03	2.5 ns minimum
Device type 04	1.0 ns minimum
Device types 05, 06, 07	2.0 ns minimum
Device type 08	2.0 ns minimum
Device type 09	1.0 ns minimum
Device types 10, 11	2.0 ns minimum

Hold time	e J, K, or	D 1	ow t	0	c 1	oc	k	рu	il s	e :					
Device	type 01-			-	-	-	-	-	-	-		-	2.0 r	15	minimum
	type 02-													15	minimum
	type O3-													1 S	minimum
	type 04-														minimum
Device	types 05,	06		-	-	-	-	-	-	-	-	-	2.5 r	I S	minimum
Device	types 07,	08		-	-	-	-	-	-	-	-	-	2.0 r		minimum
Device	type 09-			-	-	-	-	-	+	-	-	-	1.0 r	15	minimum
Device	types 10,	11		-	-	-	-	-	-	-	-	-	2.0 r	IS.	minimum
Recovery	time SD,	CD,	or P	R	to) C	Ρ:	:							
Device	type 01-			-	-	-	-	-	-	-	-	-	3.0 r	15	minimum
Device	type 02-			-	-	-	-	-	-	-	-	-	2.0 r	۱S	minimum
Device	type 03-			-	-	-	-	-	-	-	-	-	5.0 r	I S	minimum
Device	type 04-			-	-	-	-	-	-	-	-	-	6.0 r	۱S	minimum
Device	type 07-			-	-	-	-	-	-	-	-	-	6.0 r	I S	minimum
	ock freque														
Device	type 01-			-	-	-	-	-	-	-	-	-	0-80	Mł	1z
Device	types 02,	07		-	-	-	-	-	-	-	-	-	0-70	MI	1z
Device	type O3-				-	-	-	-	-	-	-	-	0-90	Mł	١z
	type 04-												0-80		
	types 05,														
	type 08-														
Device	type 09-			-	-	-	-	-	-	-	-	-	0 - 90	M	+ z
Device	types 10,	11		-	-	-	-	-	-	-	-	-	0-60	MI	Ηz

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation (see 6.2).

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

(Unless otherwise indicated, copies of federal and military specifications, standards, and handbooks are available from the Naval Publications and Forms Center, (ATTN: NPODS), 5801 Tabor Avenue, Philadelphia, PA 19120-5099.)

2.2 Order of precedence. In the event of a conflict between the text of this document and the references cited herein (except for related associated detail specifications, specification sheets, or MS standards), the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Detail specification</u>. The individual item requirements shall be in accordance with MIL-M-38510, and as specified herein.

3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.

3.2.1 <u>Terminal connections and logic diagrams</u>. The terminal connections and logic diagrams shall be as specified on figures 1 and 2, respectively.

3.2.2 Truth tables. The truth tables shall be as specified on figure 3.

3.2.3 <u>Schematic circuits</u>. The schematic circuits shall be submitted to the preparing activity prior to inclusion of a manufacturer's device in this specification and shall be submitted to the qualifying activity and agent activity (DESC-ECS) as a prerequisite for qualification. All qualified manufacturers' schematics shall be maintained by the agent activity and will be available upon request.

3.2.4 Case outlines. The case outlines shall be as specified in 1.2.3.

3.3 Lead material and finish. The lead material and finish shall be in accordance with MIL-M-38510 (see 6.4).

3.4 <u>Electrical performance characteristics</u>. The electrical performance characteristics are specified in table I, and apply over the full case operating temperature range, unless otherwise specified.

3.5 <u>Electrical test requirements</u>. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.6 Marking. Marking shall be in accordance with MIL-M-38510.

3.7 <u>Microcircuit group assignment</u>. The devices covered by this specification shall be in microcircuit group number 10 (see MIL-M-38510, appendix E).

4. QUALITY ASSURANCE PROVISIONS

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-M-38510 and methods 5005 and 5007 of MIL-STD-883, as applicable, except as modified herein.

4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition D, E, or F using the circuit shown on figure 4, or equivalent.
 - (2) $T_A = +125^{\circ}C$ minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. The percent defective allowable (PDA) shall be as specified in MIL-M-38510.

٦.

Tost	Symbol	Conditions	Device		mits_	llinda
Test			type 	Min	Max	Unit
High level output voltage	V ОН	$V_{CC} = 4.5 V, I_{OH} = -1.0 mA,$ $V_{IL} = 0.8 V, V_{IH} = 2.0 V$	A]]	2.5		i v
Low level output voltage	VOL	$V_{CC} = 4.5 V$, $I_{OL} = 20 mA$, $V_{IL} = 0.8 V$, $V_{IH} = 2.0 V$	11A	 	0.5	V
Input clamp voltage	VIC	 V _{CC} = 4.5 V, I _{IN} = -18 mA T _C = +25°C 	A11		-1.2	V V
High level input current	I I H1	$V_{CC} = 5.5 V, V_{IN} = 2.7 V$	A11		20	μA
· ·	I IH2	$V_{CC} = 5.5 V, V_{IN} = 7.0 V$	 A11 	1	 100 	μA
Low level input current	I IL1	$V_{CC} = 5.5 V, V_{IL} = 0.5 V$	A11	-0.3	-0.6	mA
	IIL2		01,02, 103	1-0.9	-3.0	mA
	IIL3		03	12	1-3.0	mA
	IIL4		07	05	-1.2	mA
Supply current	ICC	V _{CC} = 5.5 V, V _{IL} = 0.0 V	01 02 03 04 07,08, 09		16 17 19 34 45 45	mA mA mA mA mA
Supply current	ICCL	$V_{CC} = 5.5 V, V_{IL} = 0.0 V$	10,11		86	mA
	Iccz	$V_{CC} = 5.5 V, V_{IL} = 0.0 V$	05,06		86	mA
	ļ	····	10,11	<u> </u>	90	<u> </u>
Off-state output leakage current	IOZH	$V_{CC} = 5.5 V, V_{ZH} = 2.7 V$	05,06, 10,11		50	μA
	IOZL	$V_{CC} = 5.5 V, V_{ZL} = 0.5 V$	05,06		 -50 	Ι μΑ
Short circuit output current	I _{OS}	$V_{CC} = 5.5 V, V_{OUT} = 0.0 V 1/$	I TA	-60 	-150 	mA

TABLE I. Electrical performance characteristics.

See footnote at end of table.

4

Teet	Cumb a 1	0	Device	Li	nits	[
Test	Symbol 	Conditions -55°C <u><</u> T _C <u><</u> +125°C	type 	 Min 	Max	Unit
Output drive	I _{OD}	$V_{CC} = 4.5 V, V_{IN} = 5.5 V,$ $V_{OUT} = 2.5 V$	01,02, 03,04, 07,08, 09	60		mA
	 		05,06	35	 	mA
Maximum toggle frequency	fmax		01 02,07 03 04 05,06 08 09 10,11	80 70 90 80 60 60 70 60		MHz MHz MHz MHz MHz MHz MHz MHz
Propagation delay time, low to high level		V _{CC} = 5.0 V, C _L = 50 pF ±10% See figure 5 /				
CP to Q output	tpLH1		01 02 03 04 05 07 08 09 10	1.0	8.5 9.0 9.5 8.5 10.5 11.0 9.5 8.5 9.5	ns ns ns ns ns ns ns ns
CP to Q output	tplH2		01 02 03,11 04 06		8.5 9.0 9.5 8.5 10.5	ns ns ns ns ns
SD, CD, to Q, Q output (CP high)	t _{PLH3}		01 02 03	•	8.0 9.0 9.0	ns ns ns
SD, CD, to Q, Q output (CP low)	t _{pl} h4 		01 02 03	3.2 3.2 2.0		ns ns ns
MR to Q output (CP high)	t _{PLH5}		04	4.0	10.0	ns

TABLE I.	Electrical performa	ance characteristics	- Continued.

See footnote at end of table.

MIL-M-38510/341E

٣

T	 Cumb = 1	0	Device		nits	
Test	Symbo1 		type	Min	 Max 	Unit
MR to Q output (CP low)	tplh6	 V _{CC} = 5.0 V, C _L = 50 pF ±10% See figure 5	04	4.0	10.0	ns
Propagation delay time, high to low level				 	 	
CP to Q output	tphl1		01 02 03 04 05 07 08 09 10	3.8 2.5 3.5 3.0 1.0 2.5 2.5	10.5 10.5 9.5 10.5 11.5 11.5 13.0 10.5 10.5 10.5	ns ns ns ns ns ns ns ns ns ns
CP to Q output	 tp _{HL2} 	- 	01 02 03,11 04 06	3.8 3.8 2.5 3.5	10.5 10.5 9.5 10.5 11.0	ns ns ns ns ns ns
SD, CD, to Q, Q output (CP high)	tphl3		01 02 03		11.5 11.5 9.5	ns ns ns
SD, CD, to Q, Q output (CP low)	tphL4		01 02 03	3.5	11.5 11.5 9.5	ns ns ns
MR to Q output (CP high)	t _{PHL5}		04 07		15.0	ns ns
MR to Q output (CP low)	t tPHL6		04	4.5	15.0	ns ns
Propagation delay time, low level to off-state					 	
DE to Q output	tpLZ1		05 10	1.5	7.5	ns ns

TABLE I. Electrical performance characteristics - Continued.

See footnote at end of table.

Teet	Cumber 1		Device	Li	T	
Test Symbo	Symbol 	Conditions -55°C <u><</u> T _C <u><</u> +125°C	type 	 Min 	Max	Unit
OE to Q output	t _{PLZ2}	V _{CC} = 5.0 V, C _L = pF ±10% See figure 5	06	1.5 1.5	7.5	
Propagation delay time, high level to off-state						
UE to Q output	t _{PHZ1}		05 10	1.5	8.0 7.0	
OE to Q output	t _{PHZ2}		06	1.5	8.0 7.0 	l ns l ns
Propagation delay time, off-state to low level					 	† 1 1 1
OE to Q output	tpzL1		05 10	2.0	10.0	ns ns
OE to Q output	tpzL2		06 11	2.0	10.0	ns ns
Propagation delay time, off-state to high level				• • • •	Ť 	†
OE to Q output	t _{PZH1}		05		14.0	ns ns
ΟΕ to Q output	t _{PZH2}		05,06 11		14.0	ns ns

TABLE I. <u>Electrical performance characteristics</u> - Continued.

1/ Not more than one output should be shorted at a time.

MIL-STD-883	Subgroups (s	ee table III)
test requirements	Class S devices	Class B devices
Interim electrical parameters (method 5004)	1	1
Final electrical test parameters (method 5004)	1*,2,3,7, 9,10,11	1*,2,3,7,9
Group A test requirements (method 5005)	1,2,3,7,8, 9,10,11	1,2,3,7, 8,9,10,11
Group B test requirements (method 5005) subgroup 5	1,2,3, 9,10,11	N/A
Group C end-point electrical parameters (method 5005)	N/A	1,2,3
Group D end-point electrical parameters (method 5005)	1,2,3	1,2,3

TABLE II. Electrical test requirements.

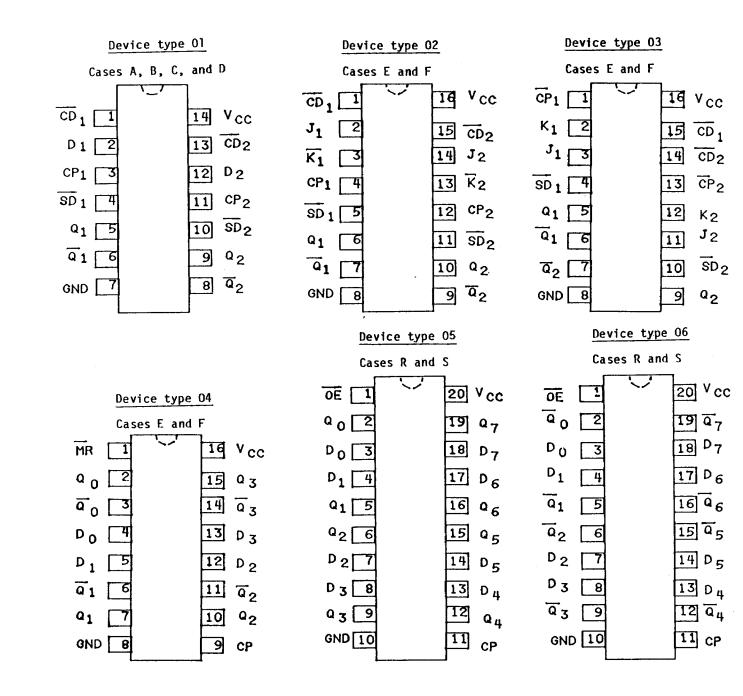
*PDA applies to subgroup 1 (see 4.2c).

4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-M-38510. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4 Quality conformance inspection. Quality conformance inspection shall be in accordance with MIL-M-38510. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection. Group A inspection shall be in accordance with table I of method 5005 of MIL-STD-883 and as follows:

a. Tests shall be as specified in table II herein.


b. Subgroups 4, 5, and 6 shall be omitted.

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of method 5005 of MIL-STD-883. Electrical parameters shall be as specified in table II herein.

4.4.3 Group C inspection. Group C inspection shall be in accordance with table III of method 5005 of MIL-STD-883 and as follows:

 End-point electrical parameters shall be as specified in table II herein.

Text continues on page 97

FIGURE 1. Terminal connections (top view)

11

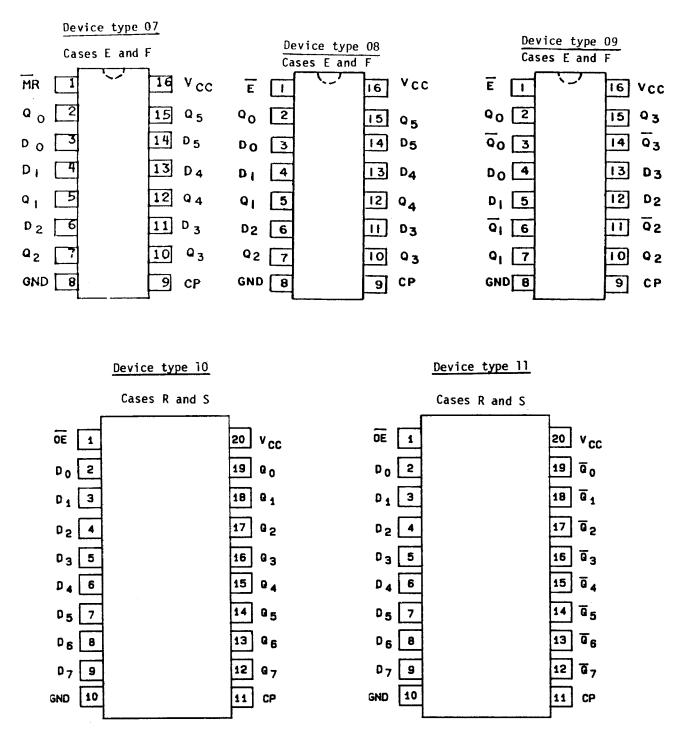


FIGURE 1. Terminal connections (top view) - Continued.

Device type 01

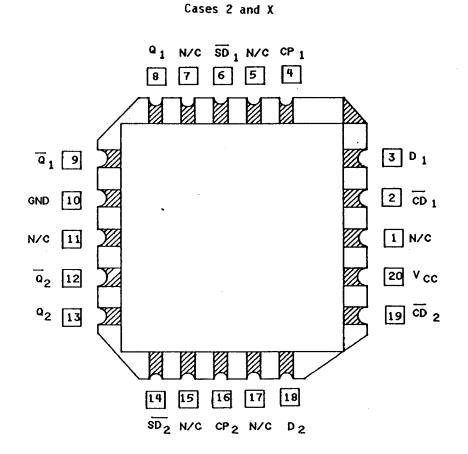
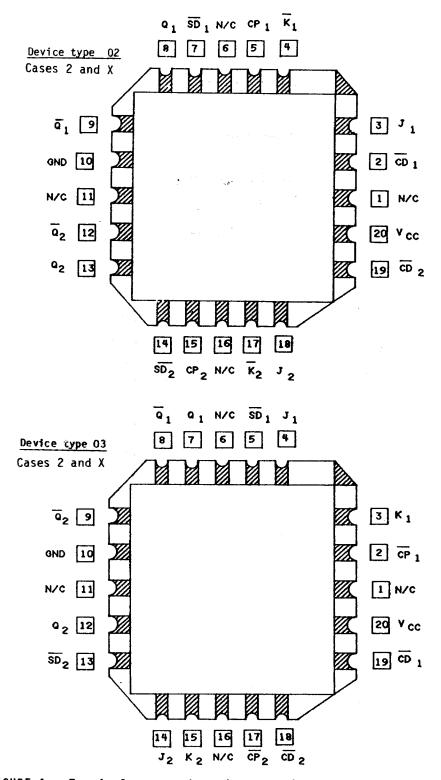
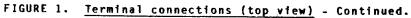




FIGURE 1. Terminal connections (top view) - Continued.

13

14

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer ,

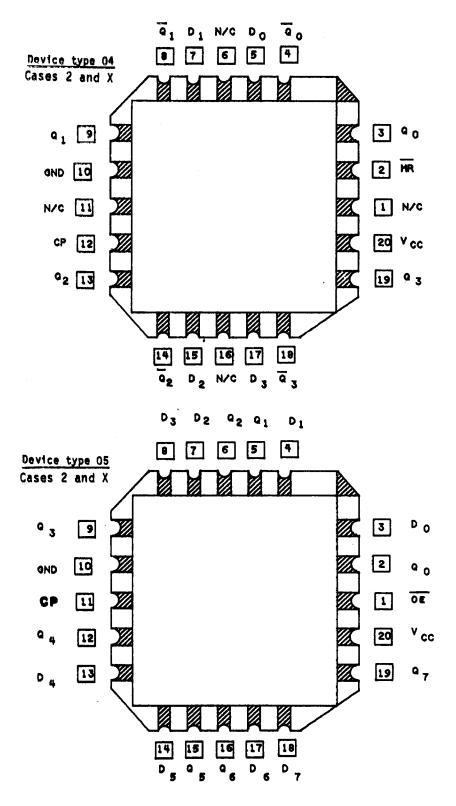
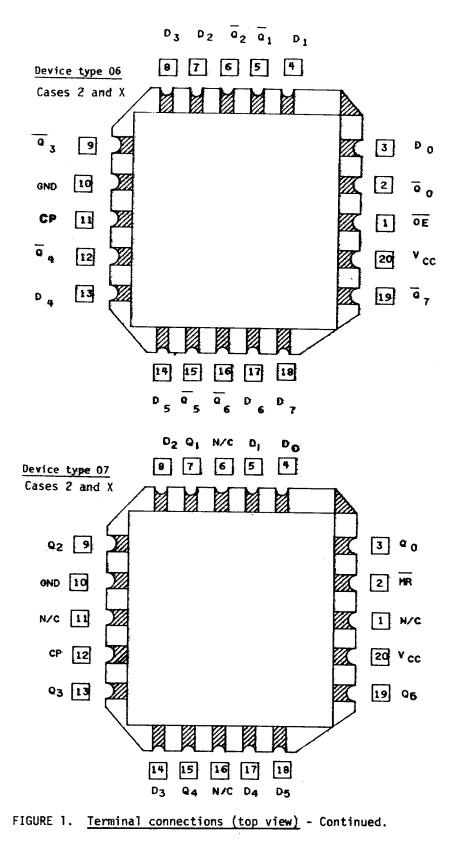



FIGURE 1. Terminal connections (top view) - Continued.

15

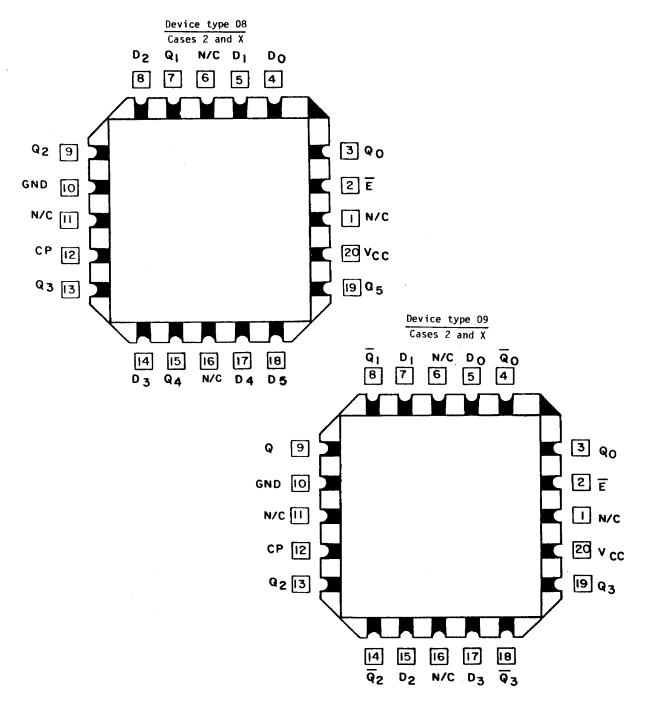


FIGURE 1. Terminal connections (top view) - Continued.

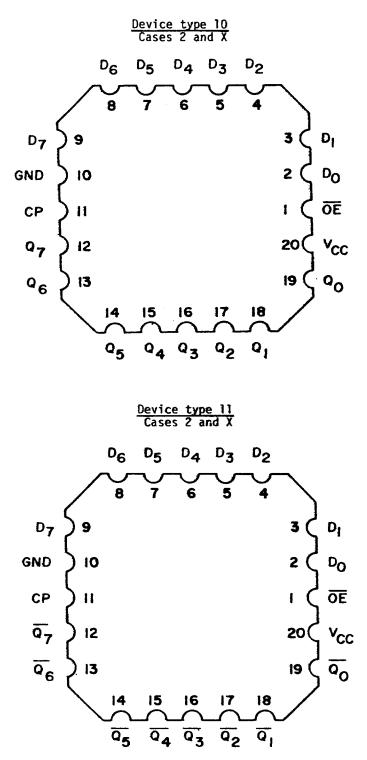
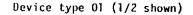
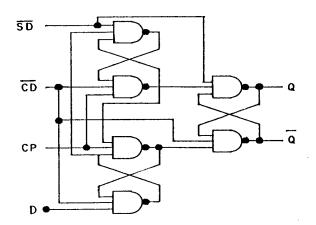
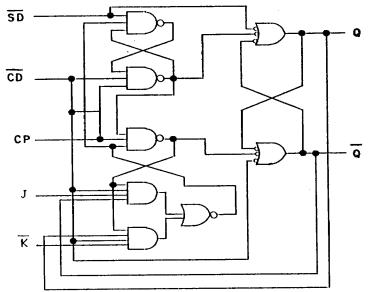





FIGURE 1. Terminal connections (top view) - Continued.

Device type 02 (1/2 shown)

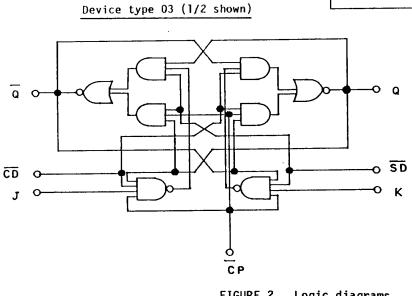
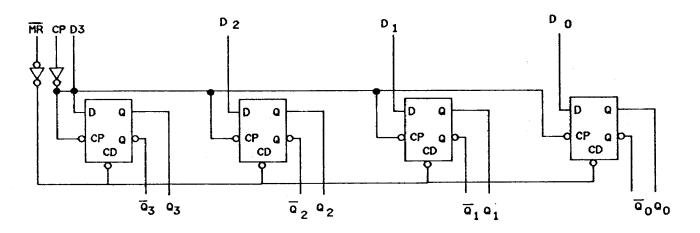
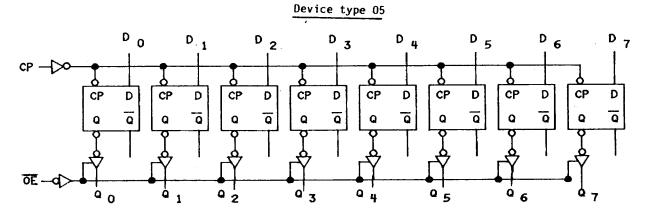




FIGURE 2. Logic diagrams.

19

Device type 04

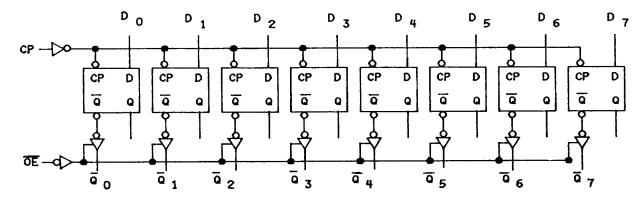


FIGURE 2. Logic diagrams - Continued.

20

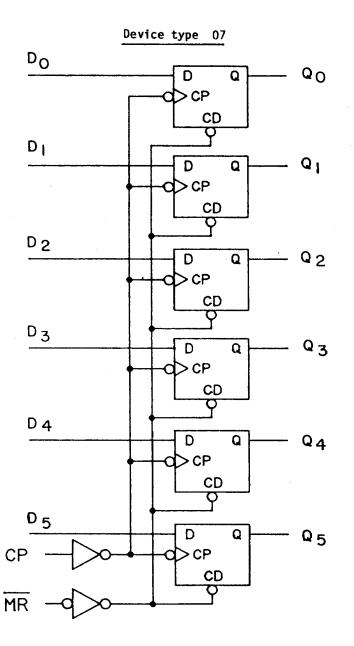
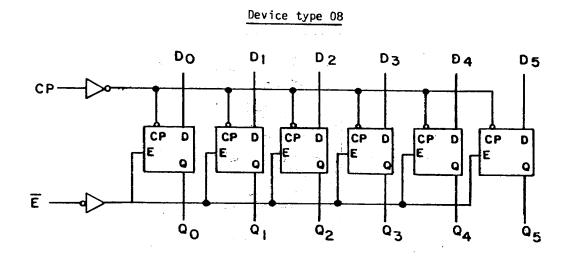



FIGURE 2. Logic diagrams - Continued.

Device type 09

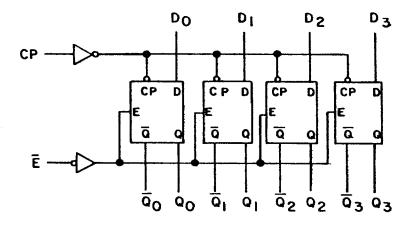
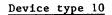
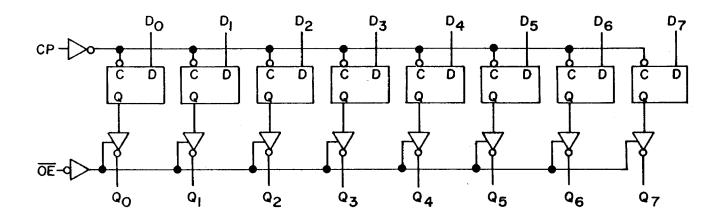




FIGURE 2. Logic diagrams - Continued.

ъ.

Device type 11

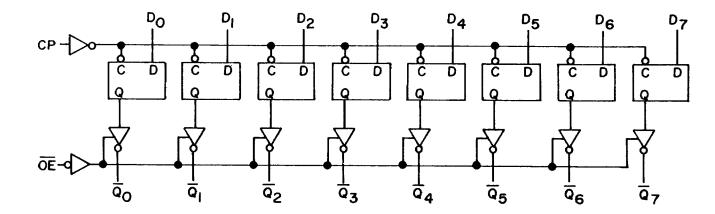


FIGURE 2. Logic diagrams - Continued.

MIL-M-38510/341E

Device type 01

Device type 02

In

0

J

L L H H

Device type 03

Device type 04

Outputs Input @t_n @t_ +1 Q Q D L Н L Н L Н

put	Outputs				
tn	0 t _n +1				
ĸ	Q				
H L H L	No change L H H L Toggles				

_		
In	put	Outputs
6	t _n	@t _n +1
J	К	Q
L L H H	L H L H	Qn L H Un
	e J L L	и ЈК Ц Ц Ц Н Н Ц

Inputs	Outputs		
@t _n 1 MR = H	e t	n +1	
Dn	Qn	Qn	
L	L	H	
н	н	L	

 t_n = Bit time before clock pulse $t_n + 1 = Bit time after clock pulse$ H = High voltage level

L = Low voltage level

Device type 05

	Inputs	Outp	uts
Dn	CP	ÛE	Qn
H L X		L L H	H L Z

Device type 08

Inputs			Outputs
Ē	E CP Dn		Qn
н		х	No change
L		H	H
L		1	

H = High voltage level L = Low voltage level X = Immaterial

Dev	ice	type	06

	Inputs	Outp	uts
Dn	CP	ŌĒ	Ъ.
H L X	۲Ļ×	L L H	L H Z

H = High voltage level L = Low voltage level X = Immaterial

Z = High impedance + = Transition from low to high level

Q₀⁼ The level of Q before the indicated steadystate input conditions were established.

Device type 07

I	nput	s	Outputs
MR	СР	D	Q
L H H	X + L	X H L X	L H L Q _O

Device type 09

Inputs			Outputs		
E CP Dn			Qn	Qn	
H		X	NC	NC	
L		H	н	L	
L		L	L	H	

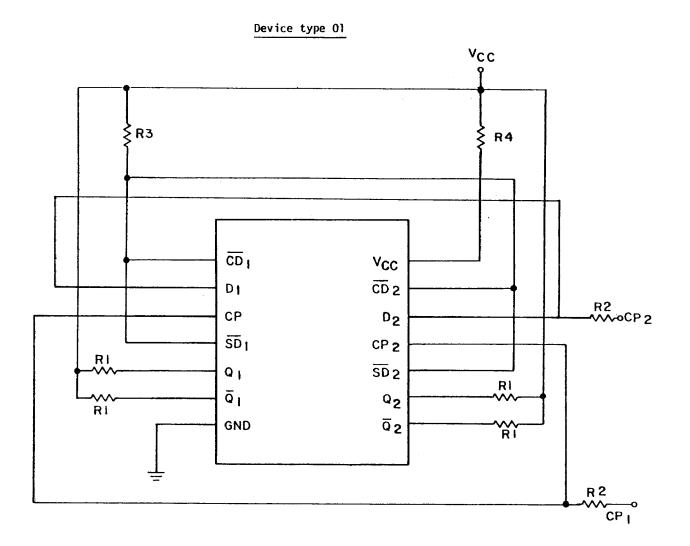
H = High voltage level X = Immaterial L = Low voltage level NC = No change

FIGURE 3. Truth tables.

24

Inputs		Outputs	Function	
10E	СР	D	Q	-
H H H H L L L	H H + + H H	L H L H L H L	Z Z Z Z L H NC NC	Hold Hold Load Data available Data available No change in data No change in data

Device type 10


Device type 11

	Inputs		Inputs Outp		Outputs	Function
UE	CP	D	Ţ			
H H H H L L L	H + + H H	L H L H L H L H	Z Z Z H L NC NC	Hold Hold Load Data available Data available No change in data No change in data		

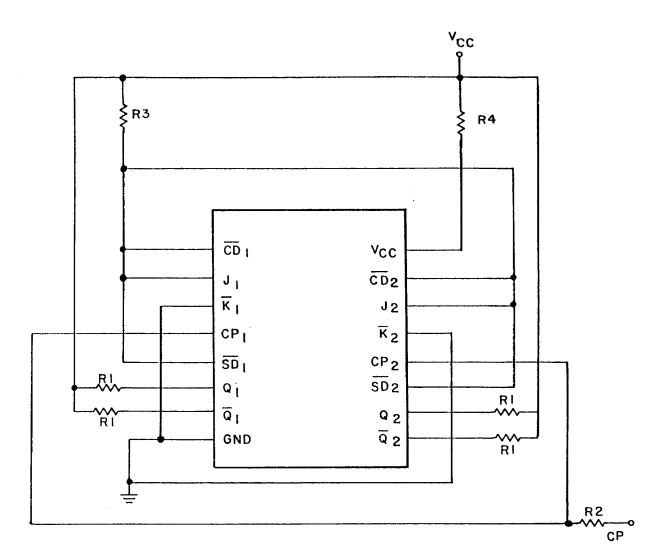
H = High voltage level L = Low voltage level Z = High impedance * = Transition from low to high level NC = No change

FIGURE 3. Truth tables - Continued.

٠

NOTES:

1. CP = 100 kHz $\pm 50\%$ square wave; duty cycle = 50 $\pm 15\%$ (CP₂ = 1/2 CP₁);

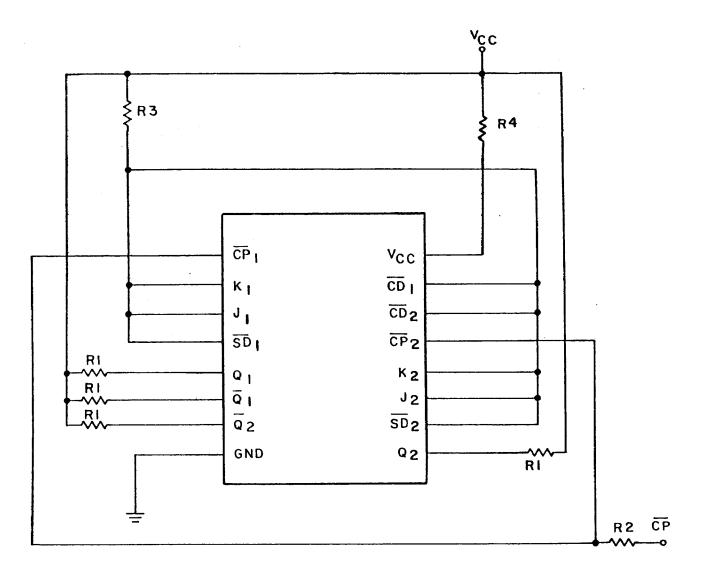

$$V_{II} = -0.5$$
 V minimum to 0.8 V maximum; $V_{III} = 2.0$ V minimum to 5.5 V maximum.

- $_{IL}$ = 20.5 V minimum to 0.8 V maximum; $_{IH}$ = 2.0 V minimum to 5.5 V maximum 2. R1 = 240 Ω maximum; R2 = 51 Ω ±5%; R3 = 1 k Ω maximum. 3. V_{CC} and R4 shall be chosen to insure 5.5 V minimum is present at device V_{CC} terminal.

FIGURE 4. Burn-in and life test circuit.

Device type 02

۴

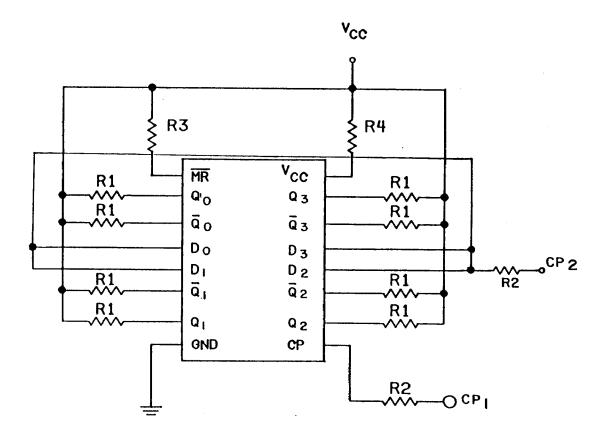

NOTES:

- 1. CP = 100 kHz $\pm 50\%$ square wave; duty cycle = 50 $\pm 15\%$; V_{IL} = -0.5 V minimum to 0.8 V maximum; V_{IH} = 2.0 V minimum to 5.5 V maximum. 2. RI = 240 Ω maximum; R2 = 51 Ω $\pm 5\%$; R3 = 1 k Ω maximum. 3. V_{CC} and R4 shall be chosen to insure 5.5 V minimum is present at device V_{CC} terminal.

FIGURE 4. Burn-in and life test circuit - Continued.

27

Device type 03

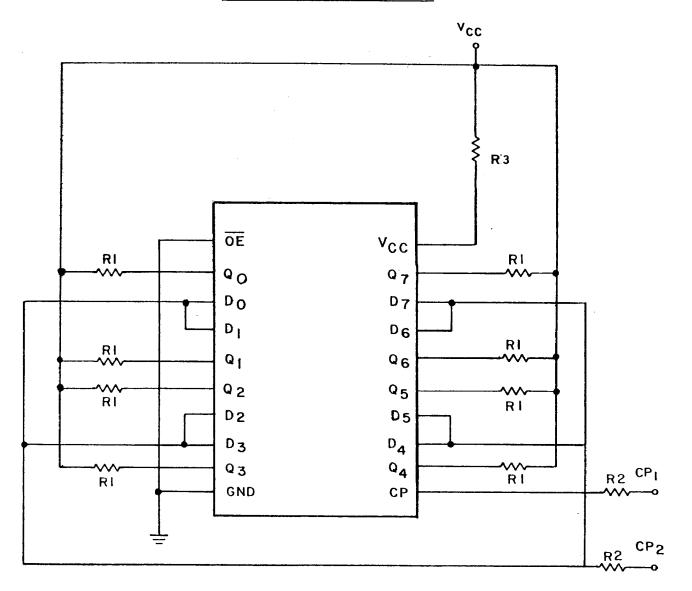


NOTES:

- 1. $CP_1 = 100 \text{ kHz } \pm 50\%$ square wave; duty cycle = 50 $\pm 15\%$; ($CP_2 = 1/2 CP_1$); $V_{IL} = -0.5$ V minimum to 0.8 V maximum; $V_{IH} = 2.0$ V minimum to 5.5 V maximum.
- 2. R1 = 240 Ω maximum; R2 = 51 Ω ±5%; R3 = 1 k Ω maximum. 3. V_{CC} and R4 shall be chosen to insure 5.5 V minimum is present at device V_{CC} terminal.

FIGURE 4. Burn-in and life test circuit - Continued.

Device types 04 and 09 (see note 4)

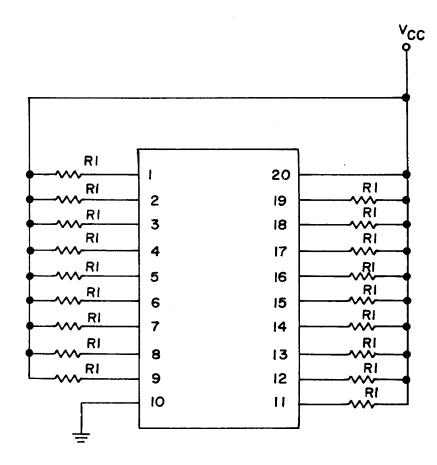


NOTES:

- 1. $CP_1 = 100 \text{ kHz } \pm 50\%$ square wave; duty cycle = 50 $\pm 15\%$ ($CP_2 = 1/2 CP_1$); $V_{IL} = -0.5$ V minimum to 0.8 V maximum; $V_{IH} = 2.0$ V minimum to 5.5 V maximum.
- 2. $R1 = 240\Omega$ maximum; $R2 = 51\Omega \pm 5\%$; $R3 = 1 k\Omega$ maximum. 3. V_{CC} and R4 shall be chosen to insure 5.5 V minimum is present at device V_{CC} terminal.
- 4. For device type 09, pin 1 $\overline{MR} = \overline{E} = \text{ground}$.

FIGURE 4. Burn-in and life test circuit - Continued.

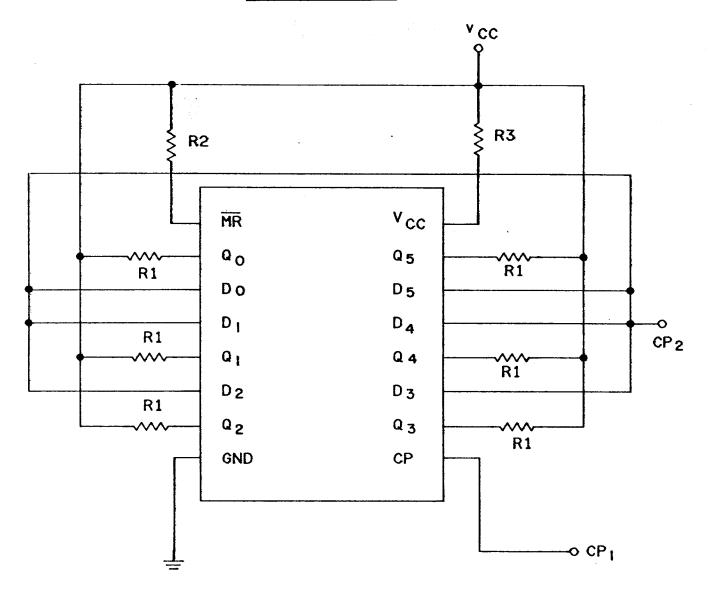
Device types 05, 06, 10, and 11



NOTES:

- 1. $CP_1 = 100 \text{ kHz} \pm 50\%$ square wave; duty cycle = 50 $\pm 15\%$; ($CP_2 = 1/2 CP_1$); $V_{IL} = -0.5 \text{ V}$ minimum to 0.8 V maximum; $V_{IH} = 2.0 \text{ V}$ minimum to 5.5 V māximum.
- $R1 = 240\Omega$ maximum; $R2 = 51\Omega \pm 5\%$. 2.
- 3. VCC and R3 shall be chosen to insure 5.5 V minimum is present at device V_{CC} terminal. 4. For device types 6 and 11, outputs Q_0 through Q_7 are inverted
- (i.e., $\overline{Q}_0 \overline{Q}_7$).

FIGURE 4. Burn-in and life test circuit - Continued.

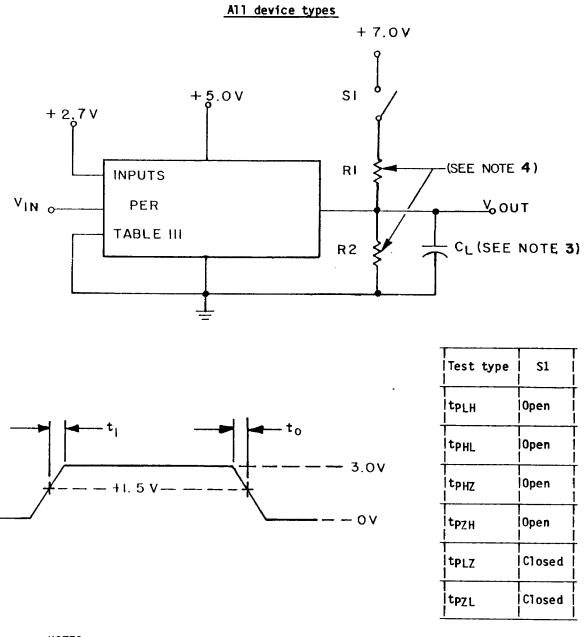

Device types 05 and 06 temperature-accelerated test ¥

NOTES: 1. $V_{CC} = 5.5 V.$ 2. $R1 = 2 k\Omega.$ 3. $+175^{\circ}C \leq T_{C} \leq +250^{\circ}C.$

FIGURE 4. Burn-in and life test circuit - Continued.

Device types 07 and 08 (see note 4)

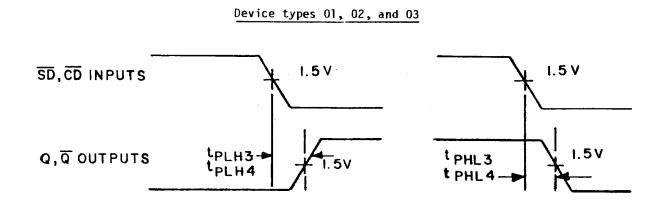
NOTES:

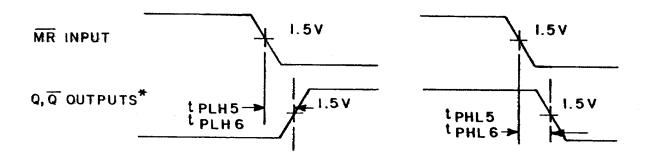

- 1. CP_1 100 kHz ±50% square wave; duty cycle = 50 ±15%; (CP_2 = 1/2 CP_1);
- $V_{IL} = -0.5$ V minimum to 0.8 V maximum; $V_{IH} = 2.0$ V minimum to 5.5 V maximum.

2.

- $R1 = 240\Omega$ maximum; $R2 = 1 k\Omega$ maximum. V_{CC} and R3 shall be chosen to insure 5.5 V minimum is present at device 3. V_{CC} terminal.
- 4. For device type 08, pin 1 $\overline{MR} = \overline{E} = \text{ground}$.

FIGURE 4. Burn-in and life test circuit - Continued.


¥


NOTES:

- V_{IN} = input pulse and has the following characteristics: PRR \leq 1 MHz, t_1 = $t_0 \leq$ 2.5 ns. Inputs not under test are at ground. 1.
- 2.
- C_{L} = 50 pF ±10%, including scope probe, wiring, and stray capacitance without package in test fixture. R1 = R2 = 499 Ω ±1%. 3.
- 4.
- Voltage measurements are to be made with respect to network ground terminal. 5.

FIGURE 5. Switching time waveforms.

NOTE: "Q output for device type 07.

FIGURE 5. Switching time waveforms - Continued.

MIL-M-38510/341E

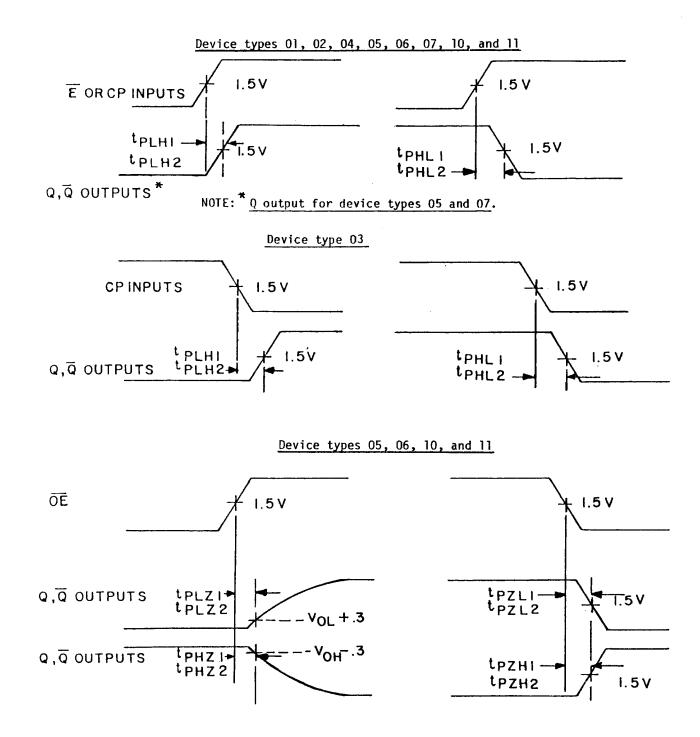
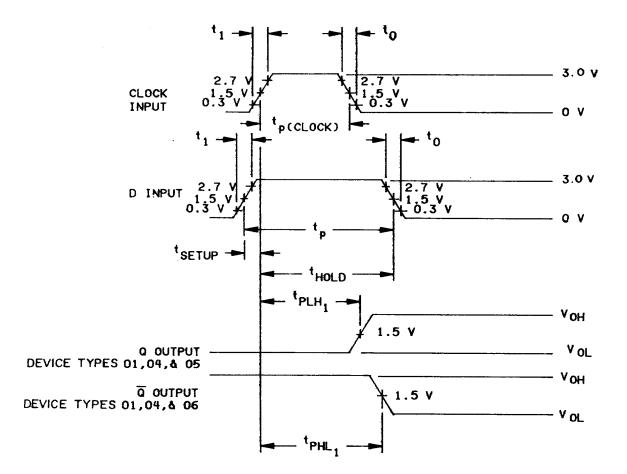
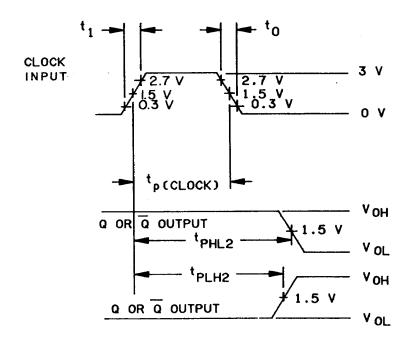



FIGURE 5. Switching time waveforms - Continued.

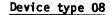
Device types 01, 04, 05, and 06

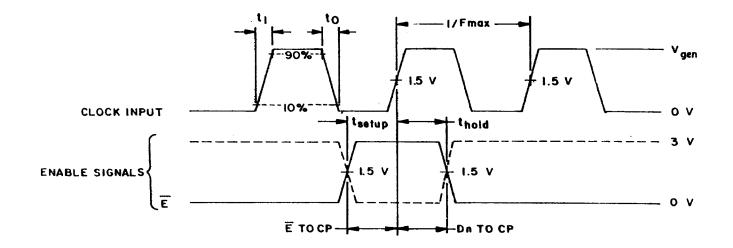


NOTES:

- 1. $t_1 = t_0 < 2.5$ ns. 2. PRR as in table I and III, duty cycle 50 ±15%. 3. When testing f_{MAX} , the output frequency shall be 1/2 the input frequency.

FIGURE 5. Switching time waveforms - Continued.

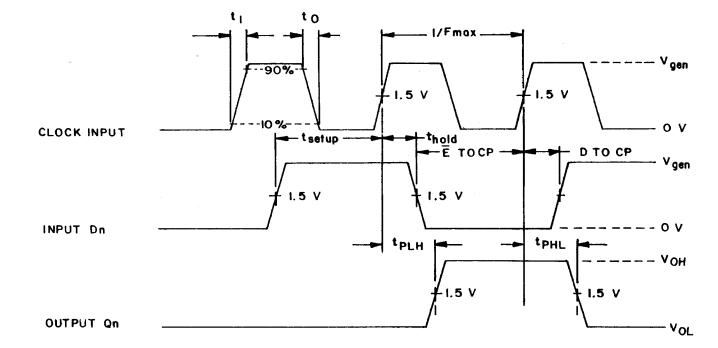

*



Device type 02

NOTES: 1. $t_1 = t_0 < 2.5$ ns. 2. PRR as in table I and III, duty cycle 50 ±15%. 3. When testing f_{MAX}, the output frequency shall be 1/2 the input frequency.

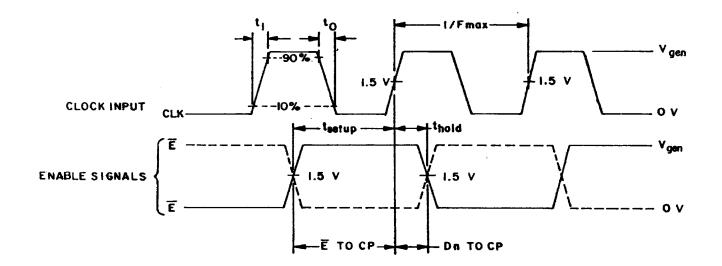
FIGURE 5. Switching time waveforms - Continued.



NOTES:

- 1. Clock input pulse has the following characteristics: $V_{gen} = 3 \pm 0.2 \text{ V}, t_1 = t_0 \leq 2.5 \text{ ns and } PRR \leq 1 \text{ MHz}.$
- 2. Enable characteristics are: $t_{setup} = \overline{E} t_{o} CP = 6 ns (\overline{E} > CP)$ $t_{hold} = Dn to CP = 2 ns (\overline{E} > CP)$

FIGURE 5. Switching time waveforms - Continued.


Device type 08

NOTES: 1. Clock input pulse has the following characteristics: $V_{gen} = 3 \pm 0.2 \text{ V}, t_1 = t_0 \leq 2.5 \text{ ns and } PRR \leq 1 \text{ MHz}.$ 2. D input has the following characteristics: $V_{gen} = 3 \pm 0.2 \text{ V}, \text{ E to } CP = t_{setup} = 3 \text{ ns minimum (Dn > CLK)};$ Dn to CP = $t_{hold} = 1 \text{ ns minimum (Dn > CLK)}.$ 3. For f_{MAX} testing, see table III.

FIGURE 5. Switching time waveforms - Continued.

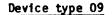
#

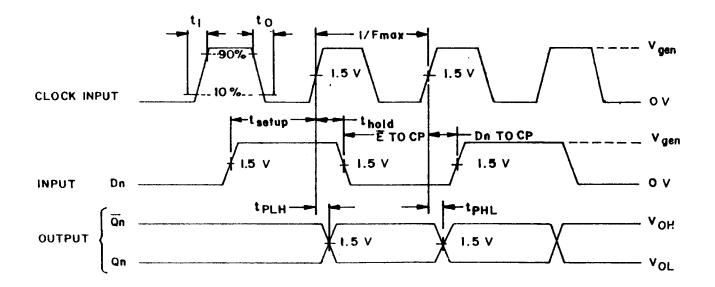
Device type 09


```
NOTES:

1. Clock input pulse has the following characteristics:

V_{gen} = 3 \pm 0.2 \text{ V}, t_1 = t_0 \leq 2.5 \text{ ns and } \text{PRR} \leq 1 \text{ MHz}.


2. Enable characteristics are:


E > CP; t_{setup} = E \text{ to } CP = 6 \text{ ns};

t_{hold} = \text{Dn to } CP = 2 \text{ ns}

3. For f<sub>MAX</sub> testing, see table III.
```

FIGURE 5. Switching time waveforms - Continued.

NOTES:

- 1. Clock input pulse has the following characteristics: v_{gen} = 3 ± 0.2 V, t_1 \leq 2.5 ns and PRR \leq 1 MHz.
- 2. D input has the following characteristics: $V_{gen} = 3 \pm 0.2 V$, $t_{setup} = 3 ns minimum$, $t_{hold} = 1 ns minimum$, \overline{E} to CP = t_{setup} (Dn > CLK); D_n to CP = t_{hold} (Dn > CLK).
- 3. For f_{MAX} testing, see table III.
- 4. t_{PLH} and t_{PHL} are shown for Qn only, (CLK > Qn, \overline{Qn}). The Qn output will have these reversed and are omitted for clarity.

FIGURE 5. Switching time waveforms - Continued.

	Unit		>			4		1	
Limits 	Max		۰			8	§	····	
L1m	Min								
Measured	terminal				ଅଜ୍ୟୁଖିରିଟ୍ୟୁଖି	ଖି ଖ୍ ଦ୍ଦ ୫୪୫କ୍ଟିକିଟିକିଟି ସିଶ୍	ଖିଷ୍ଟ ୧୪୪କ୍ଟିଭିଷ୍ଟ ୫ ୭ ଭିଷ୍	01 02 02 22	ੱਭਕਿਸ਼ੋ ਭਕਿਸ਼ਿ
14	82	VCC	4 VIIIII			>			
13	6t	c02	2.0 V .8 V 4.5 V	.8 V 2.0 V <u>3</u> /	-16 av	44.5 2.44 2.77 2.77 2.77	4400 8.50 7007 7007 7007	4.5 V 4.5 V	0 V .5 V
12	81	02	× 8.	2.0 V	- 18 mA	4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 000 101 1022 102 1022	۰ م د ۲	0 V 4.5 V
F	16	CP.2			-18 m/	4 204041 7	/4// /0.7.9 /4///////////////////////////////////	4.5 V	0 Y 4.5 V
01	14	2 <u>02</u>	8 v 2.0 v <u>2</u> /	2.0 V 8 V 4.5 V	-18 mA	<pre>< <</pre>	> > 0>0:::: 0.0 4	>>	.5 v 0 v
6	51	92	20 mA 20 mA 20 mA						
80	21	₫2 	20 mA	-1 1					
	10	GND	8		* * * * * * * *				
•	6	ъ-	1 50	YE 1-					
5	80	10	20 mA Maria 20 ma A	48 1- 48 1-					
4	6	 a	2. 7.0 8 v		-18 a	4 040 8:: > % > >>	4 04/ 1911 - 200 2 2 2 2	>>	0 V .5 V
	4	CP1	یم ان	È.	- 18 m	22:15 2:15	0 4 4. / / / / / / / / / / / / / / / / /	4.5 V .5 V	4 -5 V 0 V 0
2	-		> &.	2.0 V	-18 🛤	0004 >>/:8:: >>	00/4 >>0/1:= >>	, s.	4.5 Y 0 Y 0
-		ธี	4.5 V 8.8 V 2.0 V	3,0 v 1 .8 v 1	- 18 	22.7 22.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.5 4.5 4	A 5.0
Cases A B C D			-100 4 10 Q	7 8 8 7 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	266819285 306812815	いいがたたのののまな	8888888894444 8888888944444	45 46 48	49 50 52
MTI _ STD_	883 method		3007	3006		3010	3010	600E	600E
	Symbol		40r	ЮЛ	AIC A	THI I	1 IH2	IUI	1112
	Subgroup		T _C = ¹ 25°c						
·						 42			

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high $\underline{2:2.0}$ Y, $10w\leq0.8$ Y, or open)

MIL-M-38510/341E

#

See footnotes at end of device type Ol.

	-) Unit		4							¥•••	su			
Limits	Max				16						6.6	8.0	6.8	
	Min		91 I I	g						8	3.8	4.4	3.8	
Measured	termina)			5565	2222 ACCC			All		_ 338 82	CP1 to Q1	ICP1 to 41	ICP1 to Q1	
1 14	R.	Vcc	> \$9.1.1.1 \$6	4 70.1 1 1 >	5.5 V			×		× * * * * * * * * * * * * * * * * * * *	-	-		
EI	61 	C02	> 0	5.5 0 V	1 5.5 V			≪::::::::::		2.7 V 2.7 V				
12	81	02			× × 0			∞∞≪≪∞·· < · · · · · · · ·		NN				
F	9 	CP2			× × 0			∞<<∞∞<<∞∞<<∞<		23				
01	F	20 ²	> 0	0 V 1 5.5 V	0 V 5.5 V			∞∞≪*********		2.7 V 2.7 V				
6	2 	02	> 0	2.5 Y		omitted.	omitted.			001				
80	12	\overline{q}_2	A 0	2.5 V		tests are on	are		-55°C.	OUT				
	01	GND	Q: : :				and V _{IC} tests	g	and T _C =	GN:::	8	 _		
۰	б	ų1	> 0	2.5 Y		= $+125^{\circ}C$ and V_{IC}	-55°C		+125°C	TU0			OUT	
ى س	∞	10	>	2.5 V		except T _C =	except T _C =		except T _C =	100 100	001	OUT		
4	ه	a a	>	5.5 V 0 V	0 V 5.5 V	roup 1,	oup 1.	∞∞≪;;;;;;;;;;;	oup 7, ex	2.7 V 2.7 V	2.7 V		=	
т —	4	CP1			× 0	for subg	for subg	∞≪≪∞∞≪∞∞≪<∞≪= = z	for subgr	NN	2	=	=	
	m 	D1			> 0 	limits as	and limits as	∞∞≪≪∞:: ≪: : : : : :	and limits as	NN	R	=	=	
	~	ь.	>	5.5 V	5.5 V 0 V	and		≪*****************		2.7 V	2.7 V		=	
Cases A,B,C,D	cases 2 1/ and X _	Test no.	5 5 5 5 5 5 5	57 58 59 60	61 62	tests, terminal conditions,	tests, terminal conditions,	56665566666666666666666666666666666666	terminal conditions,	81 80 81 81	82	83	84	
	method	1	3011		3005	ts, termin	ts, termin	3014		3003	1 3003 F1g. 5	— — —	↓	ł_
	[Symbo]		10s	00 1		Same tes	Same tes	Func- tional tests <u>6</u> / 1	Same tests,	A The second sec	tPLH1 F	tPHLI	tPLH2	
	Subgroup		T _C = +25°c			5	 m	Tc = +25°c	 ao	T _C = +25°C	·	<u> </u>	<u></u>	<u>'</u>

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

MIL-M-38510/341E

*

See footnotes at end of device type 01.

*TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V, low ≤ 0.0 V, or open)

			1 736.65	ŀ	F		9				• ×										
		MIL-STD-	A, B, C, D		, 	, 	r 	, 			,		2	:	7	3		Measured			
Subgroup	p [Symbol	883 method	Cases 2 1/ and X _	2	••	*	و 	80	6	9 	12	2 		9 		11	₽ ₽	termina	- Wi	Max	L L L
			Test no.		01 			61	Δ ¹	GND	₫ ²	62	202 	1 CP2	D2	20 	VCC				
 T _C = +25°C	C tPLH1	3003 F1g. 5	86							GND	. 	001	2.7 V	N.	2	2.7 V	1 5.0 V	CP2 to Q2	2 1 3.6	- -	2
	tpHL1		87							=		001		•		=		CP2 to 42	2 4.4	8.0	
	tpLH2		88	L	 	 	 	 		:	100	 	. 	:	×	. 	•	CP2 to U2	2 3.8	9.9	.
	t pHL2		8		 	 	 	 	 		001	 	*.			•	•	CP2 to Q2	2 4.4	8.0	.
. <u> </u>	tPHL3		8		2.7 V	2.7 V	N.			.	 	 	L	 	 	 		ICD1 to Q1	1 3.5	0.2	•
	tPHL4		6	•	•	> 0	•	001		•	 	 			 	L		CU1 to 41	1 3.5	6.0	.
	tPLH3		32	•	•	2.7 V	•	 		.	 		 		 	 		1001 to 11	1 3.2		.
	tpLH4	- - -	8	•	•	× 0	2	 	001	. 	 	 		 		 	•	to 1 to 1	• 	9.1	.
	tPLH3		3 5	•	•	2.7 V	•	DUT	 	•		 						301 to 91	•		*
	tpLH4		35		•	X 0			 	•		_					•	STD1 to 41	•	16.1	•
	tpHL3		8	. 	2.7 V	2.7 V		 			 	 		 	 	 		STD1 to U1	1 3.5	0.6	.
	tPHL4		97	F	2.7 V	۸ 0	*						 				•	SU1 to Q1	•	0.4	
	tpHL3		86			-	 			:		1 0UT	N.	2.7 4	2.7 V	N.	•	1002 to Q2		19.0	
	tpHL4		66		_		 	 		:	-	1 0UT	: 	۱ ۱ 0 ۲	: 	: 		02 to 92		ŋ . 6	
	tPLH3		100								1 OUT			2.7 Y	= 		*	1002 to U2	2 3.2	19.1	•
	tPLH4		101								OUT	_	•	` 0		•	•	[ΠΩ 2 to Ψ2		16.1	
	tpLH3		1 102				 					1 0UT	:	2.7 V	•		: 	1 <u>30</u> 2 to Q2		6.1	•
	t tpLH4		103									OUT		۸ 0 	•			1502 to Q2	•		•
	tpHL3		104							:	OUT			2.7 V	= 	:		STO2 to Q2	- 3.5	0.6-	
	t PHL4		105								1 OUT		*	0 1				502 to Q2	2.5	19.0	
10	Same ti	ests and te	Same tests and terminal conditions as for subgroup 9, except T_C	tions as	for sub	group 9, 6		= +125°C	+125°C and use limits from table	imits fro	m table I.							- - - - -			
11	Same to	ests and te	Same tests and terminal conditions as for subgroup 9, except \tilde{T}_{C}	tíons as	for subg	troup 9, e		= -55°C a	-55°C and use limits from table l.	mits from	table I.										

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer See footnotes at end of device type 01.

۰.

- 1/ Cases 2 and X pins not referenced are N/C.
- $\frac{2}{1}$ Apply all voltages, then apply 4.5 V, 0 V, 4.5 V to SDX, then apply 4.5 V, 0 V, 4.5 V to CPX, then make measurement. Alternate clock: Apply all voltages, then apply 4.5 V, 0 V, 4.5 V to SDX, then apply 0 V, 4.5 V, 0 V to CPX, then make measurement.
- $\frac{3}{}$ Apply all voltages, then apply 4.5 V, 0 V, 4.5 V to CDX, then apply 4.5 V, 0 V, 4.5 V to CPX, then make measurement. Alternate clock: Apply all voltages, then apply 4.5 V, 0 V, 4.5 V to CDX, then apply 0 V, 4.5 V, 0 V, to CPX, then make measurement.
- 4/ Apply all voltages, then apply 0, 4.5 V, 0, to CPX then make measurement.
- 5/ I_{IL} limits (mA) min/max values for circuits shown:

		Circu	its	
Parameter	A	В	C C	D
IIL1	25/60	 03/60 	 03/60	 03/60
IIL2	75/-1.80	09/-1.80	09/-1.80	09/-1.80

- $\begin{array}{ccc} \underline{6} / & A = 2.5 \ V \\ B = 0.5 \ V \\ H \ge 1.5 \ V \\ L \le 1.5 \ V \end{array}$
- <u>7</u>/ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.
- $\frac{8}{1000}$ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

Unit 5. ¥. Max g. òi • • • • 8........... Limits Min ۰. ۱ ÷. Measured *สะระไว้สิ*ลิฮิร_าเวลิ <u>ตัสสอังโตโต้อังวัลงค</u>ั *ยะระวิธีสิสิธิธัธ*ระธิ 3368 5200×5 \$. • 5°2 6 ខ с С ¥ 2.0 V 3/ V 3/ 4.5 V 4.5 V 4.5 4 4.5 4 1 4 5 4 ۴ F ñ ₹I2 2.7 -18 4.5 V ¥ 4.5 V 4.5 1 4.5 1 0 V .8 V > 2.7 0.0 4 2 87 ŝ ۍ دل Group A inspection for device type 02. [pins not designated may be high ≥ 2.0 V, low ≤ 0.8 V, or 4.5 Y 2.0 Y .8 V 0 V 2.7 V ¥ > ۰⁵ د ۲ 0.7 ۲ 0 2 к2 ۸ 0 -18 > ž 2 . v ₹ı 2 £ 196 196 7.02 CP₂ 2.75 ¥. -18 .8 V 4.5 V 2.0 V 2/ V 2.7 V 0 V Ę > 2.41 0.7 > > 0 0 F E -18 ង 20 m ě 2 F 8 7 ۲۵. ۱۳ ¥ °₽ E 7 þ GND ¥., æ Б ຂ່ Ξ 칠 ¥, TABLE III. bo 5 ຂ່ Ξ. 0 V 2.7 V ¥ 2.0 5.2 × 4 ¥۵ ਬ -18 00 * 22/21 م م 12/ م 4 149 140 4 2 ° ° ° -18 5 ~~ ~ ~ ž ν 8. 0 2.0.2 ۰⁵ ر 0 Y 2.7 ٨ 7.0 ₽. -18 >> ž > .5 γ 8.0 V 2.7 4.5 7 0 K 4.5 > -18 ÷ ž > > 33.0.5 × 5 h., 07: 4 14.0 4.5.4 ទី -18 Cases E and F Cases 2 1/1 and X . 20. Test E 1 1 2 2 1998232282828 88888888 | MIL-|STD-883 | method 3010 3010 3006 6000 200 [Symbo] IHI I IH2 111 ۷IC ۲O, ĕ T_C = ¹25°C Subgroup 46

8

type

footnotes at end of device

See

open)

Terminal

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

MIL-M-38510/341E

	c
	۲,
Continued.	low <u><</u> 0.8 V,
	×
02	2.0 V
on for device type 02	ie high <u>></u> 2.
for c	may b
inspection	esignated
Group A	ins not
TABLE III.	conditions (p
	Terminal

upen)

	Unit	¥							Ī
its	мах Т — — — —	 ````				-			
Limits	Mi Mi	 `````		8		-			
	terminal	: ଅକ୍ଷିକ୍ଷିକ୍ଷି	5955	55 66 07 7	VCC	-			
100 I	<u>-</u>	ی در در در در در در در در در در در در در		4 	5.5 V	-		>+ · · · · · · · · · · · · · · · · · · ·	-
115		0 K	>	5.5 V V	5.5 V			< < < 	
14	J2	0 V 4.5 V				_		<::::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: <:::: ::: <:::: ::: <::::: <::::: <:::: <:::: ::: ::: ::: ::::::	-
1 13	K ²	0 V 4.5 V			> 0	_			_
1 12	C 240				> 0			<::::::::::::::::::::::::::::::::::::	-
	1302	.5	>	0 K	× 0	ted.	.bi	∞≪∗∗∞≪∞≪∗∶∶∶∶∶∶∶∶∶∞≪∶∶∶∶∶∶∶∶	_
9 m 		 -	>	2.5 V		are omitted	are omitted.		_
	₫ 1 1 1		>	2.5 V		tests	tests		
8 9	CND					C and VIC	and VIC	g	-
~ o -	a.		> 0			= +125°C	= -55°C	Trr:::::::::::::::::::::::::::::::::::	-
مع م 			> 0	12.5 V		ept T _C	ept T _C	L = = = = = = = = = = = = = = = = = = =	_
	ä	2 2 2 2	>	5.5 V 0 V	> 0	p l, except	p 1. except	∞≪≪∞≪∞≪ःःःःःःःः	
2 to		V 4.5 V			> 0	subgroup	subgroup	≪*************************************	_
		4.5 0 V			۸ O	as for	as for	ωι	_
~ m		4.5 V				d limits	d limits	<:::::::::::::::::::::::::::::::::::::	_
		.5 v	× 0	5.5 V	5.5 V	ions, an	fons, an	<<∞<::::::::::::::::::::::::::::::::::	-
Cases 2	and X Test no	57 59 59	61 63 64	65 66 68	69	tests, terminal conditions, and limits	Same tests, terminal conditions, and limits	22222222222222222222222222222222222222	
MIL- STD-883	method	3006	3011		3005	its, termi	its, termi	3014	
!	Symbol	1112	Ios	OD		Same tes	Same tes	Func- trional tests <u>8</u> /	•
	Subgroup	T _C = +25°C				2	£	Tc = *25°c	

MIL-M-38510/341E

,

¥

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.8 V, or open)

L_		 	- WIL-	Cases E and F	<u>-</u>	~	m	4		9	-	8	6		H	12	EI	14	112	16		5 	Limits	
	Subgroup	 Symbol	STD-883	Cases 2 1/ and X _	2	m	+	2		8	6	8	21	F	- 14	£1		18	61	R.	- Measured terminal	Ĩ	Xa M	Unit
				Test no.	Ē		Γ ¹	CP1	20 ¹	61	a1	GND	Ф ₂	5- 	202	CP2	K2	- ⁻¹ -	je E	VCC				
<u>_</u>	9 ; = +25°C	<u>√</u> ₩y		104 104	2.7 V 2.7 V	2.7 Y	00	NN	2.7 V 2.7	DUT I	OUT	Gu	001	0UT	2.7 V	N.N.		2.7 V	2.7 Y	× • • • • • • • • • • • • • • • • • • •	- <u>2555</u> 2	8		ž
		tpLH1 tpLH1		107 108	2.7 Y	2.7 V	> 0	8	2.7 Y	0UT				001	2.7 V		> 0	2.7 V	2.7 V	••	$\begin{bmatrix} CP_1 & CO_1 \\ CP_2 & CO_2 \\ CP_2 & CO_2 \end{bmatrix}$	3.8	7.0	S.
		tpHL1 tpHL1		110	2.7 V	2.7 V	> 0	N.	2.7 V	007				001	2.7 V	R.	>	2.7 V	2.7 V		CP1 to 01 CP2 to 02	4.4	0.0.	••
		tpLH2 tpLH2		111 112	2.7 V	2.7 V	۸ 0	3	2.7 V		001	=	OUT		2.7 V	<u>ج</u>	>	2.7 V	2.7 V	••	$\begin{bmatrix} CP_1 & \overline{0}_1 \\ CP_2 & \overline{0}_2 \\ CP_2 & \overline{0}_2 \end{bmatrix}$	3.8	7.0	••
		tpHL2 tpHL2		113	2.7 V	2.7 V	λ0	 X	2.7 V		OUT 0	• •	001		2.7 V	3	>	2.7 V	2.7 V		$ CP_1 to \overline{Q}_1 $ $ CP_2 to \overline{Q}_2 $	4.4	0.0.8	••
		t PLH3		115 116 117 118	1N 2.7 V	2.7 V	>>	2.7 V 2.7 V	2.7 V IN	0UT	0UT	* * * *	OUT .	out	2.7 V IN	2.7 V 2.7 V	>> 00	2.7 Y	IN 2.7 V		******* \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3.2	2.0	
		t PHL3	 +	618228 18228	2.7 V	2.7 V	>	2.7 V	2.7 Y IN	001	0UT		OUT	OUT	2.7 V IN	2.7 V	> 0	2.7 V	IN 2.7 V		26276 22262 26333 26333		0:::	
		t pl H4		123 124 125 126	2.7 V	2.7 V	> 0	> 0	2.7 Y IN	OUT	0UT		001	OUT	2.7 Y IN	>	> 0	2.7 V	IN 2.7 V	• • • • •	8868 8888 8888	е. 	7.0	
		tPHL4		127 128 129 130	2.7 V	2.7 V	> 0	> 0	2.7 V IN	001	0UT	* * * *	0UT	00T	2.7 Y IN	>	> 0.	2.7 V	IN 2.7 V		26335 2222 23333 23333	ы. 	0:::	* * * *
	10	Same tes	ts and ter	Same tests and terminal conditions as subgroup	tions as	Inougans	6	except T _{C =}	+125°C	and use	limits	<pre>± +125°C and use limits from table</pre>	table I.					_					-	
1		Same tes	ts and ter	Same tests and terminal conditions as subgroup 9.	tions as	subgroup		xcept T _C =	-55°C &	nd use	1 I mits	-55°C and use limits from table	able I.											

See footnotes at end of device type 02.

¥

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

- 1/ Cases 2 and X pins not referenced are N/C.
- 2/ Apply all voltages, then apply 3 V, 0 V, 3 V to SDX, then apply 3 V, 0 V, 3 V to CPX, then make measurement. For circuit C devices, apply all voltages then apply 4.5 V, 0 V, 4.5 V to SDX, then apply 4.5 V, 0 V, 4.5 V to CPX, then make the measurement.
- 3/ Apply all voltages, then apply 3 V, 0 V, 3 V to CDX, then apply 3 V, 0 V, 3 V to CPX, then make measurement. For circuit C devices, apply all voltages then apply 4.5 V, 0 V, 4.5 V to CPX, then make the measurement.
- $\frac{4}{10}$ Apply all voltages, then apply 0 V, 4.5 V to CPX, CDX, or SDX, then make measurement.
- $\frac{5}{33}$ Apply all voltages, then apply 0 V, 4.5 V, 0 V to CP1 test 32 and 44 and CP2 test 33 and 45 then make measurement.
- $\underline{6}$ / I_{IL} limits (mA) min/max values for circuits shown:

	1	Circuits	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Parameter	A	B	С	D
I _{IL1}	25/60	03/60	03/60	03/60
I _{IL2}	75/-1.80	09/-1.80	09/-1.80	09/-1.80

- $\frac{7}{1}$ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.
- $\begin{array}{ccc} 8/ & A &= 2.5 \ V \\ & B &= 0.5 \ V \\ & H &> 1.5 \ V \\ & L &\leq 1.5 \ V \end{array}$
- $\frac{9}{f_{MAX}}$ minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

Table III. Group A inspection for device type 03. Terminal conditions (pins not designated may be high ≥ 2.0 V, low ≤ 0.8 V, or open)

Unit					¥			<u></u>
			8		····			
Limits Min Max		S			 /:			
 Measured terminal M		599559995		<u> ସିସିସ୍ଟ୍ର୍</u> ଷ୍ଟିକ୍ଟ୍ର୍ୟୁ	TNTN NTN	 ਸ਼ੋਸ਼ੇਬੇਰੋਬ	502 142	3338999crsvz
	Vcc	4 101 1 1 1 1 1 1 1 1 2			5.5 4	* * * *		• • • • • • • • • • • • • • • • • • • •
19	a1 Ca	2.0 V 2.0 V 2.0 V 2.0 V	2.0 V 2.0 V 2.0 V 2.0 V .8 V	-18 mA	4.5 V <u>2</u> /	.5 V 4.5 Y	21	4.5 V GND 2.7 V <u>2</u> / GND
71 81	37 29	2.0 V 2.0 V 2.0 V 2.0 V	2.0 V 2.0 V 2.0 V 2.0 V 2.0 V	-18 mA	4.5 V		72	4.5 Y 6ND 2.7 Y 2/ 6ND
1	τ₽ ₂	2/ 2/ 4.5 Y	2/ 2/ 4.5 Y 4.5 Y		4.5 Y 4.5 Y	4.5 V 4.5 V		6. 2.7
21 E	K2	.8 Y .8 Y 2.0 Y 4.5 Y	.8 v .20 v 	-18 mA	.5 V 4.5 V	4.5 Y	4.5 γ	2.7 Y 2.7 Y 4.5 Y 4.5 Y 6ND GND
	J2	2.0 Y 2.0 Y .8 Y 4.5 Y	2.0 V 2.0 V 3.8 V 4.5 V 4.5 V		4.5 V .5 V .5 V	4.5 V	4.5 V	4.5 V 2.7 V 6ND 4.5 V 4.5 V
9 E	202	2.0 V 2.0 V 2.0 V 8 V 2.0 V	2.0 V 2.0 V 2.0 V 1.8 V 2.0 V	₩ 18 	2/ 4.5 V	4.5 V	4.5 V	GND 4.5 V 2/ 2.7 V 6ND
1 3 1 12	02	- 1 mA - 1 mA - 1 mA	20 BA					
∞ ₽ 	ang	g			• • • • •		••	
- 6	4 2	-1 mA	20 mA 20 mA					
va eo	d 1	-1 mA	20 mA 20 mA					
	5	-1 mA	20 mA					
~ 6	2	2.0 V	2.0 V 2.0 V 2.0 V 2.0 V	-18	<u>2/</u>	4.5 V .5 V	4.5 Y	GND 4.5 V 2/ 2/ 2.7 V GND
m 4	Ir.	2.0 V 8 V 4.5 V	2.0 Y 2.0 Y .8 V 4.5 V 4.5 V	Yu 81	4.5 V	4.5 V 4.5 V	4.5 Y	4.5 V 2.7 V 2.7 V 6ND 6ND 6ND
2 6	<u>-</u>		.8 V 	1 8 	.5 V 4.5 V	4.5 Y	4.5 V	2.7 V 2.7 V 4.5 V 4.5 V 6ND GND
~ ~	đ	2/ 2/ 4.5 V	2/ 2/ 4.5 V	1 8 81 	4.5 V	4.5 K	· 5 v	GND GND GND GND CAND
Cases E and F Cases 2 1/1	and x Test no.			\$3555 868 5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	33 33	36	5866919544444
MIL- STD-883	method	9000	2000 ·		600£	60 QC	60 OE	3010
1	Symbol	нод	Aor Aor	AIC	1111	1112	1113	IHI
	Subgroup	T _C = ¹ 25°C						
					50			

See footnotes at end of device type 03.

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be high 2.0°V, low ≤ 0.8 V, or open)

							MIL-M-3851	1/341E * .
	Unit		<u> </u>	1				
Limits	Max		8	-120		19		
	ų.			s	8			
	Measured terminal			2 992 8 2	ଟ୍ରସ୍ଟଟ୍ଟ୍ର	ວວວ >>		All outputs
16	R.	VCC	× •		4.5 Y	5.5 K		÷,
13	19	ម	4.5 V GND 7.0 V 7.0 V 2/ GND	4.5 V	5.5 V	4.5 Y GMD		∞
14	1 18	±26	 4.5 V 6ND 7.0 V 2/ 6ND	4.5 Y GND	5.5 K	4.5 V GND		∞•••<••∞<•••••∞<•••••∞<•••••
EI	61	с <mark>ь</mark> 2	GND GND GND 7.0 V	4.5 V	5.5	4.5 4		∞<∞∞<∞* < ∞* * <∞* * <∞* * <∞* * <∞* * <∞* * <∞
12	1 15	K2	7.0 V 7.0 V 4.5 V 4.5 V 6ND	4.5 V	× 2.5 	4.5 K		···· <·· · · · · · · · · · · · · · · ·
F	1	2 ₀	4.5 V 7.0 V 7.0 V 6ND 4.5 V	4.5 V	5.5 * *	4.5 4	d.	<
e	EI	202	GND 4.5 V 2/ 7.0 V 5.0 V	GND 4.5 V	5.5 Y	GND 4.5 V	are omitted. are omitted.	<,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6	12	52		> 0	2.5 Y		tests tests	ل د x · · · · · · · · · · · · · · · · · ·
80	e.	GND	g		••••	••	c and V _{IC} and V _{IC}	
	6	d 2		> 0	12.5 V		= +125°C = -55°C	
9	80	- - -		> 0	2.5 V	 	2 ²	
2		5		> 0	2.5 V		1, except 1, except	۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰
	s 	_ 21	GND 4.5 V 2/ 7.0 V 6ND	GND	5.5 V	1 GND	subgroup 1, subgroup 1,	<
m 		۲. 	4.5 V 4.5 V 7.0 V 7.0 V 7.0 V 7.0 V 7.0 V 7.0 V	4.5 V 4.5 V	S: : : 	4.5 4	as for as for	
~	m	¥1	7.0 V 4.5 V 4.5 V 6.ND 6.ND	4.5 V 4.5 V	2.5	4.5 Y 4.5 Y	limits limits	
	2	Cte ¹	GND GND 7.0 V	4.5 V	\$ 5 5	4.5 Y	ions, and ions, and	□ □<000<00::<00::<00::<00::<000<0<0
Cases	Cases 2 1/ and X	Test no.		8385	663361 67	65	Same tests, terminal conditions, and limits Same tests, terminal conditions, and limits	Func- func- S(1)
11	STD-883		3010	3011		3005	sts, tem sts, tem	3014 3014 515
	Symbol			los	100	31 11 11	Same te Same te	Func- teonal 5/
	Subgroup		1 1C = +25°C				3	"

See footnotes at end of device type 03.

	or open)
Continued.	1ow <u><</u> 0.8 V,
for device type 03 -	<u>may be high > 2.0 V</u> ,
A inspection	t designated
Group /	ou suld)
TABLE III.	conditions
	Terminal

		MIL- STD-883	Cases E and F Cases Z 1/1	- 2	 	 • •	 n	┉┝	- > po				 	14	5		81	2 EI		Measured			- Unit
Subgroup	Symbol	method	and X					-	+		+	-+-						_	_	termina!	ĻM —	Max	
			Test no.		K1		 8	5		 42	GN NJ	62 62	20 ²	J2	K2	сь -	ë	មិ	, CC				
T _C = +25°C	fm <u>ex</u>	3003 F1g. 5			2.7 V	2.7 4	2.7 V	170		0UT	Q	OUT I	2.7 V	2.7 Y 2.7 V	2.7 V 2.7 V	NN	2.7 V 2.7 V	2.7 V	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		8		¥:::
	th H1		109 109		2.7 V	2.7 V	2.7 V		 	-	 N:	01	2.7 V	2.7.1	2.7 4	3		2 	2.0 K	88 	01 3.3 02 3.3	17.7	<u>د</u>
	tpl.H2		101		2.7 V	2.7 V	 8		 19				NI	2.7 V	2.7 V	N	2.7 V	2.7 V	• •	다. 다. 다. 다.	41 42	= = 	
	toHL 1		103	NI	2.7 Y	2.7 V	 3	 13				001		2.7 V	2.7 V	2. 	2.7 V	2.7 V		22 22 24 24 24 24 24 24 24 24 24 24 24 2		• •	
	tpHL2		105		2.7 V	2.7 V	2.7 V					· · ·	2.7 V	2.7 V	2.7 V	2		N.	· ·	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	••• 44	• •	
	tPLH3		100	2.7 Y	2.7 Y	2.7 V 2.7 V	 8 8		LINO	100	 z * * *	OUT .	3 N	2.7 V 2.7 V	2.7 V 2.7 V	2.7 V 2.7 V	NI NI	N N		2222 22222 2023 2023 2023 2023 2023 202	41667	0: : : 	
	фнг 3	- -	113	2.7 V	2.7 V 2.7 V	2.7 Y 2.7 Y	 8 8	 641	Б					2.7 V 2.7 V	2.7 V 2.7 V	2.7 Y 2.7 Y	8 8 	8 8 		2222 22222 22222	41651 617 617 617 617 617 617 617 617 617 61	<u> </u>	
	tpLH4			> > 0 0	2.7 Y	2.7 V	 X X					TUO		2.7 Y 2.7 Y	2.7 V 2.7 V	A 0	NI NI	NI NI		222222222 222222 222222 222222 222222 2222	01 02 02 02 02 02 02 02		
	tpHL4			> > 0	2.7 V 2.7 V	2.7 Y 2.7 Y	2 2 2	 170		 			 3 1	2.7 V 2.7 V	2.7 Y 2.7 Y 2.7 Y	> > > > > > > > > > > > > > > > > > >	8 N	8 8 	••••	2222 2222 3833 3833 3		2.7	
10	Same to	ests and t	Same tests and terminal conditions as subgroup	itions as	s subgrou	6 6	ccept T _C =	= +125°C	and use	and use limits	from	table I.											,
11	Same te	sts and t	Same tests and terminal conditions as subgroup	itions as	s subgrou	6	except T _C =		nd use	-55°C and use limits from		table I.											

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer *

¥.

See footnotes at end of device type 03.

÷

- 1/ Cases 2 and X pins not referenced are N/C.
- 2/ Apply all voltages, then apply 3 V, 0 V, 3 V to CPX, CDX, or SDX (as required) then make measurement.

		Cir	cuits	
Parameter	A	В	C	D
IILI	25/60	03/60	03/60	0.0 mA/-0.6 mA
I _{IL2}	75/-3.0	09/-3.0	12/-3.0	0.0 mA/-3.0 mA
I _{IL3}	-1.25/-3.0	12/-2.40	12/-3.0	0.0 mA/-2.4 mA

3/ IIL limits (mA) min/max values for circuits shown:

4/ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

```
 \begin{array}{l} 5/ & A = 2.5 \ V \\ B = 0.5 \ V \\ H \geq 1.5 \ V, \ L \leq 1.5 \ V. \end{array}
```

 $\frac{6}{1000}$ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

<u>15 16 </u>	19 20 Measured terminal	Vcc	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	995533355 	¥8588	₩ 5		₩ <u>0</u> 60 000	୫ଟଚ୍ଚ୍ଚରେମ୍ବର 		5.5 V VCC
1		03 03	20 m	- 1 - 1 - 1					> 0 0	2.5 V	· -
12 13	15 17	6 <u>0</u>	2.0 V	2.0 Y8 V8 V	₹ 	7 V 2.7 V	7.0 V 7.0 V	۲ s		> 0,*** 	5 V 4.5 V
1 11	1	⁴ 2 ^{D2}	20 mA	- 1 mA				<u> </u>		5.5 2.5	4
1 10		02	20 mA						>	2.5 Y	
6 	21	CP CP	۰۰۰۰۰ م ۵		18 18 18	2.7 4	7.0 V	× s.	×	¥:::	.
8	01 6	01 GND	CN5						> 0		
9	80	а ¹	20 mA	1					>	2.5 Y	·
4 2		10 01	2.0 V 2.0 V	2.0 v 8 v 2.0 v 2.0 v	8 mA	2.7 V 2.7 V	7.0 V 7.0 V	 	4.5 Y	> 	V 4.5 V
 m		а Ф	20 mJ	-1	80 	<u>~</u>				 2:5 2:5	4.5
5		8	20 mg						>		
	2 1/1	₩ 			-18 W	2.7 Y	7.0 V	× ج.	×****	> > 0 0 0	4.5 V
	I Cases 2 1/			69195459 69195459	22 28 19 88 1 23 28 19 88 1	28 27 28 28 28 28 28		\$ 3 8 4 8 8 9 			57
NT -	1 STD-883		3007	8 8		0100 	3010	6000 			3005
	[Symbo]		+25°C	HOA	VIC	IHI I	11111	1111	105	100	1 _{CC}

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

MIL-M-38510/341E

Unit						<u>₹</u>	Ë			
Limits	× 70						•••2		°	
	 £					§	 			
Measured	terminal			Ail	-		5555 5555 5555 5555 5555 5555 5555 5555 5555		 8 8 5 5 6 8 6 5 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
16 20	V _{CC}			۵		>	• • • •			
15 19	63					001	OUT		001	
14	ŵ			T		001		19		
EI	03			<··· @ <·· · · · · · · · · · · · · · · ·		25	z	E	Z	
112	02			<;;	_	22		Z	8	<u>z</u>
14	4 2	eq	ч.	T	_			6		0
13 19	02	are omitted.	e omitted.		_		100			
6 11	5	+125*C and V _{IC} tests a	-55°C and V _{IC} tests are	∞≪: . : ∞<∞<: : ∞: . : <∞<∞ : <: : ∞<		Z	z			
8 Q	GND	I'V bns	and V _{IC}	GN B	+125°C and -55°C.	g				
- 6	6	+125°C			+125°C	0011	0UT			
vo eo	- ¹ 0	ept T _C =	ept T _{C =}	x	ept Tc =	±		Б		
s -		o 1, except T _C	o l, except	<;;	7. exc	82 		X.	R	Z.
		subgroup	subgroup 1,	<:: a<: : : a<: : : a< <a :="" <="" a="" a<="" td=""><td>Inoubqns</td><td>88 </td><td><u>×</u></td><td>Z.</td><td>Z</td><td></td>	Inoubqns	88 	<u>×</u>	Z.	Z	
m u	ß	as for	as for		as for	10 		001		001
R F	8	nd limits	nd limits		d limits	۲ <u>۵</u>	10 		18	
	<u>ک</u>	-	•	∞∞≪•••••••••••••••	ions, and	> 	••••	••••		• • • •
Cases E and F Cases 2 <u>1</u> /		terminal conditions,	Same tests, terminal conditions,		Same tests, terminal conditions, and limits as for subgroup 7, except	22 3 3 3 3 3 4 2 3 3 4 2 3 3 4 2 3 3 4 2 3 3 3 3		98 98 10 10 10	101 102 103	105
MIL- STD-883	method	tests, term	sts, term	3014	its, term	3003 F1g. 5				
Symbol		Same tes	Same te:	Func- t t fonal t ests <u>6</u> /	Same tes	Xõng	t PLH1	t PLH2	tPHL1	t PHL2
Subgroup		2	3	7 = +25°C	60	T _C = +25°C				

MIL-M-38510/341E

**

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

Continued.	10W _ 0.8
ice type 04 -	<u>e high ≥ 2.0 V,</u>
ction for device	nated may be
Group A 1nspe-	ns not design
TABLE III. G	conditions (p T
	Terminal c

				F	2	m			 9	 -	 80	6	 01	F		 EI		15	16		Limits		Γ
Subgroup	Symbol	STD-883 method	and X	2		+			8	<u></u> Б	р.	21	۳ ۳	It	15	-	18	61	R.	Measured terminal		Max	Unit
			Test no.	XX	8	ß	8	 I0	а, 1	61	GND	đ	Q2	Π2 1	02	D3	Φ3	03	Vcc				
Tc = +25°c	tpHL5	30003 F19. 4		X: : 1	001		2.7 V	2.7 V	_ 	00T -		2.7 V * *	0UT		2.7 Y	2.7 V		 0UT	5.0 V	MIX Constraint MIX to Q1 MIX to Q2 MIX to Q2 MIX to Q2		11.5 - 	 %
	tpLH5					100T	2.7 V	2.7 V	18					001	2.7 Y	2.7 V	out			熊熊熊 강강강강 당인것인	°		
	tpHL6		1118		170		2.7 V	2.7 V		UU TJO	* = = =	>	001		2.7 V	2.7 Y		64		· · · · · · · · · · · · · · · · · · ·			
	t PLH6		- 121 122 123			0017	2.7 V	2.7 V	8	 				TJO	2.7 Y	2.7 V	001				 	0	
01	Seme te	sts and t	Same tests and terminal conditions as subgroup 9,	tions a	s subgrot		cept T _C	except $T_C = +125$ and use limits from table I.	sn pue	e limits	trom.	table I.											
11	Same te	sts and t	Same tests and terminal conditions as subgroup 9,	tions a.	s subgroi		cept T _C	except T_{C} = -55°C and use limits from table I.	and use	1 faits	from t	able I.											

Cases 2 and X pins not referenced are N/C. 2 2

Apply all voltages then apply 3 Y, 0 Y, 3 Y to WK, then apply 3 Y, 0 Y, 3 Y to CP, then make measurement.

It limits (mA) min/max values for circuits shown:

56

Parameter [Y	8	נו	•
נורז	25/60	03/60	03/60 0/30	0/30

Apply all voltages, then apply 3 V, 0 V, 3 V to CP, then make measurement.

Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V. ₹I

اف ا^ر

A = 2.5 V B = 0.5 V H > 1.5 Y L < 1.5 V

fwix minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency. 2

9	GND	Q					
6	8	-1 mA	20 mA				
80	 03	2.0 V	8.	-16 mA	2.7 Y	7.0 V	
F	02	2.0 V	× 8.	1000	12.7 V	7.0 4	s.
9	Q2	-1 mA	50 11 20				
2	10	L-					
4	D1	2.0 4	> %		2.7 Y	7.0 v	
~	D0	2.0 V	8.		2.7 V	7.0 4	
2	00		20 mg				
	OE -	>		An 81-	2.7 V	7.0 V	2 S.
Cases 2,R.S. and X	Test no.		e 8 1 2 2 4 2 9 9		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	£888444444	486822222
MIL- STD-883		30.06	3007		3010	3010	600E
Symbol		ъ		AIC .	THII	I IH2	
Subgroup		T _C = +25°C			·		

		>			S		*
2	Max			-1.	N	8	Ň# • • • • • • • • • •
Limits	Min	2.5					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Measured	89888886	86956986 0195646866	80448848960 80448848960	<u>₩</u> ₽₽₽₽₽₽₽₽₽₽₽₽₽	<u>6666666666666666666666666666666666666</u>	010040000 0100400000
20	Vcc	4 1) : : : : : : : : : : : : : : : : : : :			> 4)1 1 1 1 1 1 1 1 1 1 1)		* * * * * * * * * *
61 18	-6	-1 mA	20 BA				
	6	2.0 4	×	- 18 m	2.7 Y	7.0 V	.5
4	 8	2.0 V	> %	¥	2.7 V	7.0 V	
16		- 1 mk					
IE			50 m				
14	 8	2.0 V	>	E 81 1	2.7 V	7.0 V	
- E	70	2.0 V	> ®.		2.7 V	7.0 V	 د.
12	8		50 mV	· · · · · · · · · · · · · · · · · · ·			
	5	7		1881. 1	2.7 V	7.0 Y	.» د
ICases Z,R,S,	land X Test no.		0 0 1 9 E 4 8 9	599838888 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E & & & & & & & & & & & & & & & & & & &	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	STD-883 method	3006	3007		3010	3010	3009
- H-	Symbol		م م	, IC	Ini ^I	IIII	II.
1	Subgroup	Tc = +25°C					

Table III. Group A inspection for device type 05 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V, low ≤ 0.8 V, or open)

MIL-M-38510/341E

¥

See footnotes at end of device type 05.

ML- STD-883	ICases 2,R,S, land X		~	m	4	۰ م	9		œ	6	e Q
	Test no.	<u>oe</u>	00	DO	D1	٩1	Q2	D2	D3	Q 3	GND
3011	8 8 8 8 8 8 8	>	л о	4 .5. >	4.5 4	>	> 0	4.5 Y	4.5 Y	× 0	Q g
	72 269 665 72 769 665		2.5 V	>	>	2.5 Y	2.5 V	>	>	2.5 V	
3011	73 74 75 77 77 79 80	>	2.7 V	>	>	2.7 Y	2.7 V	>	>	2.7 Y	
3011				4 7. 7	4.5 Y	د. ۲	× 2	4.5 V	4.5 Y	× v,	
3011	68	4.5 V		4.5 V	4.5 V			4.5 V	4.5 Y		-
tests, terminal	conditions,	and limits	as for	subgroup 1,	except	T _C = +125	+125 C and VIC	tests	are omitted.		
Same tests, terminal	conditions,	and limits	as for	subgroup 1,	except	T _C = -55°C	c and VIC t	tests are	e omitted.		
3014	1000 1000 1000 1000 1000 1000 1000 100		· •	∞∞≪;;∞;;≪∞≪<∞≪	∞∞≪∗∗∞≈ - ≪∞≪≪∞≪			∞∞≪∗∗∞∞<∞∞≪	∞∞≪:∗∞::≪∞≪≪∞≪		
term	terminal conditions, a	and limits as for subgroup	as for s	ubgroup 7,	except	T _C = +125	+125°C and TC	н	+125°C and -55°C.		

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer #

Subgroup	Symbol	STD-883	Cases 2,R,S, and X	=	112	13	14	15	16	11	18	19	50	Measured	l Limits	its	Unit
		method	Test no.	c,	94	D4	50	05 	90	D6		-6	¥cc	l terminal	N I	Max	
1 * +25°C	10S	3011	68555585 6835555555555555555555555555555		× 0	4. 5. 4	× 5.4	>	>	4. 5. 2	4.5 V	>	> 01111111 0	83838886	Ş	%	z
	100		2226989566		2.5 ×	>	>	2.5 V	2.5 V	> 0	· > 0	2.5 V	4 2	83003030 81004030			
	HZOI	3011		• • • • • • • •	2.7 V	>	>	2.7 V	2.7 V	> 0	>	2.7 V	 م: م:	82993889		ş	4
	1021	L106				4.5 Y	4.5 Y	×		4 .5	₹.5 ×	y 5.		8282888		2,	
	Iccz	3011	8	4.5 Y		4.5 V	4.5 V			4.5 V	4.5 V			¥cc		8	ž
	Same te.	Same tests, terminal	ial conditions, and limits as	nd limits	for	subgroup 1.	except	T _C = +125°	= +125°C and V_{IC}	tests	are omitted						
_	Same tests,	sts, terminal	al conditions, and limits		as for	subgroup l.	except T _C	н	-55°C and Y _{IC} tests	tests are	omitted.						
*25°C	Func- 1 formal 1 tests 3/ 1 2/ 1 2/ 1 1/ 1 1/	3014	0.000 88 88 88 88 88 88 88 89 88 89 88 89 88 89 88 89 88 89 88 89 88 89 88 89 88 89 88 89 89	∞≪≪∞≪≺∞≪::∞≪::	× J: : I: : J: : I: : I: :		∞∞≪∗∗∞≈ ≈ ∞∞≪≪∞≪	× J: : I: : J: : : I: :	×	∞∞≪::∞::<∞≪<∞<	∽∞≪::∞::≪∞≪≪∞<	×	*;	All and the second seco			
	Same tes	Same tests, terminal	al conditions, and limits as for	nd limits	as for su	subgroup 7.	except	$T_C = +125$ °C and	C and -55°C.	ן יי			-				

See footnotes at end of device type O5.

÷

Subgroup	Symbol	STD-883	Cases 2,R,S, and X	-	5	m 	*	5	9	<u>ا</u>	30	6	9
		method		뛩	8	6	10 	5	5	50	6	8	CND
T _C = +25°c	frug X	3003 1 F1g. 5	100 100 100 100 100 100 100 100 100	»	۵۳ ۵۳	3	z.	, 19 19		Z	R		g
	трци1		112 113 115 116 117 118 111 118		0 1 1	2		0UT	00T	×	N.	OUT	····
	сынгі		120 121 122 123 124 124 125 125 125		001	N	2	0 1 1	00 T	3	NI		• • • • • • • • • • •
	ter LZ1			Z:		> 0	>	01	100 100	>	>		
	teH21			* * * • • • • •	5	2.7 4	2.7 V	170		2.7 Y	2.7 V	Бо Бо	* • • • • • • • •
			144 145 145 145 145 145 145 148 151 150		0 	>	>		6	>	× 0	5	
			155 155 155 156 157		00T	2.7 V	2.7 V	TUO	out	2.7 V	2.7 V	5	
10	Same tes	tests, terminal	al conditions, and limits as subgroup 9,	and limits	as subgr	oup 9, exi	except T _C =	+125°C ai	nd use 11	+125°C and use limits from table I.	table I.		
	10,000		totto farming state						d use limite		1 - 1		

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

MIL-M-38510/341E

ъ.

Subaroun	Sumhol	MIL- STD-883	Cases 2,R,5,	=	12	2	5	2			2	.	3	Measured		2	Unit
		method	Test no.	5	8	DA	ß	5	8	- ⁹ 0	07	0,	V _{CC}	terminal	Min.	Мах	
				5	; 	5	5	2	2			;	3				
	1944 12/3	3003 F1g. 5	105 105 106 110 110 110 110 100 110	Z	Tuo	<u>۲</u>	Z	OUT	001	N.	Z	OUT	> 0	00000000000000000000000000000000000000	8		N ¥ : : : : : : : : ¥
	ф Н		112 114 115 116 116 117 118	Z	0UT	£	NI	001	0UT	NI		OUT		766767666666 6666666666666666666666666	0. 	۵ ۲۵ ۱۵	2
	ФН. Т		120 121 122 124 124 125 126 126	z	001	3	3	0011	0017	N.	ž	001	* : • * : • • •	CP 100 CP			
	12.14		132 132 133 133 133 134 134 134	Ap	001	>	>	00 01		> 0	>	OUT		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	t2Hdt		136 137 138 140 141 142 142		001T	2.7 V	2.7 Y	DUT	00 TIN	2.7 V	2.7 V	OUT		9266932 66666666666666666666666666666666		,	*******
	ф. Г. Т. С.		144 145 145 146 149 149 150 150	*******	61	>	>	001	00T	>	>			999999999999 5555555555 969999999999999	0. 		
			152 153 155 155 155 156 156		LU0	2.7 V	2.7 V	TUO	001	2.7 V	2.7 V	OUT	* - * * 5 *	98889320 68883220 688832200 688832200	* * * * * * * * *	11.5	
9	Same test	ts, termin	tests, terminal conditions, and limits	und limits	as subgr	as subgroup 9. except TC	cept TC =	= +125°C and	nd use 11	use Hmits from table	table I.						
=	Same tes	ts termin	tects terminal conditions. and limits as subgroup 9, except Tr = -55°C and use limits from table	nd limits	as subar	ye 0 and				140 Facto							

TABLE III. Group A inspection for device type 05 - Continued. Terminal conditions [pins not designated may be high 2 2.0 V, low \leq 0.8 V, or open)

62

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

MIL-M-38510/341E

*


See footnotes at end of device type 05.

- 1/ Apply all voltages, then apply 3 V, 0 V, 3 V to CP, then make measurement.
- $\underline{2}$ / I_{IL} limits (mA) min/max values for circuits shown:

	1	Circuits			
Parameter	A	В	C	D	_
IIL1	25/60	03/60	03/60	0/30	

 $\frac{3}{A} = 2.5 V$ B = 0.5 V H > 1.5 V

- $\begin{array}{c} \text{H} > 1.5 \text{ V} \\ \text{L} \leq 1.5 \text{ V} \end{array}$
- 4/ Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.
- $\frac{5}{1000}$ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

	l'nit	>			4		Ex
ts	Мах		ທຸ ສະສະສະສ	. L	0::::::::::::::::::::::::::::::::::::::	81	~• · · · · · · · ·
Limits	1 UL	S					ÀF
	Measured terminal			80000000000000000000000000000000000000	999999999999 9999999999999999999999999	00000000000000000000000000000000000000	₩ 8 4 8 8 4 5 8 6
20	V _{CC}	> v::::::::::::::::::::::::::::::::::::			> 		
6	4	- 1 m	20 may				
8	- ⁴ 0	8.	2.0 V	- 18 •	2.7 V	7.0 V	2
F	90	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.0 K	- 18 mA	2.7 V	7.0 V	> ,
16	de de		20 mA				
15	ъ Б	 E 					
14	50	> 80.	2.0 V	4 81 1	2.7 v	2.0 ×	
 F	12	> ∞.	2.0 2	- W 1- 1-	2.7 4	7.0 V	
1 21	44		50 m				
F	5			-18 mA	2.7 v	v 0.7	
TCases Z,K,S, and X	Test no.		e 0 11 21 21 2 2 2	52555555555555555555555555555555555555	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E & & & & & & & & & & & & & & & & & & &	÷ \$ \$ \$ \$ 8 5 5 8 5
M1L- STD-883		3006	3007		3010	3010	3009
Svinbol		5, 5,		A IC	IHI ^I	11H2	
Subaroup		Tc = +25°C					

Subgroup	Symbol	MIL- STD-883	Cases 2,R,S, and X	$\left - \right $	2	m 	4	<u>ہ</u>	9		80	6	10
		method	Test no.	Œ	¢	8	D1	ũ1	<u>0</u> 2	D2	D3	₫ ³	GND
T _C = +25°C	IOS	1102		>	л о	х о	>	> 0	>	> 0	>	>	S
			2129888288	>	2.5 V			2.5 V	2.5 V	5.5 v	5.5 Y	2.5 V	
	H201	3011	8 9 8 9 7 7 7 7 7 7 7 7 7 9 8 9 8 9 8 9	>	2.7 V		4 	2.7 V	2.7 v	4 7. 2. 2.	4.5 V	2.7 4	
	102T	3011	88888888888888888888888888888888888888		> ب	>	>	> s.	> 2.	>	>	ج د.	
	Iccz	3011	68	4.5 Y		4.5 V	4.5 Υ			4.5 V	4.5 V		•
2	Same te:	tests, terminal	conditions,	and limits	as as	subgroup 1.	except	T _C = +125°C	and	VIC tests	are	omitted.	
e	Same tes	tests, terminal	conditions,	and limits	as	subgroup 1,	except	T _C = -55°C	c and V _{IC}	tests	are omit	omitted.	•
7 Tc = +25°c	Func- Itional 3/	3014	200 000 000 000 000 000 000 000 000 000	CO # 2 1 4 3 4 3 4 3 4 5 4 5 4			∞∞∢: × ∞: : <∞<<∞		× エ ・ コ : : エ : ・		∞∞≪::∞::≪∞<<∞	L	3
	Same tes	tests, terminal	conditions,	and limits	ŝ	subgroup 7,	except 1	T _C = +125°C	and	-55°C.			

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

Continued. 90 tvoe (Group A inspection for device TABLE III.

	F-	- 11H - 11H	ICases 2,R,S, 1	F	21	E1	14	15	16	-	18	19	1 20		Limits	2	
		method	Test no.		0 a	5	5	چ چ	්	6	-G	4 2		Measured T terminal	ж.	Max	Unit
	sol	3011		~* · · · · · · ·	>	>	>	>	>	>	>	>	> vij : : : : : : vi	ସିବ୍ଟି ସିସ୍ଟ୍ରି ସିକ୍ଟି ସିକ୍ଟି	3		¥
	00 1		65 66 72 72 72 72 72 72 72 72 72 72 72 72 72		2.5 V	5.5 Y	5.5 2.5	2.5 Y	2.5 Y	5.5 4	5.5 Y	2.5 V	>	୍ର ଅନ୍ୟର୍ଭରିଜିନ୍ଦ୍ରେଶ୍	g		
LĔ	L _{0ZH}	3011	75 75 75 77 77 77 78 77 78 77 78		2.7 V	4. 5. 2	4. 5. >	2.7 v	2.7 V	4.5 V	4.5 ×	2.7 V	بر بر بر بر بر بر بر بر بر بر بر بر بر ب			\$	4
LĔ	IOZL	3011		*******		>	>	 بر		× 0	>	.5 V		 ସଂଖ୍ୟୁଟ୍ୟୁଟ୍ୟୁ		ş	
LĔ_	ICCZ	3011	68	4.5 Y		4.5 Y	4.5 Y			4.5 V	4.5 V			VCC		86	ā
	me test:	Same tests, terminal	al conditions, and limits	and limits	as	subgroup 1, except T _C	н	+125°C an	+125°C and V_{IC} tests are omitted.	ts are on	ni tted.						
- Sa	ume test:	Same tests, terminal	conditions,	and limits	as subgroup	1,	except T _C =	+125°C	and V _{IC} tes	tests are om	omitted.						
T _C = +25°C [Fu	Elunc- 13 3/ 13/ 13	3014		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			∞∞≪**∞*>≪∞≪≪∞			∞∞∞≪ः∗∞ः ≪∞≪≪∞	∞∞∢::∞::<∞<<∞	r	4• • • • • • • • • • • • • • • • • • •	All outputs			
Sa	me tests	Same tests, terminal	al conditions, and limits	and limits	as subgroup	7,	except T _{C =}	+125°C and	ıd -55°t.								

MIL-M-38510/341E

٠

See footnotes at end of device type 06.

<u> </u>				<u> </u>				
ICases 2, R, S, I I 2 3 4 5 6 7 8 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	-0 	10 	EU TU	Ę	OUT	DUT	OUT	00 T
80	°0	<u>z</u>	2 	Z	2.7 Y	>	2.7 4	>
-	02	. 3 		2	2.7 V	>	2.7 v	> 0
9	<u>0</u> 2	5 	0011	10	LN0	OUT	00	00T
\$	5 	100 	100	DUT	001	001	OUT	00 TUO
+	10		2	N	2.7 V	> 0	2.7 V	× 0
m	°a	R	N.	2	2.7 Y	> 0	2.7 V	>
~	ъ.	001	00	00	001	001	001	CUT T
-	턦	>			2		······	
Cases 2, R, S, and X	1 1 Test no.	100 1004 1007 1007 1008 1008 1008 1008	111 112 113 114 115 115 116 117 118	119 122 123 124 124 124 124 125 125	127 128 129 129 129 131 131 133 133 133	135 135 136 137 139 139 140 141 142	143 144 145 145 146 148 148 148 149	151 154 155 155 155
MIL- STD-883	method	3003 F1g. 5						
Symbol		L MAX	tpLH2	tpHL2	tpL22	tpH22	tp21.2	tp2H2
Subgroup		9 17c = +25°c						
					68			

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

GND

2

9.....

.

.

.

.

.

÷

.

See footnotes at end of device type 06.

ł

-	Max Unit	¥			۵. 	0	2 2 2	
Limits	Min	3	0,		\$ • •		0. 	
	T Measured tenninai	କଟ୍ଟୋକ୍ଟ୍ରର୍ବ୍ଦେମ୍ବର କଟ୍ଟୋକ୍ଟ୍ରର୍ବ୍ଦେଶ୍ୱର	666666666 88888888 966666666	55555555555555555555555555555555555555	ଏଟ େବ ଟ େସେ ୧୧୧୧୧୧ ଅଗର୍ମମୁକ୍ତର	- 	<u>ୁର୍ଜ୍ଜୁ</u> ଜେନେଟେଟେଟେ ସ୍ଟ୍ରୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁ ଜନ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦୁର୍ଦ୍ଦ	151616161 22222 199999
22	Ycc	> 01111111 0					• • • • • • • • • • • • • • • • • • • •	
19	д 7	L JO	OUT	00	6	0011	100	
 18	6 ²	Ä	×	N	2.7 Y	·	2.7 V	
11	90	3	IN	Z	2.7 V	*	2.7 V	
16	46 46	E CONTRACTOR CONT	DUD	TUO	LINO	001	L NO	
15	τ ₅	100	L L L L L L L L L L L L L L L L L L L		00T	ta	LNO	
14	05	 Z	3	Z	2.7 V	> 0	2.7 V	
 13	D4	z	2	3	2.7 V	× 0	2.7 V	× 0
12	44	100	10	TUO	L DO	TUQ	TU0	L
I II	 	3	******					
ICases 2,R,S, F	Test no.	100 106 106 107 107 108		119 1120 121 122 124 125 126 126		135 136 137 138 138 140 141 140	144 144 145 146 147 147 148 148 148	151 152 153 153 154
MTL- 1 STD-883		3003 719.5						
Svmhol		FMAX 5/	tpLH2	tPHL2	tpL22	t PHZ2	tP2L2	tpZH2
Subaroun		Tc = +25°c						

*

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.8 V, or open)

group	Symbol	MIL- STD-883	Subgroup Symbol STD-883 and X		1 2 1 3 4 5 6 7 8 9 10	m	4	ъ	و	~	8	6	10
		method	Test no. OE Qo Do D1 Q1 Q2 D3 Q3 GND	ы	d 0	8	I a	Q1	Q2	02	D3	Q3	GND
9	Same tes	its, term	I be tests, terminal conditions, and limits as subgroup 9, except T_c = +125°C and use limits from table I.	and limi	ts as sub	group 9,	except	T _C = +12	5°C and b	ise limi	ts from	table I.	
11	Same tes	ts, term	11 Same tests, terminal conditions, and limits as subgroup 9, except T _C = -55°C and use limits from table 1.	and limi	ts as sub	group 9.	except	TC = -55	C and us	e limit	s from t	able I.	

See footnotes at end of device type O6.

70

			16	5	18	R.S. 11 12 13 14 15 16 17 18 19 20	8		Limits		
14 D.4	20 50	ds	де 1	D6	6	4	VCC	T Measured T terminal	u.		Unit
subgroup 9, ex	cept T _C =	+125°C an	id use 1 fr	lits from	table I.						
	Id D4 subgroup 9, ex	14 D4 D5 subgroup 9, except Tc =	14 D4 D5 T5 subgroup 9, except Tc = +125°C an	I4 D4 D5 T5 T6 I subgroup 9, except TC *125°C and use 11m	14 D4 D5 T5 T6 D6 Second and use limits from	I4 D4 D5 T5 T6 D6 D7 I subgroup 9, except Tc = *125*C and use limits from table I.	$\begin{bmatrix} method \\ method \\ \end{bmatrix} Test no. \begin{bmatrix} C \\ 0 \\ 0 \\ \end{bmatrix} \overline{U}_4 \begin{bmatrix} D_4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	I4 D4 D5 T5 T6 D6 D7 T7 VCC subgroup 9, except Tc = *125°C and use limits from table 1.	I.4 D.4 D.5 T.5 T.6 D.6 D.7 TVCC Terminal is ubgroup 9, except T _C = *125°C and use limits from table 1.	I.4 D.4 D.5 To5 To6 D.6 D.7 To7 VCC Terminal Min subgroup 9, except T _C = *125°C and use limits from table 1.	α7 VCC Terminal Min Max

Apply all voltages, then apply 3 Y, 0 Y, 3 Y to CP, then make measurement.

IIL limits (mA) min/max values for circuits shown: ار ار

		Circuits	
Parameter	Y	80	נ ו
1 111	25/60	 03/60	 03/60

Output voltage shall be either: è

A = 2.5 V B = 0.5 V H > 1.5 V L < 1.5 V X = Don't care

Perform function sequence at VCC = 4.5 Y and repeat at VCC = 5.5 Y.

fwux minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency. ৰ জি

luait.			>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · · · · · · · · · · · · · · · · · ·	* ****		4 :::::::	
Liuits	hin Max		····· · · · · · · · · · · · · · · · ·		~,,,,,,, 		 	Ş	3
Measured	terminal		8228288888585555 3 3 3 3 3 5 5 5 5 5 5 5 5 5	5232255 x52529 x	# 00000039	000330 07023	i≇ 3	€ 6392 639	 6450 8554
2	2	Λcc	> 			ی بر بر			
6	:	95	- 1 mk	20 mA					
1	2	50	× × 0.1.1.1.0,1.1.1. N S	> > > • • • • • • • • • •	- 18 - 18	9.5 V		2.7 V	7.0 4
		04		× × 1.01111:011111 0 0 		0 •		2.7 Y	7.0 Y
		7		20 mA					
F	:	و 1	> > 01111100111111 0 0		- 18 **	0.5 4		2.7 V	2.0 ×
F		63	-1 mA	20 LA 50 LA 50 LA					
-	:	ა	> > oʻnlo:	× • • • • • • • • • • • • • • • • • • •	- 18 mt		1 0.5 v	2.7 Y	0.7
	:	CMD	g		*******			*******	
-	, 	02	1 1 1 1 1 1 1 1 1 1	20 mA					
	, 	02	> > 01111011111 0 5		- 18	V 5.0		2.7 4	7.0 V
_		61	-1 mk	50 B					
-			<pre></pre>		- 18 mA	0.5 ¥		2.7 V	7.0 %
-		DO	× × × × × × × × × × × × × × × × × × ×	> > 	- 18 m	0.5 V		2.7 V	7.0 v
ŀ		8	-1 m4	20 H					
-		<u>ک</u>	×× × ×	> > vitititititi vitititi vitititi vititititi vititititititititititititititititititit	- 18 m A		0.5 4	2.7 4	7.0 V
E and F	2 and X	Test 1 no.	132550987654321	8 3 8 8 3 3 5 5 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	8833335888 	£869383	44	88688888 8868888888	6 9 8 9 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
I MIL- I STD-883	method 12 and X		3006	3007		3009	3009	OTOE	3010
Symbol			ъ,	رم م	AIC	1	1114		1 IH2
 Subgroup Symbol			1 ^C 25 ^C				·	·	<u>`</u>

Terminal conditions (pins not designated may be high ≥ 2.0 v, low <u>≤</u> 0.8 V, or open)

72

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer Group A inspection for device type 07 - Continued. TABLE III.

⊢ – <u>~</u> -	Subgroup Symbol S	MIL- E and F STD-883 Cases	Cases Cases Cases	5	~ ~	m 4	4 4	2	3 8	- 6	8 0	5 67	e r	= =	12	2 22	14	19	16 20	Measured	Limits	s Unit
		method .	2 and X																	terrai nal	MIN	Xeri
			Test no.	₩.	00	DO		٥ ₁	D2	02	GND	do I	03	D3	94	D4	D5	μs, Ι	Vcc			
1 +25°c ¹ 0	10S	3011	 88 88 87 87 87 87 87 87 87 87 87 87 87	> 4	GND	4.5 ¥	4.5 Y	GND	4.5 4					4.5 Y	CND	4.5 ¥	4.5 V	CND	 م: : : : : د	858855		
L <u>-</u>	8. 8.		23 26886	>	2.5 4			2.5 V		2.5 V			2.5 Y		2.5 V			2.5 V	> > \$	322223	3* * * * *	
L	 ភ្ន	3005	13	5.5 V		5.5 Y	5.5 V		5.5 V					5.5 V	<u> </u>	5.5 V	5.5 V		5.5 V	VCC		45
-s-	Same test	tests, terminal		conditions.	and limi	and limits as for	or subgroup 1,	up 1, ev	except T _C		+125°C and V _{IC}	tests	are omitted.	ed.								
<u></u>	me test	Same tests, terminal		Itions,	and limi	lts as fi	conditions, and limits as for subgroup 1,		except T _C *		-55°c and V _{IC} tests	tests ar	are omitted.	4								
7 5/ 1Tr - +25 5(tee	Truth table tests	3014	* 222 22 22 22 22 22 22 22 22 22 22 22 2			<····	<		«···		9	< ∞ < < ∞ < < ∞ < ∞ < ∞ < ∞		<· · · · · · · · · · · · · · · · · · ·		<، ۵، . «	<····		à	All outputs		
⊢≝_	peat su	Repeat subgroup 7 at	at T _C =	+125°C	and T _C =	-55 C.																
TC = +25°C fw	1 mx		5888855 5	×	50	2	ž	170	2	170	g	Z	 5	3	5	 ä	3	 5	> 0: : : : : v	 585553	8	¥*****
8	с	3003	93 94 98 98		00UT	R	2	5 5	 3	170			OUT	NI	641		N	00T		CP to 40 CP to 40 CP to 91 CP to 92 CP to 93 CP to 93 CP to 93	1.5	э. •
<u>-</u>	tehtL1		8 00 10 10 10 00 00 00 00 00 00 00 00 00		 190	z	 		 3	 50				 NI		 <u>R</u>	 2	5 5		666666 666666 826266	-=	
<u> </u>	tehi.5	•	599669 89969 89969	2" * * * * *	0UT	2.7 V	2.7 V	100 ED	2.7 V	e		2	00 1	2.7 V	оот 100	2.7 V	2.7 V	 170		, 1995, 199	12.0 12.0	

MIL-M-38510/341E

*

TABLE III. Group A inspection for device type 07 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.8 V, or open)

Unit			21 7 3 C	* *	MHz	2: : : 2	
Limits	Max		15. c	••		111.0 13.0 17.0 17.0	
5	Ŧ		• •		20	°	
Measured	termina)		, 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 2	388			
91 		VCC	2°0 <	••			
15		Q5	001				
14		DS	2.7 V				
F F		D4	2.7 Y				
21 21		Q4	OUT			shown.	
		D3	2.7 V			inits as	
		q ₃	00T			, and l	
6		e	۲ م 0.0			= +125 [°] (
8 01		GND	00 9 = =	= 1		cept T _C	
- -		92		. 60		up 9, ex	: 55 °C
φ 80		D2		2·/ Y		or subgra	except T _C
2		10		OUT		ons as fo	up 10, e
4 0		I O		2.7 V		conditic	for subgroup 10, except T _C = -55°C.
6		°0		2.7 Y		Same tests and terminal conditions as for subgroup 9, except T_C = +125°C, and limits as shown.	its as fo
~ ~		8		OUT		sts and '	and lim
- 2		₽ E	2: : :			Same te:	litions,
Cases E and F Cases	12 and X	no.		115			inal con
MIL- STD-883	method		3003				Same tests, terminal conditions, and limits as
Symbol			tPHL6		fmax,	terki terki terii terii	Same tes
Image: Constraint of the state Image: Constraint of the state Image: Constraint of the state 1			TC = +25°C		10		===

Cases 2 and X pins not referenced are N/C.

Apply all voltages, then apply 0 V, 3 V, 0 V to CP, then make measurement.

 I_{IL} limits (mA) min/max values for circuits shown: N 16 16

		Circuits	
Parameter	Y	8	L C
1111	25/60	03/60	03/60
1114	25/60	06/-1.2	06/-1.2

74

Apply all voltages, then apply 3 Y, 0 Y, 3 Y to CP, then make measurement.

A = 2.5 V B = 0.5 V H ≥ 1.5 V L ≤ 1.5 V ৰ জা

Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

for winimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency. 14 16

¥

Unit	1	·				4 ••••••		4 ••••••	
Limits	Max				······································	8******* 	§		
	-F			5.5				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°,
Measured	terminal		66 65 55 67 65 56	66635510 66635510	м 8525258 Ф	₩95255255	mgggggggg	m 89999 8843	8388
9 8		۲CL	> 	* * * * * *		>			
15		02	50 mA	-1 atA					
14		05	>	> 0:::::		2.7 V	7.0 V		4 7.1 1 2
1		D4	> @;*****	> 011111	- 18 	2.7 V	7.0 V	د	4 5.5 4
12 15		94	50 B	-1 mA					
1		D3	> @i:::::	> 0*****	- 18	2.7 V	7.0 V	۶.	4.5 Y
e n		0 ³ .	50 EA						GND
5 2		e C	~*****		- 18 	2.7 V	7.0 V	· 5.	à:::
8 0		GND			•••••	******			
~ ~		02	1 50 10	¥ 1-					GND
ه م	,	D2	> @::::::	>	- 18 m	2.7 Y	7.0 Y	× 5.	4.5 V ::
2		۰ ¹	50 mg	¥ 					GND
4 6		01	> @;* * * * *	>		2.7 V	7.0 V	۰. ۲	4.5 * * *
~ 7		8 0	> @;*****	> 0	- 18 mA	2.7 V	7.0 V	s. >	4 .5
~ ~		8	50 my 50 my	¥ 					GND
		س 	> @:* * * * * *		- 18 mA	2.7 V	7.0 V	s. 	GN
E and Cases				~ 86 0 I I I		828883355 	&&=>	443 447 449 33 83 83 83 83 83 83 83 83 85 85 85 85 85 85 85 85 85 85 85 85 85	45 46 47 48 48
MIL- ISTD-883	method		3007	3006		3010	3010	6006	3011
				нол	21	HI	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111	los
Subaroun Symbol			T _C = ¹ 25°c1						

75

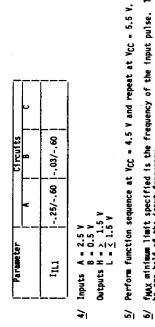
MIL-M-38510/341E

¥

.

Limits	Max											¥* * * *
	Ť.		8	· • ·			_					8
	terminal		8	58	555	8 J	8			outputs		8588
16	8	VCC	4.5 V	• • •	• • •	5.5 V				۵۶۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰		> 0:::: vi
15	a 	02			× v •							
4	q 	05	Q			=						·
13	-	D4	Q,			-				∞∞<		
1 4 5 6 7 8 9 10 11 12 13 1 5 7 8 9 10 11 12 13	s	8			2.5 V		_					
	<u>.</u>		ong.			*			. D.	∞,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		N.
01	3	е С		2	+ c.,		are omit	re omitt				001
6	*	ື ອ	24	* *		-	r tests	tests a	רפיני מ	<∞∞<<∞<<∞<<∞<<∞<<∞<<∞<<∞<<∞<<∞<<∞<<∞<<∞		A : : : :
8	2	GND	GND				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-55°C and Vir tests are omitted		g	ci	
- P	n	8		2.5 V			1 .		• 1		+125°C and -55°C.	170
• •	•	02	GND	* :	•••		except Tr	except Tr		∞∞<	+125°C	N.
2		61	25 V				subgroup 1, e.			··· ··· ··· ··· ··· ··· ··· ··· ··· ··	7. except T _C =	
+ r	•	01	end.				1 5	1 5	.	∞;;; <; ; ; ; ; ; ; ; ∞ ∞ <; ; ; ; ; ∞ ; ; ; ;	7, exce	 8
~ 4	•	8	Q.	= =		-	ts as fo	ts as fo	:	∞∞<::::::∞:::::∞::::< <	subgrout	NI
3	,	8	2.5 Y				and Itmi	and limi			s as for	00T
		щ	end.	•••	•••	•	1di tions	ndi t ions			ondition	
Cases E and F Cases		2	52	55	25 22	57	terminal conditions and limits	ainal cou			rminal c	
 MIL- STD-883	method					3005	tests, ten	Same tests, terminal conditions and limits		3014	Same test and terminal conditions as for subgrou	3003
Svebol			00			Icc	Same te	Same te		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Same tes	
Subaroup			Tr = +25°cl				~	 m		Tc = +25°c	 ∞	T _C = +25°c f

MIL-11-38510/341E


#

See footnotes at end of device type 08.

			Cases		2	Ten 3	minal co	nditions	pins no	ot design	Terminal conditions (pins not designated may be high 2 2.0 v, low < 0.8 v, or open)	y be high	10 10	V, 10W ≤	0.8 V, 0	r open)	14	15	16			F	
Subarroun Symbol		MIL-	E and F				- 4			. 0							H	P	L.	Measured	Limits		Unit
deo iña		method	method 2 and X	•	, , 	•	, , 		»		- - 2	¥	3		2		2	2	3	terminal	Min	Max	
		·	Test no.	ų.	8	6	6	5	D2	62	GND	8	8	6	5	54	D5	કર	VCC				
T _C = +25*C	tpHL1	3003				N	NI	001	NI	001		Z:							5.0 Y	8282	3.0	8.5 * * *	2: : : 2: : :
			8 Q	••							* *				04T	N	IN	641		33			
	tPLH1	3003	102		OUT	R	N	OUT	2										5.0 V	පිටුදු	2.5	7.5	
			102 105 105	•••									100	2	OUT	NI	NI	6T		2223		• • •	
9	frux 6/	Same	Same tests and terminal conditions as for	terminal	conditi	lons as 1	for subgr	roup 9, e	xcept T _C	subgroup 9. except T _C = +125°C.									-		8		Ž₩
_	t PHL1																				2.5	10.5	s
	t PLH1	·																			2.0	9.5	!
11		Same	Same tests and terminal conditions as for	terninal	l conditi	ions as 1		roup 10,	except]	subgroup 10, except T _C = -55 [°] C.	<u>ت</u>												

Cases 2 and X pins not referenced are N/C. ٦ı Apply all voltages, then apply 0 Y, 3 Y, 0 Y to clock pulse, then make measurement.

 $I_{
m IL}$ limits (mA) min/max values for circuits shown: 21 101 77

fMLX minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 09. Terminal conditions (pins not designated may be high ≥ 2.0 V, low \leq 0.8 V, ρr open)

.

Unit			>1 1 1 1 1 1 1			4 •••••		4	
Limits	Max		ý: : : : : : :	 	-1.2	5626	§	4	
5	Min			5.5.				4	9
Measured	termina)		୫୯.୨ ୯୭୬୯୬ ୯	୫ଟଟ୍ଟ ସିବିସିସ ୍ଟିଙ୍କ	12 2 2 2 0 H	жөөр 90	₩ 8 5 5 8 6 8 6 6 6 8 4 6	u Secent	୫ଟଟ ସ ି ସ୍ଟିସିସିସି
R		ζCC	4		• • • • • •	> 			
: 6		63	20 m	-1 m					3
 : 2		Q3	20 84	1					 93
		03	<pre></pre>	> > 0:::::::::::::::::::::::::::::::::::	-18 IV	2.7 V	7.0 V	יא גי גי	> ∽ •
		D2			198 1	2.7 V	7.0 V	 دی	4 6.1.1.8 2.1.1.8 2.1.1.8
: =		Φ2	20 m	T					3
		92	5	-1 #					ß
		ర ి	∾⊧	·····		2.7 V	7.0 V	بن دن	
, e		GND	g			*****	*****		
· •		5	5 5	¥ 1.					C C N
• •		d,	1 R						E.
,		5	× × × 0: ; ; ; 8. : : 0. : ; ; 	> > 0:::::::::::::::::::::::::::::::::::		2.7 V	7.0 V	s.	4 °
, ,		8	× × 0,111 8,110,0111 N	× × 0::::0::: 7	-18 #	2.7 V	7.0 V		4
, 4		<u>م</u>	20 mA	¥ 1-					END
. m	, ,	8	20 mA	1 1-					8
- 2		μ	>	>	-18 and	2.7 V	7.0 ¥	.5 V	N
E and F	12 and X	no.		14 17 18 19 19 19 10 0	28 28 28 28 28 28 28 28 28 28 28 28 28 2	58	\$ 8 5 5 5 8 5	4 0 338 338	44 44 44 45 44 45 45 45 45 45 45 45 45 4
M1L- STD-883	method		3007	3006		3010	3010	600E	3011
Svmbol				5 5	AIC AI	IHI	IIH2	1111	los I
Subaroup 15			T _C = ¹ 25°C1	<u>+</u> =	<u> </u>	·	· <u>·</u> ···	<u></u>	

78

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer *

See footnotes at and of device type 09.

 Unit			*	•			
Limits	hax			3			
5	Ri M		8				
Measured	terninal		32833 3 292	Vcc			All
20 10		VCC	4 4	5.5 V			·
<u>e</u>		Q3	2.5 V				
 7 81		д <u>3</u>					x,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3		 60		GND			
12		D2	GND	GND			۵٬۱۰٬۰۰ «۱۰ ۵٬۰۰ «۱۰ ۵٬۰۰ «۲۰۰ ۵٬۰۰۰ ۵٬۰۰۰ ۵٬۰۰۰ ۵٬۰۰۰
-		Ω2	2.5 Y		ted.	.	T
2 1		92	2.5 Y		+125°C and V_{IC} tests are omitted.	re omitted.	× · · · · · · · · · · · · · · · · · · ·
۲ 12		9	∂ ⊧	5/	tests	and V _{IC} tests are	<000<00<0<0<00<<0<0<0<0<0<0<0<0<0<0<0<
» q	2	GND			and V _{IC}	and V _{IC}	ਤਿ
- 61	,	01 1	2.5 V 1		= +125°C	-55°C	x * * * * * * * * * * * * * * * * * * *
• •	,	dı dı	2.5 V		subgroup 1, except T _C	except T _C	T
•		01	6ND 4.5.4	GND	oup 1, e)		۵ «<۵ « ۵ « ۵ ۵
* n	,	DO	6MD	CND	for subgra	for subgroup 1,	۵۵<۰۰۰ ۵۰۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۵۰۰۰ ۵۰
° ₽		α ⁰	2.5 V		se	as a	T , 1 , 2 , 1
N M		ор	2.5 V		and 11m	and lim	, , , , , , , , , , , , , , , , , , ,
-		μ	N		idi tions	di ti ons	۵،۰۰۰ ۲۰۰۰ ۵۰۰ ۵۰۰ ۵۰۰ ۵۰۰ ۵۰۰ ۵۰۰ ۵۰۰ ۵۰۰
E and F	2 and X	no.	82 82 82 82 82 82 82 82 82 82 82 82 82 8	57	terminal conditions and limits	ainal cor	8888282828282828282828282828282828282828
MIL- STD-883	method			3005	tests, tem	tests, terminal conditions and limits	90g
Symbol				 2	Same te	Same te	50/2012
Subaroup [Symbo]			1 * +25*c		~	 m	7

79

Unit ¥. žĤ č. . ŝ su 2.018.51 2.5 110.5 Max °.ª é.5 Limits . Min <u>_</u>... ÷... 8. 2 Measured terminal 999999556 829299996 5.0 V 16 R ž 5 a 15 6 5 눎 50 out 14 8 ę 5 Group A inspection for device type 09 - Continued. (pins not designated may be high \geq 2.0 V, low \leq 0.8 V, or open) 1 ŝ 3 ž a R ×. R 20 N 12 2 Ľ × N. z 3 001 = ř Ē Ę Ъ Б, P 2 8 n \sim 5 z: z: **X** • tests, terminal conditions, and limits, as subgroup 10, except T_{C} = -55°C. GND 8-33 2 Ę E I F 5 tests and terminal conditions as subgroup 9, except T_C \pm +125°C. 001 Ъ ю õ E TABLE III. Terminal conditions 5 N Ľ N A 3 3 Ľ 8 N. 3 N R S. Ы 5 ΡŪ ß Ы Ð E 8 ш 8. . . . Cases | E and F | Cases | 2 and X | 2 and X | 99 99 100 102 104 104 lest no. 11108100 1114 MIL- | STD-883 3003 3003 3003 Same Same Symbol tPLH1 thut tPHL1 **TPHL1** . ₩ 8 fmax Tc = +25°c1 Subgroup 9 Ξ ¦≓ 80

Cases 2 and X pins not referenced are N/C.

Apply all voltages, then apply 0 Y, 3 Y, 0 Y to clock pulse, then make measurement.

Apply all voltages, then apply 3 Y, 0 Y, 3 Y to clock pulse, then make measurement. 14 19 16

IL limits (mA) min/max values for circuits shown:

then make measurement. apply 0 V, 3 V to clock pulse, Apply all voltages, then

*

Inputs A = 2.5 V B = 0.5 V Outputs H = > 1.5 V L = < 1.5 V 10 12

Perform function sequence at Vcc = 4.5 V and repeat at Vcc = 5.5 V.

 f_{MXX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency. 2 8

MIL-M-38510/341E

6	D7 GND	GND 5.0 v	× * * * * * * * * * * * * * * * * * * *	- 18 - 18 - 18 - 18 - 18	2.7 V 2.7 V	7.0 V	
∞	D6	2.0 V	0.8 V	2 8 8 7 - 	2.7 ¥	7.0	
~	1 D5	2.0 Y	× 8. 0		2.7 ¥	7.0 K	× 9 0
ص	D4	2.0 V	× 0.0	¥ 81 	2.7 ×	7.0 V	0.5 Y
v 	D3	2.0 v	0.8 ×		2.7 4	7.0 4	0.5 V
4	D2	2.0 V	× 8.0 	- 18 m A	2.7 Y	2.0 X	0-5 V
m	01	2.0 Y	× 8. 0	- 18 mA	2.7 V	7.D Y	0.5 V
~	00	2.0 V	× 8.0	- 18 m A	2.7 V	7.0 V	0.5 V
-	ᅋ	> 8.0	• * * * * * * * *	- 18 mA	2.7 Y	7.0 V	0.5 K
Cases 2,8,5, and X	Test no.		6911589 6911589		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		52515648
MIL-STD- 883 method		3006	3007		0100	3010	50000
Symbol		нол	Vol	VIC VIC	IHI	IH2	н 1

`

•

MIL-M-38510/341E

¥

Unit		>1 x x x x x x	· · · · · · · · · · · ·	* * * * * * * * * * *	<u></u>		4:::::::::::::::::::::::::::::::::::::
Limits	Max		0 		8	§	∾⊧ · · · · · · · ·
Lie	ц Т Т	5. 					~•••••••••••••••••••••••••••••••••••••
Measured	terminal	82883385	82923999	B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	B99999999999	B000040000	P 000000000000000000000000000000000000
50	Vcc	4 10 1 1 1 1 1 1 1 >	*		× 	* * * * * * * * * * *	*
61	8	-1.0 mA -	20 mA				
81	6	-1.0 mA	20 mA				
5	27 27	-1.0 m	20 na				
16	8	-1.0 m	50 B Y				
15	8	-1.0 m	20 m				
=	ક	-1.0 mA	50 B A				
 E1	90	-1.0 mA	50 mm				
Cases 2, R, S,	and X Test no.		*81122488	255 233 23 23 24 11 12 12 12 12 12 12 12 12 12 12 12 12	**************************************	288 8 9 1 2 2 2 4 4 9 3 3 3 4 4 4 9 3 8 8 9 1 2 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	288888888
MIL-STD-	method	3006	3007		3010	3010	6000
	[Symbo]	5 <u>,</u>			HI1	11 IH2	111r
	Subgroup	T _C = ¹ 25°C					

82

MIL-M-38510/341E

,

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

See footnotes at end of device 10.

*

Cubarana		MIL-STD- 883 method	Cases Cases 2, R, S, I		5	m	4		ي م	7	∞	6	10	11	12
R				ЭC	8	D1	D2	D3	4	D5	D6	D7	GND	e C	97
. +25°C	Ios	3011	6638656658851	>	۲ د د د	5.5 <	۰. ۲. ۲.	2.5 5.5	5.5 V	5.5 Y	5.5 2	5. 5.	9		0.0 V
	HZOI	3011	65 66 69 69 70 71 71	<pre></pre>	0.0 Y	0.0 V	0.0 V	0.0 v	> 0.0	0.0 v	0.0 V	0.0 V	*******		2.7 V
	Iozi	3017 100 	733 755 766 737 809 809		2222 2222	5.5 <	2.5 2.5	2.5 5	5.5 2.5	5.5 Y	5.5 V	2,5 V			0.5 V
	Iccz	3011	81	5.5 V	5.5 4	5.5 Y	5.5 Y	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	-		
		3011	82	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	•		
2	Same	tests, term	terminal conditions, and limits as for subgroup 1,	itions, a	nd limits	as for su	ubgroup 1	, except	T _C = +125	C and VI	c tests à	except $T_C = +125^{\circ}C$ and V_{IC} tests are omitted.	Ч		
E	Same	tests, terminal conditions,	afnal cond	itions, a	and limits	as for	subgroup 1,	except	Tc = -55°	c and VIC	tests an	-55°C and V _{IC} tests are omitted.			
7 = +25°C	Func- ftional 3/	3014	56888888888888888888888888888888888888	۵	< m m < m m < < m <	∞≪≪∞≪∞∞≪∞	≪∞∞≪∞∞≪≪∞≪	∞ < < ∞ < < ∞ ∞ < ∞	< œ œ < œ œ < < œ <	∞≪≪∞≪∞∞≪∞	<∞∞<∞∞<<∞<	∞<<∞<∞∞<∞	g	→ ¥∞∞∞→×∞∞∞	
80	Same 1	Same tests, terminal conditions, and limits as for subgroup 7, except T_{C} = +125°C and	atnal cond:	ltíons, ai	nd limits	as for s	ubgroup 7	, except	T _C = +125	C and -5	-55°C.				

See footnotes at end of device type 10.

83

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer ¥

	r S
	-
Continued.	ow ≤ 0.8 \
•	Ţ.
의	>
3	~
	5
윈	Ĕ
ક્ર	ä
for device	ay be high j
	-
튑	lesignated
š	Ŝ,
Inspect	s
_	
9	ġ
ยี	2
a	ā
TABLE III	ŝ
Ш)	Ξ
2	E.
	ខ
	2
	m jug
	e l

•

 	Symbol	MIL-STD- 883 Method	Cases 2, R, S, and X	13	14	15	16	17	18	61	8	Measured terminal		Limits	Innit
			Test no.	0 ⁶	95	94	Q3	0 2	61	00	VCC		Ç.	Max	
T _C = *25°C	100	3011	82252 8255 8257 8257 8257 8257 8257 8257	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 v	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	89988889	8		* ********
,,	HZO	3011	2226688	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	2.7 Y	*******	83828886		.8*******	<
	lozi	3011	733 755 766 77 78 80 90 90	0.5 Y	0.5 V	0.5 V	0.5 V	0.5 Y	0.5 4	0.5 Y	******	8998889		ç	* * * * * * * * *
	lccz	3011	81									Vcc		8	۲.
	IccL	3011	82								-	VCC		86	â
	Same te:	its,	terminal conditions,		and limits	as for	subgroup 1,	except	T _C = +125'	+125°C and VIC	tests	are omitted.			
	Same tes	ts,	terminal condi	conditions, ar	and limits	as for	subgroup 1,	except	TC = -55°C.	and Vic	tests are	e omitted.			
Tc • +25*c	Func- tional <u>3</u> /	3014	22.9938888888888			*****		*****				All outputs			
	Same tes	1	terminal conditions				- •						-		

See footnotes at end of device type 10.

MIL-H-38510/341E

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

MIL-M-38510/341E

*

D1 D2 D3 D4 D5 D6	NI N	NI N	NI N	2.7 V	(0.0 V 0.0 V 0.0 V 0.0 V 0.0 V 0.0 V	2.7 V
	N 	а 	z ·	11 2.7 V	× 0.0	2.7 <
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1117 1118 1119 1220 1232 124 124 124		

85

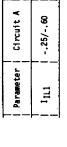
Unit		 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2		· · · · · · · · · · · · · · · · · · ·		
Limits	Max		ي. م		0 '9 '9	۲. ۲. ۲. ۲. ۳. ۳. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲.	0. of # * * * * * * *
۲. 	Min	0	5, 2 5, 2 7, 2		0, I I I I I I I		
Measured	terminal	6666935100 6666935100	9999999999 8888888 992929999	6-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	22222222222222222222222222222222222222	925252255 55555555555555555555555555555	388883858 888888888 4888888 88
50	VCC	× 0.5	* * * * * * * *			* * * * * * * * *	
19	⁰ 0	00 100	0UT	00	001	001	001
18	01	001	100	61 1	001	001	100
17	92	OUT	001	5	001	6	100
16	03	001	661	Ę	5	001	
15	04	00T	061 1	100	OUT	001	DUT DUT
14	05	00.1	Ē	001			TU0
13	96	OUT			00T		00T
Cases 2, R, S,		100 98 99 99 99 100 98 99 99 99	101 102 106 106 106 106		117 118 120 122 123 123 123 123 124	125 126 127 128 128 128 128 128 128 128 128 128 128	133 134 138 138 139 139 139
MIL-STD-1	method 	3003 19. 5	3003 3013 F1g. 5	3003 F1g. 5	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F19. 5	
	Symbol		tpLH1	tphtl	teht21	ter z1	th _Z H1
	Subgroup 	17c = +25°c					

86

See footnotes at end of device type 10.

¥

			Terminal	conditi	Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.8 V, or open)	not desig	gnated may	/ be high	<u>-</u> 2.0 V,	1ow <u>≤</u> 0.{	3 V, or op	en)			
Subgroup	Symbol	MIL-STD- Cases 1883 2,R,S, 1method and X	Cases 2,R,S, and X		5	۳ 	4		9	2	æ	თ	9	11	12
			Test no.	JOE	°a	Ia	D2	D3	1 D4	D5	D6	D7	CND	e.	97
9 Tc = +25°C	t PZL 1	3003	141 142 143 144	<u></u>	0.0 V	0.0 Y	0.0 V	0.0 V					g	R	
			145 146 146 147	· • · •					v 0.0 v	0.0 V	0.0 V	0.0 V	I I I I I		OUT
9	Same	Same tests as subgroup 9 except T _C = +125°C, use limits from table I.	ubgroup 9	except T _C	- +125°C	, use lim	its from	table I.							
11	Same	Same tests as subgroup 10 except Tc \star -55°C, use limits from table I.	ubgroup 10	except T	C = -55°C	, use lim	its from	table I.							
See footnotes at end of device type 10.	at end	of device	type 10.												


*

87

		MIL-STD- Cases 883 2.8.5.	Cases 2, R. S.	13	4	15	16	17	18	19	ଛ	Measured	5	Limits	Unit
Subgroup	Symbol method	method	and X Test no.	0 ⁶	0 ⁵	94	°3	02	61	8	ACC	terminal 		Max	
T _C = ⁹ 25°C	t PZL1	3003	141 142 143 144 145 146 146 148	001	00T	OUT	001		00 1	DUT	> 0* # # # # # # # 0	日本 1993年1993 1993 1995	0,	0	٥: : : : : : : :
10	Same t	ests as su	I I I I Same tests as subgroup 9 except T _C = *125°C, use limits from table I.	except T _C	= +125°C,	use lim	ts from	l table I.					_	_	_

Group A inspection for device type 10 - Continued. TABLE III.

- Apply all voltages then apply 3 Y, O, 3 Y to CP then make measurement.
- I_{IL} limits (mÅ) min/max values for circuits shown. ار الا

A = 3.0 V minimum; B = 0.0 V or GND, H \geq 2.5 V, L \leq 0.5 V.

Perform function sequence at V_{CC} = 4.5 V and repeat at V_{CC} = 5.5 V.

fwax minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency. 1 A 10 #

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

Cubamun	 	 MIL-STD- 883 Method	Cases 2,R,S,		~	m	4	۔ ۔		~	æ		9 9	=====	12
-			Test no.	1	8	IJ	2	D3	40	50	90	67	GND	d.	τ ₇
T _C = +25°C	5	3006		>	× 8.0		× 8.0	× 8.0	× 8 0	× 8.0	0.8 4	v 8.0	g		-1.0 mA
. –	, vo	3007	•0115154553		2.0 V	2.0 V	2.0 Y	2.0 4	2.0 ×	2.0 4	2.0 V	2.0 V			20 BA
	ог л		222 23 23 24 23 25 25 25 25 25 25 25 25 25 25 25 25 25	- 18 mA	18 81 -	81- 81-		- 18 mA		-18 EA	- 18 mA	- 18 mA	· · · · · · · · · · · · · · · · · ·	-18 m/	
	H	3010		2.7 V	2.7 Y	2.7 V	2.7 V	2.7 Y	2.7 v	2.7 V	2.7 V	2.7 V	••••	2.7 V	
	IH5	3010		7.0 V	7.0 Y	7.0 V	7.0 V	7.0 X	7.0 V	7.0 V	7.0 V	7.0 V		7.0 V	
		6000		0.5 v	0.5 K	0.5 4	0.5 V	λ 5.0	×	0.5 V	0.5 0	0.5 V	• • • • • • • • • • •		

89

÷

19 20 Measured terminal
00 Vcc
>
но

MIL-M-38510/341E

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer See footnotes at end of device 11.

۴

Subgroup	Symbol	MIL-STD- 883 method	Cases 2, R, S, I and X	1	5	m 	4	بن	ور 	2	8	6	91	11	77
			Test no.	덊	0 ⁰ 0		D2	D3	D4	D5	D6	D7	GND	5	ą,
Tc = +25°c	sol	3011	55 56 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57	> 0:::::::: 0	0.0 V	× 0.0	> 0.0	۰ ٥ ٥	• • •	0.0 v	0.0 0	× 0.0		A	0.0 V
	HZOI	3011	27.26686566	>	0.0	> 0.0	0.0 V	0.0 V	0.0 v	0.0 V	0.0 V	× 0.0			2.7 V
	1 ozt	301	80 28 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		× v. v.	5.5 4	۔۔۔۔ ۲. کر ۲. ا	ء د د د	5. S	5.5 Y	5.5 Y	5.5 K			0.5 V
	1 CCZ	3011	81	5.5 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V	0.0 V		-	,
	IccL	3011	82	0.0 V	5.5 V	5.5 Y	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V		•	
2	Same te	tests, terminal conditions,	inal condi	tions, ar	and limits	as for	subgroup 1,	. except T _C	н	+125°C and V _{IC} tests	c tests ar	are omitted.			
e	Same te	tests, terminal	inal condi	conditions, an	and limits	as for	subgroup 1,	except	T _C = -55°C	C and VIC tests	tests are	omitted.			
7 Tc = +25°C	Func- tional	3014	82888888888 		∞≪<∞≪<∞∞<∞	< ::::::::::::::::::::::::::::::::::::	∞≪≪∞≪≪∞∞≪∞	<pre>< coo < c o <</pre>	∞≪≪∞≪≪∞∞≪∞	<	∞<<∞<<∞∞<∞	<	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TITIT
	Same te	sts. termi	tests, terminal conditions, and limits as for	tions. an	d limite	e for c	-	-	-		_	-			

۴

91

.

MIL-M-38510/341E

TableE III. Group A inspection for device type 11 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V, low \leq 0.8 V, or open)

		MIL-STD-1 1883	Cases	е П	14	15	16	1	18	19	8	Measured		Limits	Unit
Subgroup	Symbol			ط	8 	44	- - - -	42-	ت و 	8	, , ,	terminal	l Min	Max	
1 = +25°C	los	3011	582 50 50 28 28 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0 V	۰.0 ۲	× 0.0	× 0.0	0.0 v	× 0.0	× 0.0	بر بر م	କ୍ଷିକ୍ଷକ୍ରିଟିକ୍ସିକ୍ସ କୁକ୍ଷକ୍ରିକ୍ସିକ୍ସ	§	\$	≦
	HZOI	3011	65 66 71 71 71 71	2.7 V	2.7 V	2.7 Y	2.7 V	2.7 4	2.7 V	2.7 V		ି କରିବିକିଜିଜିଜିଜି କ		8	<u> </u>
·	IOZT	3011	738 77 73 73 73 73 73 73 73 73 73 73 73 73	0.5 V	0.5 V	0.5 4	0.5 4	× 5.0	0.5 K	0.5 v		 କଟ୍ଟଜିକ୍ଟିକ୍ଟିକ୍ଟିକ୍		Ş	
	Iccz	3011	81								•	VCC		98	1
•	1ca.	3011	82								•	VCC		86	1
2	Same t	tests, terminal conditions, and limits	tinal condi	tions, a	nd limits	as for	ubgroup 1,	subgroup 1, except T _C		+125°C and VIC tests	c tests a	are omitted.			
3	Same t	tests, term	terminal condi	conditions, a	and limits	as for	subgroup 1,	except	Tc = -55°	-55°C and VIC	tests	are omitted.			
T _C = +25°C	Func- 3/ 3/	3014	8 8 8 8 8 8 8 8 8 8	TTTTT				*****			ð	Ail outputs			
	Same tests,		terminal conditions, and limits as for subgroup 7, except $T_C = +125^{\circ}C$ and	tions, a	nd limits	as for su	ibgroup 7,	except	rc = +125	C and -5	-55°C.				

See footnotes at end of device type li.

¥

12	μ ₇	OUT	00T			0UT	
я 	сь 	Z				• • • • • • • • • •	
01	CND	g	· · · · · · · · · · · · · ·	· · · · · · · · · ·	* * * * * * * * *	• • • • • • • • • • • • • • • • • • •	
6	D7	N	. NI	z	× 0.0	2.7 V	
89	D6	NI	A	2	0.0 V	2.7 V	> 0 0
7	D5	N	NI	N	0.0 V	2.7 V	0.0 V
ę	D4	NI	NI	H	× 0.0	2.7 V	0.0 V
5	D3	N	NI	NI	× 0.0	2.7 V	0.0 V
4	D2	N	NI	X	0.0 V	2.7 V	0.0 V
m	01	NI	NI	8	× 0.0	2.7 V	0.0 V
2	DO	N	NI	Z	> 0.0	2.7 Y	0.0 V
1	ŌE	>			Z:		
Cases Cases 2, R, S, 1 and X 1		93 95 99 100 99 99 99 99	102 103 104 105 106 106		111 1116 120 121 123 123 124	125 126 130 131 132 132 132 132 132	134 135 136 137 138 138
MIL-STD- 883 method		1 3003 F19. 5	3003	3003	3003	3003	
Symbol			tpLH2	tpHL2	tpHZ2	thr.22	tpzh2
Subgroup		Tc = +25°c	-				, – – –

93

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

.

See footnotes at end of device type 11.

*

	MIL-STD-	- Cases	13	14	115	16	17	18	19	8	Measured	Lim	Limits	unit
Symbol											terminal	N.	Max	
		Test no.	Qe	ୁ ଜୁ	Q4		Q2	41 41	8	Vcc			- T	
⁹ .25°C ^f ₩4	F19. 5	8888888 88888888 2	L10	out	out	100 1	OUT	100	00 1	2°.0 <	କ୍ଟିକ୍ଟିକ୍ଟିକ୍ଟିକ୍ଟିକ୍	0		ZH2 2 2 2 2 2 2 2
tpLH2	F1g. 5	100 100 100 100 100 100 100 100 100 100	OUT	OUT	DUT	001	۲no	00	00			S	\$	<u> </u>
трнц2		100 111 111 113 113 114	Ę		LNO	5 5	LN0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	00 1		999999999999 555555 99999999999			
tpH22		111 111 1119 1119 1119 1119 1119 1119	641		001	6		001	00.T		ସ୍ଥ୍ୟୁରୁଦ୍ୱରୁ ୧୧୧୧୧୧ କ୍ଳାକ୍ଳାକ୍ଲାକ୍ଲାକ୍ଲ		10 	
thL22		125 126 133 133 133 128 128 128 128 128 128	06T	00 1	00	6	00 100	01 TUO	0UT	* * * * * * * * *	ସ୍ଟ୍ୟୁପ୍ରୁପ୍ରୁପ୍ ୧୧୧୧୧ ଜ୍ଞାଲ୍ଲକ୍ଲକ୍ଲ୍ଲାଲ୍ଲ	••••		
tPZH2	5 5		Б	Lno		DNO	6	00 	00		<u>୍କ୍ୟୁର୍ଜ୍ନୁ</u> ୧୧୧୧୧୧ ଅନ୍ନର୍ଜ୍ୟୁର୍ଜ୍ନ	0. 	0. 	******

TABLE III. Group A inspection for device type 11 - Continued.

94

Printed from www.freetradezone.com, a service of Partminer, Inc. This Material Copyrighted By Its Respective Manufacturer

MIL-M-38510/341E

*

Subaroun	Svinhol	MIL-STD- Cases 883 2,R,S, Svmhol method and X	Cases 2, R, S, 1		~	m 	4	<u>ب</u>	<u>م</u>	~	60	6	10	7	12
	<u></u>		Test no.	ä	DO	D1	D2	D3	D4	50	D ₆	D7	GND	ა	4 ²
T _C = ⁹ 25°C	tPZL2		141 142 143 145 146 146 147	Z: · · · · · · ·	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	2.7 V	8	Z	011 011
01	Same t	I I I I Same tests as subgroup 9 except T _C = *125°C, use limits from table I.	ibgroup 9 e	except T _C	- +125°C	, use lim	its from	table I.	_	-					
11	Same	Same tests as subgroup 10 except $T_{C} = -55$ °C, use limits from table I.	ibgroup 10	except T	c = -55°C	, use lim	its from '	table I.							

TABLE III. Group A inspection for device type II - Continued. onditions (pins not designated may be high \geq 2.0 V, low \leq 0.8 V, or open)

1

١

95

			Termini	TABLE 11 condit:	TABLE III. Group A inspection for device type II - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V, low \leq 0.8 V, or open)	oup A ins s not desi	pection f gnated ma	or device N be high	type 11 1 <u>></u> 2.0 V,	- Continu low _ 0	ied. .8 V. or	open)			
			Cases 2, R, S,	13	14	15		17	81	61	8	Measured	Lim	Limits	Unit
Subgroup	Symbol	method	and X Test no.	96	05	44	8	62	5	8	Vcc	termainal	Młn	Max	
T _C = ⁹ 25°C	tPZL2	3003	141 142 145 145 1466 147 1487 1487 1487 1487 1487 1487 1487	OUT	06T	5	5		190 190	001	> 0:::::::: v	ସୁସ୍ଟୁପ୍ଟୁପ୍ଟୁପ୍ ୧୧୧୧୧୧୧ କାର୍କୁପ୍ଟୁପ୍ଟୁପ୍ଟୁପ୍	o	0	2 · · · · · · · · · ·
10	Same	i i ' i i i i i i i i tests as subgroup 9 except T _C = +125°C, use limits from table I.	ibgroup 9 6	except T _C	- +125°C,	use limi	ts from 1	table I.			_	:			
11	Same t	tests as subgroup 10 except T_{C} = -55°C, use limits from table 1.	bgroup 10	except T ₍	; = -55°C,	use limi	its from t	table I.							

Apply all voltages then apply 3 Y, O, 3 Y to CP then make measurement. ⊐ı

 $I_{\rm IL}$ limits (mA) min/max values for circuits shown. 2

Circuit A	25/60
Parameter	1111

A = 3.0 Y minimum; B = 0.0 Y or GND, H \geq 2.5 Y, L \leq 0.5 Y.

Perform function sequence at $V_{CC} = 4.5$ Y and repeat at $V_{CC} = 5.5$ Y.

96

faxx minimum limit specified is the frequency of the input puise. The output frequency shall be one-half of the input frequency. m 7 m *

,

- b. Steady-state life test conditions, method 1005 of MIL-STD-883, or equivalent.
 - Test condition D, E, or F using the circuit shown on figure 4, or equivalent.
 - (2) $T_{A} = +125^{\circ}C$ minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.4 Group D inspection. Group D inspection shall be in accordance with table IV of method 5005 of MIL-STD-883. End-point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified as follows:

4.5.1 <u>Voltage and current</u>. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory.)

6.1 Intended use. Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 Ordering data. The acquisition document should specify the following:
 - a. Complete part number (see 1.2).
 - b. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - c. Requirements for certificate of compliance, if applicable.
 - d. Requirements for notification of change of product or process to the contracting activity in addition to notification to the qualifying activity, if applicable.
 - e. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - f. Requirements for product assurance options.
 - g. Requirements for special lead lengths, or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements shall not apply to direct purchase by or direct shipment to the Government.
 - h. Requirements for "JAN" marking.

97

6.3 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-M-38510, MIL-STD-1331, and as follows:

GND - - - - - - - - Ground zero voltage potential I_{IN} - - - - - - - Current flowing into an input terminal V_{IN} - - - - - - - Voltage level at an input terminal

6.4 Logistic support. Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2) and lead material and finish C (see 3.3). Longer length leads and lead forming shall not affect the part number.

6.5 Substitutability. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for MIL-M-35810 types or as a waiver of any of the provisions of MIL-M-38510.

Military device	Generic-industry		
type	type		
01	54F074		
02	54F109		
03	54F112		
04	54F175		
05	54F374		
06	54F534		
07	54F174		
08	54F378		
09	54F379		
10	54F574		
11	54F564		

6.6 <u>Manufacturers' designation</u>. Manufacturers' circuits which form a part of this specification are designated with an "X" as shown in table IV herein.

	Manufacturer				
Device	Circuit A	Circuit B	Circuit C	Circuit D	
type	National Semiconductor	Motorola	Signetics	Texas Instruments	
01		x	x	X	
02	i x	i x	X	X	
03	i x	İ	I X I	X	
04	i x	i x	X 1	X	
05	i x	j x	i x 1	X	
06	X	i x			
07	X	X			
08	I X	X			
09	X	X			
10	I X		1		
11	I X				

TABLE IV. Manufacturers' designation.

98

6.7 <u>Changes from previous issue</u>. Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

CONCLUDING MATERIAL

99

Custodians: Army - ER Navy - EC Air Force - 17 Review activities: Army - AR, MI Navy - SH, OS, TD Air Force - 11, 19, 85, 99 DLA - ES User activities: Army - SM Navy - AS, CG, MC

Preparing activity: Air Force - 17

*

Agent: DLA - ES (Project 5962-1137)

U.S. GOVERNMENT PRINTING OFFICE: 1989 - 704-034/14256