
PRELIMINARY Notice: This is not a final specification. Notice: This is not a final specification cha Specification characteristic limits are subject to charact

MITSUBISHI Pch POWER MOSFET



**HIGH-SPEED SWITCHING USE** 



## **APPLICATION**

Motor control, Lamp control, Solenoid control DC-DC converter, etc.

#### MAXIMUM RATINGS (Tc = 25°C)

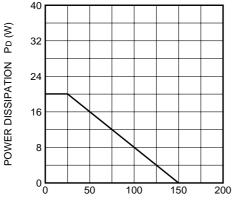
| Symbol | Parameter                        | Conditions    | Ratings    | Unit |  |
|--------|----------------------------------|---------------|------------|------|--|
| VDSS   | Drain-source voltage             | VGS = 0V      | -100       | V    |  |
| Vgss   | Gate-source voltage              | VDS = 0V      | ±20        | V    |  |
| ID     | Drain current                    |               | -3         | A    |  |
| ldм    | Drain current (Pulsed)           |               | -12        | A    |  |
| Ida    | Avalanche drain current (Pulsed) | L = 100µH     | -3         | A    |  |
| Is     | Source current                   |               | -3         | A    |  |
| ISM    | Source current (Pulsed)          |               | -12        | A    |  |
| PD     | Maximum power dissipation        |               | 20         | W    |  |
| Tch    | Channel temperature              |               | -55 ~ +150 | °C   |  |
| Tstg   | Storage temperature              |               | -55 ~ +150 | °C   |  |
| _      | Weight                           | Typical value | 1.2        | g    |  |



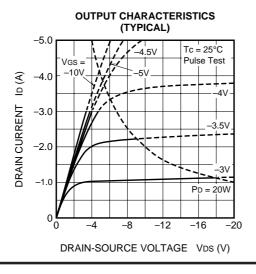
Jan.1999



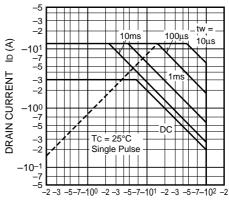
# FX3VSJ-2


**HIGH-SPEED SWITCHING USE** 

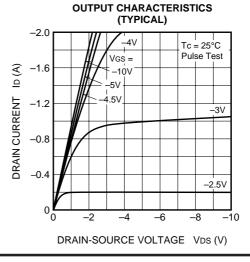
### **ELECTRICAL CHARACTERISTICS** (Tch = 25°C)


| Symbol     | Parameter                        | Test conditions                                         | Limits |      |      | Linit |
|------------|----------------------------------|---------------------------------------------------------|--------|------|------|-------|
|            |                                  |                                                         | Min.   | Тур. | Max. | Unit  |
| V (BR) DSS | Drain-source breakdown voltage   | ID = -1mA, $VGS = 0V$                                   | -100   | _    | _    | V     |
| IGSS       | Gate-source leakage current      | $VGS = \pm 20V, VDS = 0V$                               | _      | —    | ±0.1 | μΑ    |
| IDSS       | Drain-source leakage current     | VDS = -100V, VGS = 0V                                   | _      | —    | -0.1 | mA    |
| VGS (th)   | Gate-source threshold voltage    | ID = -1mA, $VDS = -10V$                                 | -1.0   | -1.5 | -2.0 | V     |
| rds (ON)   | Drain-source on-state resistance | ID = -1A, $VGS = -10V$                                  | _      | 1.0  | 1.3  | Ω     |
| rds (ON)   | Drain-source on-state resistance | ID = -1A, $VGS = -4V$                                   | _      | 1.2  | 1.6  | Ω     |
| VDS (ON)   | Drain-source on-state voltage    | ID = -1A, VGS = -10V                                    | _      | -1.0 | -1.3 | V     |
| yfs        | Forward transfer admittance      | ID = -1A, $VDS = -5V$                                   | _      | 1.9  | _    | S     |
| Ciss       | Input capacitance                | VDS = -10V, VGS = 0V, f = 1MHz                          | _      | 480  |      | pF    |
| Coss       | Output capacitance               |                                                         | _      | 65   | _    | рF    |
| Crss       | Reverse transfer capacitance     |                                                         | _      | 19   | _    | pF    |
| td (on)    | Turn-on delay time               | -<br>Vdd = -50V, Id = -1A, Vgs = -10V, Rgen = Rgs = 50Ω | _      | 8    | _    | ns    |
| tr         | Rise time                        |                                                         | _      | 5    | _    | ns    |
| td (off)   | Turn-off delay time              |                                                         | _      | 29   | _    | ns    |
| tf         | Fall time                        |                                                         | _      | 15   | _    | ns    |
| Vsd        | Source-drain voltage             | IS = -1A, $VGS = 0V$                                    | _      | -1.0 | -1.5 | V     |
| Rth (ch-c) | Thermal resistance               | Channel to case                                         | _      | _    | 6.25 | °C/W  |
| trr        | Reverse recovery time            | Is = -3A, dis/dt = 100A/μs                              | _      | 70   | _    | ns    |

#### PERFORMANCE CURVES







CASE TEMPERATURE TC (°C)



MAXIMUM SAFE OPERATING AREA



DRAIN-SOURCE VOLTAGE VDs (V)



Jan.1999



**MITSUBISHI Pch POWER MOSFET** 

# FX3VSJ-2

### **HIGH-SPEED SWITCHING USE**

4V

 $Tc = 25^{\circ}C$ 

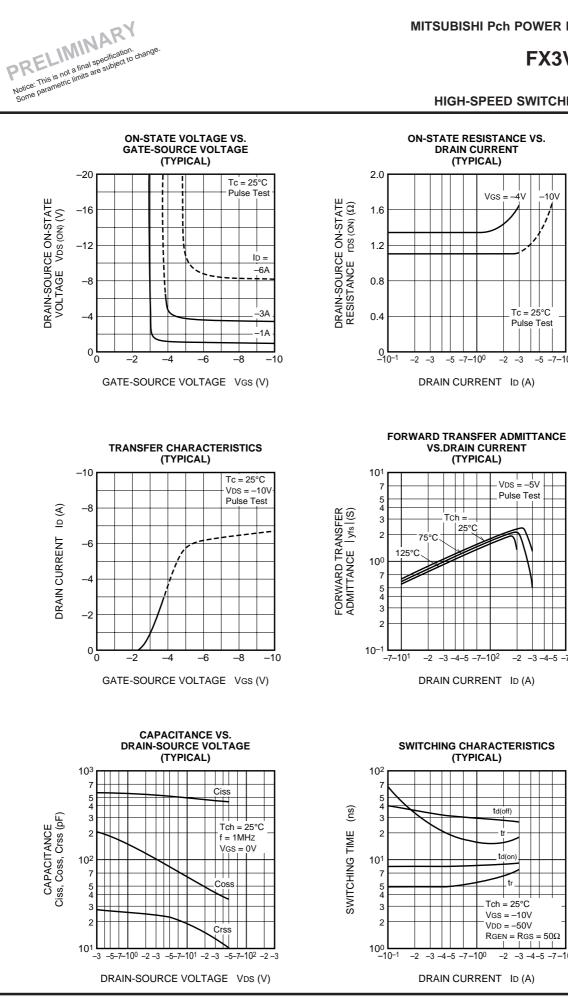
Pulse Test

-5 -7-101

-2 -3

VDS = -5V

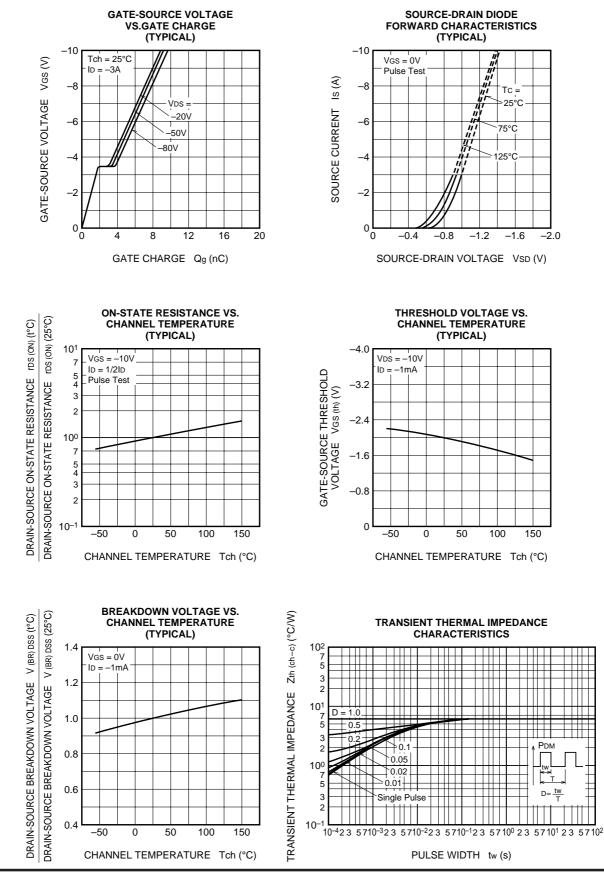
-2 -3 -4-5 -7


td(on

tr

-2

-3 -4-5 -7-101


-10V



Jan.1999

# FX3VSJ-2

### HIGH-SPEED SWITCHING USE



PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change

