

Programmable 1-PLL LVPECL Clock Generator IC

November 2000

Preliminary Information

1.0 Features

- Single Phase Lock Loop with programmable Feedback and Post Dividers
- Differential 3.3V LVPECL output drive
- Serial three-wire programming interface
- Parallel programming interface for power-on
- Internal crystal reference oscillator and integrated loop filter require no external components
- Output enable provides tristate control of LVPECL clock driver
- Accepts 5MHz to 27MHz crystal resonators
- CMOS version of industry standard x429 device
- Available in 28-pin (0.300") SOIC

2.0 Description

The FS71429 is a general purpose programmable CMOS clock generator IC designed to minimize cost and component count in a variety of high speed electronic systems. Both serial and parallel programming interfaces are provided.

Figure 1: Pin Configuration

		1
M[0] 1	0	28 PLOAD#
M[1] 2		27 OE
M[2] 3		26 XOUT
M[3] 4		25 XIN
M[4] 5		24 n/c
M[5] ြ	л.	23 n/c
M[6] 7	57	22 VDD_A
M[7] 🛽	14	21 SLOAD
M[8] 🤋	29	20 SDATA
N[0] 10		19 SCLK
N[1] 11		18 VDD_O
VSS_A / VSS 12		17 FOUTP
TEST 13		16 FOUTN
VDD 14		15 VSS_O
		1

Figure 2: Block Diagram

0\$9000

Programmable 1-PLL LVPECL Clock Generator IC

Preliminary Information

November 2000

Table 1: Pin Descriptions

Key: AI = Analog Input; AO = Analog Output; DI = Digital Input; DI^U = Input with Internal Pull-Up; DI_D = Input with Internal Pull-Down; DIO = Digital Input/Output; DI-3 = Three-Level Digital Input, DO = Digital Output; P = Power/Ground; # = Active Low pin

PIN	TYPE	NAME	DESCRIPTION				
1	DI ^U	M[0]	Feedback Divider modulus 0				
2	DI ^U	M[1]	Feedback Divider modulus 1				
3	DI ^U	M[2]	Feedback Divider modulus 2				
4	DI ^U	M[3]	Feedback Divider modulus 3	The logic levels on these pins:			
5	DI ^U	M[4]	Feedback Divider modulus 4	1) are sampled and latched on the <i>low-to-high</i>			
6	DI ^U	M[5]	Feedback Divider modulus 5	transition of PLOAD#, or			
7	DI ^U	M[6]	Feedback Divider modulus 6	viders if PLOAD# is <i>low</i> , or			
8	DI ^U	M[7]	Feedback Divider modulus 7	3) are ignored if PLOAD# is <i>high</i> .			
9	DI ^U	M[8]	Feedback Divider modulus 8				
10	DI ^U	N[0]	Post Divider modulus 0				
11	DI ^U	N[1]	Post Divider modulus 1				
12	Р	VSS / VSS_A	Ground for internal logic and PLL core				
13	DO	TEST	LVTTL Test mode output. The function of the serial bits T_0:2, as given in Table 3.	this pin is controlled by Test Logic enabled through			
14	Р	VDD	3.3V power supply for internal logic				
15	Р	VSS_O	Ground for LVPECL output pins and pre-drivers				
16	AO	FOUTN	Low-voltage positive-referenced ECL (LVPECL) output (complementary)				
17	AO	FOUTP	Low-voltage positive-referenced ECL (LV	PECL) output (<i>true</i>)			
18	Р	VDD_O	3.3V power supply for the LVPECL output	t pins and pre-drivers			
19	DID	SCLK	LVTTL serial interface clock for data I/O. serial shift registers on the rising edges (I	Data present on SDATA is clocked into the internal ow-to-high transitions) on this pin.			
20	DI _D	SDATA	LVTTL serial interface data input into the	internal shift registers			
			Active-high LVTTL serial load signal latch into the Feedback and Post Dividers, and	es the contents of the internal serial shift registers Test Logic. The data in the shift registers are:			
21	DID	SLOAD	1) latched into the dividers and test log	ic on the <i>high-to-low</i> transition of SLOAD, or			
			2) directly control the dividers and test	logic if SLOAD is <i>high</i> , or			
			3) are ignored if SLOAD is <i>low</i> .				
22	Р	VDD_A	3.3V power supply for PLL core				
23, 24	-	n/c	No connection				
25	AI	XIN	Crystal oscillator input				
26	AO	XOUT	Crystal oscillator feedback. This pin may is left floating.	be overdriven with an external reference clock if XIN			
27	DI ^U	OE	Active-high LVTTL output enable input				
28	DI ^U	PLOAD#	Active-low parallel load signal. When this pin is low, the parallel load latches are transparent. Logic levels on pins 1-11 are latched into the device on the low-to-high transition of the PLOAD# pin.				

Programmable 1-PLL LVPECL Clock Generator IC

November 2000

3.0 Device Operation

The phase-locked loop (PLL) is a standard phase- and frequency-locked loop architecture that multiplies a crystal reference frequency to a desired output frequency by a ratio of integers. This frequency multiplication is exact.

As shown in Figure 3, the PLL consists of a fixed divideby-8 circuit, a Phase-Frequency Detector (PFD), a charge pump, an internal loop filter, a Voltage-Controlled Oscillator (VCO), a Feedback Divider, and a Post Divider.

During operation the crystal frequency (f_{XIN}), generated by the on-board crystal oscillator, is divided by eight and fed into the PFD.

The PFD controls the frequency of the VCO (f_{VCO}) through the charge pump and loop filter. The VCO provides a high-speed, low noise, continuously variable frequency clock source for the PLL. The output of the VCO is fed back to the PFD through the Feedback Divider (the modulus is denoted by M) to close the loop.

The PFD will drive the VCO up or down in frequency until the divided crystal frequency and the divided VCO frequency appearing at the PFD inputs are equal.

Preliminary Information

The input/output relationship between the crystal frequency and the VCO frequency is

$$f_{VCO} = f_{XIN} \left(\frac{M}{8} \right)$$
 Equation 1

The Post Divider (the modulus is denoted by N) allows the VCO to be operated in a narrower range of frequencies compared to the variety of output clock frequencies that the device is required to generate. The function can be expressed as:

$$f_{OUT} = \left(\frac{f_{VCO}}{N}\right)$$
 Equation 2

where f_{VCO} is determined in Equation 1.

Taking Equation 1 and 2 together, the basic PLL equation changes to

$$f_{OUT} = f_{XIN} \left(\frac{M}{8} \right) \left(\frac{1}{N} \right)$$
 Equation 3

where *M* and *N* are the Feedback and Post Divider moduli respectively, and f_{OUT} and f_{XIN} are the output and crystal oscillator frequencies.

Figure 3: PLL Diagram

Programmable 1-PLL LVPECL Clock Generator IC

Preliminary Information

4.0 Register Programming

4.1 Feedback Divider

The Feedback Divider is a straightforward 9-bit divider whose value is directly controlled by the bits M[8:0]. These bits may be programmed in a serial fashion, via SLOAD, SCLK, and SDATA, or in a parallel fashion, via M[8] through M[0], and PLOAD#.

4.2 Post Divider

The Post Divider is controlled by bits N[0] and N[1]. These bits may be programmed serially, through SLOAD, SCLK, and SDATA, or in a parallel fashion, through N[0], N[1], and PLOAD#.

Table 2: Post Divider Function

N[1]	N[0]	POST DIVIDER
0	0	÷ 2
0	1	÷ 4
1	0	÷ 8
1	1	÷ 16

4.3 Test Mode

The Test Mode is accessible only through the serial programming bits T[2:0]. The Mode cannot be programmed through the parallel interface. T[2:0] are cleared to 000 when PLOAD# is low.

When T[2:0] is set to 100, the device is placed in a PLL bypass mode. The clock signal present at SCLK is fed directly into the Feedback (M) and Post (N) dividers, and the Post Divider drives the FOUTP/FOUTN pins, while the Feedback Divider drives the TEST output.

Table 3: Test Mode Function

SERIAL DATA			OUTPUT PIN FUNCTION			
T[2]	T[1]	T[0]	TEST	FOUTP, FOUTN		
0	0	0	Shift register data out	$f_{VCO} \div N$		
0	0	1	High (1)	$f_{VCO} \div N$		
0	1	0	$f_{XIN} \div 8$	$f_{VCO} \div N$		
0	1	1	f _{VCO} ÷ M (feedback out)	$f_{VCO} \div N$		
1	0	0	$f_{VCO} \div N$	$f_{VCO} \div N$		
1	0	1	Low (0)	$f_{VCO} \div N$		
1	1	0	SCLK ÷ M	SCLK ÷ N		
1	1	1	$f_{VCO} \div 4N$	$f_{VCO} \div N$		

Table 4: Feedback Divider Function

M[8] 256	M[7] 128	M[6] 64	M[5] 32	M[4] 16	M[3] 8	M[2] 4	M[1] 2	M[0] 1	FEEDBACK DIVIDER	VCO FREQUENCY (f _{vco})
0	1	1	0	0	1	0	0	0	200	25.000 x f _{XIN}
0	1	1	0	0	1	0	0	1	201	25.125 x f _{XIN}
0	1	1	0	0	1	0	1	0	202	25.250 x f _{XIN}
0	1	1	0	0	1	0	1	1	203	25.375 x f _{XIN}
•	•	•	•	•	•	•	•	•		
•	•	•	•	•	•	•	•	•		
1	1	0	0	0	1	1	0	1	397	49.625 x f _{xin}
1	1	0	0	0	1	1	1	0	398	49.750 x f _{XIN}
1	1	0	0	0	1	1	1	1	399	49.875 x f _{XIN}
1	1	0	0	1	0	0	0	0	400	50.000 x f _{XIN}

NOTE: f_{XIN} is the crystal reference frequency, and f_{VCO} is the VCO frequency, per Figure 3.

November 2000

Programmable 1-PLL LVPECL Clock Generator IC

Figure 4: Parallel Programming

November 2000

Preliminary Information

5.0 Device Operation

M[8:0] and N[1:0] are expected to be configured on power-up through the parallel programming interface. Once powered up, the M and N dividers can be reprogrammed through the serial interface. In this fashion the device can be powered up with a default output frequency, and then fine-tuned by the user for an alternate output frequency.

As noted in Section 3.0, the output frequency is determined by configuring the Feedback (M) and Post (N) dividers based on the crystal frequency.

$$f_{OUT} = \frac{f_{XTAL}}{8} \times \frac{M}{N}$$

Note that the VCO has a maximum frequency, as given in Table 8. It is possible to program a value of M with a given crystal frequency that may exceed the maximum VCO frequency, so care must be taken to avoid this. The equation for the VCO is given in Equation 1.

5.1 Programming Interface

Both the serial and/or parallel interface can be used to load the Feedback (M) and Post (N) dividers. When using the parallel interface, the logic values present on the M[8:0] and N[1:0] pins determine the divider modulus. A low-to-high transition on PLOAD# latches the information on the M[8:0] and N[1:0] pins into the respective dividers.

When PLOAD# is low, the latches are transparent to the M[8:0] and N[1:0] pins. Therefore, any changes on the M and N pins immediately change the Feedback and Post dividers and directly affect the output frequency present on FOUTP/FOUTN. If the serial interface will be used, PLOAD# should be held high so that the logic levels on the M and N pins will be ignored.

To use the serial interface, the SLOAD pin must be held low. The SCLK signal is used to sample data present on SDATA and to load the data into the shift register. For each register the most significant bit is shifted in first (T[2] for the Test Register, N[1] for the Post Divider, and M[8] for the Feedback Divider).

A pulse on the SLOAD pin transfers the shifted data into the Test Register, Post, and Feedback Dividers. A highto-low transition on SLOAD latches the shifted data.

5.2 Oscillator Overdrive

For applications where an external reference clock is provided (and the crystal oscillator is not required), the reference clock should be connected to XOUT and XIN should be left unconnected (float).

For best results, make sure the reference clock signal is as jitter-free as possible, can drive a 40pF load with fast rise and fall times, and can swing rail-to-rail.

If the reference clock is not a rail-to-rail signal, the reference must be AC coupled to XOUT through a 0.01μ F or 0.1μ F capacitor. A minimum 1V peak-to-peak signal is required to drive the internal differential oscillator buffer.

Data latched here First Bit (MSB) SLOAD Last Bit (LSB) SCLK N1 N0 M8 M7 M6 M5 SDATA T2 Τ0 M4 M3 M2 M1 Т1 Post Test Mode Feedback Divider Divider

Figure 5: Serial Programming

Programmable 1-PLL LVPECL Clock Generator IC

Preliminary Information

November 2000

6.0 Electrical Specifications

Table 5: Absolute Maximum Ratings

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These conditions represent a stress rating only, and functional operation of the device at these or any other conditions above the operational limits noted in this specification is not implied. Exposure to maximum rating conditions for extended conditions may affect device performance, functionality, and reliability.

PARAMETER	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage, dc (V _{SS} = ground)	V _{DD}	V _{SS} -0.5	4.0	V
Input Voltage, dc	VI	V _{SS} -0.5	V _{DD} +0.5	V
Output Voltage, dc	Vo	V _{SS} -0.5	V _{DD} +0.5	V
Input Clamp Current, dc ($V_1 < 0$ or $V_1 > V_{DD}$)	I _{IK}	-50	50	mA
Output Clamp Current, dc (V _I < 0 or V _I > V _{DD})	I _{ок}	-50	50	mA
Storage Temperature Range (non-condensing)	Ts	-65	150	°C
Ambient Temperature Range, Under Bias	T _A	-55	125	°C
Junction Temperature	TJ		150	°C
Lead Temperature (soldering, 10s)			260	°C
Input Static Discharge Voltage Protection (MIL-STD 883E, Method 3015.7)			2	kV

CAUTION: ELECTROSTATIC SENSITIVE DEVICE

Permanent damage resulting in a loss of functionality or performance may occur if this device is subjected to a high-energy electrostatic discharge.

Table 6: Operating Conditions

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Supply Voltage	$V_{DD,} V_{DD_A}$	3.3V ± 10%	3	3.3	3.6	V
Supply Voltage	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		v			
Ambient Operating Temperature Range	T _A	Commercial	0		70	°C
Crystal Resonator Frequency	f _{XIN}		5		27	MHz
Crystal Resonator Loading Capacitance	C_{XL}	As seen by an external crystal between XIN and XOUT		18		pF

Programmable 1-PLL LVPECL Clock Generator IC

Preliminary Information

November 2000

Table 7: DC Electrical Specifications

Unless otherwise stated, V_{DD} = 3.3V, no load on any output, and ambient temperature range T_A = 0°C to 70°C. Parameters denoted with an asterisk (*) represent nominal characterization data and are not currently production tested to any specific limits. MIN and MAX characterization data are ±3 σ from typical. Negative currents indicate current flows out of the device.

PARAMETER SYMBOL CONDITIONS/DESCRIPTION		MIN.	TYP.	MAX.	UNITS	
Overall						
Supply Current, Dynamic	I _{DD}	f _{XIN} = 16.667MHz, f _O = 200MHz		56		mA
Supply Current, Static	I _{DDL}	f_{XIN} = 16.667MHz, outputs disabled (OE low)		50		mA
Parallel Interface Inputs (M[8:0], N[1:0],	PLOAD#), O	utput Enable Input (OE)	1 1		4	
High-Level Input Voltage	VIH	V _{DD} = 3.6V	2.0		V _{DD} + 0.3	V
Low-Level Input Voltage	VIL	V _{DD} = 3.6V	$V_{\text{SS}}-0.3$		0.8	V
High-Level Input Current	I _{IH}				1	μA
Low-Level Input Current (pull-up)	I _{IL}	V ₁ = 0V		-26		μA
Serial Interface Inputs (SLOAD, SCLK,	SDATA)		L L			
High-Level Input Voltage	VIH	V _{DD} = 3.6V	2.0		V _{DD} + 0.3	V
Low-Level Input Voltage	V _{IL}	V _{DD} = 3.6V	$V_{\text{SS}}-0.3$		0.8	V
High-Level Input Current (pull-down)	Iн	V ₁ = 3.6V		26		μA
Low-Level Input Current	IIL		-1			μA
Crystal Oscillator Feedback (XIN)			<u> </u>		- II -	
Threshold Bias Voltage	V _{TH}	V _{DD} = 3.6V		1.7		V
High-Level Input Current	I _{IH}			42		μA
Low-Level Input Current	IIL	V _{DD} = 3.6V		-42		μA
Crystal Oscillator Drive (XOUT)	1		1 1		1 1	
High-Level Output Source Current	I _{OH}	$V_{DD} = V(XIN) = 3.6V, V_{O} = 0V$		-13		mA
Low-Level Output Sink Current	I _{OL}	$V_{DD} = V_{O} = 3.6V, V(XIN) = 0V$		10		mA
Input Loading Capacitance *	C _{L(XOUT)}	As seen by an external clock driver on XOUT; XIN unconnected		36		pF
Test Output (TEST)			<u> </u>			
High-Level Output Source Current	I _{ОН}	V ₀ = 2.4V		-2.0		mA
Low-Level Output Sink Current	IOL	V ₀ = 0.4V		2.0		mA
LVPECL Clock Outputs (FOUTP, FOUT	N)					
High-Level Output Voltage	V _{OH}	50 Ω to V_{DD_O} - 2.0V, V_{DD_O} = 3.3V	V _{DD_0} – 1.075		V _{DD_0} – 0.830	V
Low-Level Output Voltage	V _{OL}	50 Ω to V_{DD_O} - 2.0V, V_{DD_O} = 3.3V	V _{DD_0} – 1.860		V _{DD_0} – 1.570	V
Crossover Voltage	V _x	50 to V_{DD_O} - 2.0V, V_{DD_O} = 3.3V		1.92		V
Common Mode Voltage (peak-peak)	V _{CM}	50 to V_{DD_O} - 2.0V, V_{DD_O} = 3.3V		250		mV
Differential Swing	V _{PP}	50 to V_{DD_O} – 2.0V, V_{DD_O} = 3.3V				
Low-Level Output Sink Current	I _{OL}	V ₀ = 1.44V				mA
Tristate Output Current	Iz		-10		10	μΑ
Short Circuit Sink Current *	I _{SCL}	$V_{DD} = V_0 = 3.6V$, shorted for 30s, max.		32		mA

Programmable 1-PLL LVPECL Clock Generator IC

Preliminary Information

November 2000

Table 8: AC Timing Specifications

Unless otherwise stated, $V_{DD} = 3.3V$, no load on any output, and ambient temperature range $T_A = 0^{\circ}C$ to 70°C. Parameters denoted with an asterisk (*) represent nominal characterization data and are not currently production tested to any specific limits. MIN and MAX characterization data are $\pm 3\sigma$ from typical.

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION CLOCK (MHz)		MIN.	TYP.	MAX.	UNITS
Overall							
Output Frequency *	f _o					500	MHz
VCO Frequency *	f _{vco}					1000	MHz
Tristate Enable Delay *	$t_{\text{PZL}}, t_{\text{PZH}}$			1		8	ns
Tristate Disable Delay *	$t_{\text{PLZ},} t_{\text{PHZ}}$			1		8	ns
Clock Stabilization Time *	t _{stb}					3	ms
Divider Modulus							
Feedback Divider	М			1		511	
Post Divider	N			2		16	
Interface Timing Specifications							
SCLK Frequency						10	MHz
		SDATA to SCLK		20			
Setup Time	t _{su}	SCLK to SLOAD	20			ns	
		M, N to PLOAD#		20			
Hold Time	+	SDATA to SCLK		20			200
	чно	M, N to PLOAD#					115
Pulso Width	+	SLOAD		50			200
	Lpw	PLOAD#		50			115
LVPECL Clock Outputs (FOUTP,	FOUTN)						
Duty Cycle *	d _c	Ratio of high pulse width to one clock period, measured at $V_{\rm X}$	200.0	45	49	55	%
Jitter, Cycle-to-Cycle (peak-peak)*	t _{j(CC)}	From rising edge to the next rising edge at V_X over 10k cycles, f_{XIN} =16.667MHz, M=24, N=2	200.0	-50		+50	ps
Rise Time *	tr	20% to 80%, 50 Ω to V_{DD_O} – 2.0V			420		ps
Fall Time *	t _f	80% to 20 $\overline{\%}$, 50 Ω to V _{DD_O} – 2.0V			440		ps

Figure 6: Serial Timing

Figure 7: Parallel Timing

Programmable 1-PLL LVPECL Clock Generator IC

Preliminary Information

November 2000

7.0 Package Information

Table 9: 28-pin SOIC (0.300") Package Dimensions

	DIMENSIONS							
	INC	HES	MILLIMETERS					
	MIN.	MAX.	MIN.	MAX.				
А	0.0926	0.1043	2.35	2.65				
A1	0.0040	0.0118	0.10	0.30				
b	0.0130	0.0200	0.33	0.51				
С	0.0091	0.0125	0.23	0.32				
D	0.6969	0.7125	17.70	18.10				
Е	0.2914	0.2992	7.40	7.60				
е	0.050	BSC	1.27	BSC				
Н	0.394	0.419	10.00	10.65				
h	0.010	0.029	0.25	0.75				
L	0.016	0.050	0.40	1.27				
α	0 °	8 °	0 °	8 °				

Table 10: 28-pin SOIC (0.300") Package Characteristics

PARAMETER	SYMBOL	CONDITIONS/DESCRIPTION	TYP.	UNITS
Thermal Impedance, Junction to Free-Air	ΘJA	Air flow = 0 m/s, single-layer PCB	77	°C/W
PARAMETER Thermal Impedance, Junction to Free-Air Lead Inductance, Self Lead Inductance, Mutual Lead Capacitance, Bulk		Corner lead, plus wire	5.914	2
Lead Inductance, Sen	L11	Center lead, plus wire	2.187	ПП
Lead Inductance, Mutual	1	Corner lead plus wire, to first adjacent lead	2.240	
	L ₁₂	Center lead plus wire, to first adjacent lead	0.647	۶U
	$\begin{tabular}{ c c c } \hline SYMBOL & CONDITIONS/DESCRIPTION & \hline \end{tabular}$ ree-Air Θ_{JA} Air flow = 0 m/s, single-layer PCB & \hline \end{tabular} $\begin{tabular}{ c c c c } \hline \end{tabular} Corner lead, plus wire & \hline \end{tabular} Center lead, plus wire & \hline \end{tabular} Center lead plus wire, to first adjacent lead & \hline \end{tabular} Center lead plus wire, to next adjacent lead & \hline \end{tabular} Center lead plus wire, to next adjacent lead & \hline \end{tabular} Center lead plus wire, to next adjacent lead & \hline \end{tabular} Center lead plus wire, to next adjacent lead & \hline \end{tabular} Center lead plus wire to V_{SS} & \hline \end{tabular} C_{11} & Any corner lead plus wire to V_{SS} & \hline \end{tabular} C_{12} & Any corner lead plus wire to first adjacent lead & \hline \end{tabular} C_{13} & Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} Any corner lead plus wire to next adjacent lead & \hline \end{tabular} A$	Corner lead plus wire, to next adjacent lead	1.108	
		0.366		
Laad Canacitanaa Bulk	C	Any corner lead plus wire to V _{SS}	1.173	۲
	U ₁₁	Any center lead plus wire to V _{SS}	0.419	рг
	6	Any corner lead plus wire to first adjacent lead	0.463	
Load Canacitanaa Mutual	U ₁₂	Any center lead plus wire to first adjacent lead	0.084	pF
	C	Any corner lead plus wire to next adjacent lead	0.045	
	ce, Junction to Free-Air Θ_{JA} Air flow = 0 m/s, single-layer PCBSelf L_{11} $\frac{Corner lead, plus wire}{Center lead, plus wire}$ Mutual L_{12} $\frac{Corner lead plus wire, to first adjacent lead}{Center lead plus wire, to first adjacent lead}$ Mutual L_{12} $\frac{Corner lead plus wire, to first adjacent lead}{Center lead plus wire, to next adjacent lead}$ L_{13} $\frac{Corner lead plus wire, to next adjacent lead}{Center lead plus wire, to next adjacent lead}$ $e, Bulk$ C_{11} $\frac{Any corner lead plus wire to V_{SS}}{Any center lead plus wire to V_{SS}}$ $e, Mutual$ C_{12} $\frac{Any corner lead plus wire to first adjacent lead}{Any center lead plus wire to first adjacent lead}$ $Any center lead plus wire to next adjacent lead}{Any center lead plus wire to next adjacent lead}$ $Any center lead plus wire to next adjacent lead}$	Any center lead plus wire to next adjacent lead	0.013	

Programmable 1-PLL LVPECL Clock Generator IC

Preliminary Information

November 2000

8.0 Ordering Information

8.1 Device Ordering Codes

DEVICE NUMBER	FONT	ORDERING CODE	PACKAGE TYPE	OPERATING TEMPERATURE RANGE	SHIPPING CONFIGURATION
FS71429	-01	13715-801	28-pin (0.300") SOIC (Small Outline Package)	0° C to 70° C (Commercial)	Tape-and-Reel

Copyright © 2000 American Microsystems, Inc.

Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMI makes no warranty, express, statutory implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI makes no warranty of merchantability or fitness for any purposes. AMI reserves the right to discontinue production and change specifications and prices at any time and without notice. AMI's products are intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment, are specifically not recommended without additional processing by AMI for such applications.

American Microsystems, Inc., 2300 Buckskin Rd., Pocatello, ID 83201, (208) 233-4690, FAX (208) 234-6796, WWW Address: <u>http://www.amis.com</u> E-mail: <u>tgp@amis.com</u>

