INCH-POUND

MIL-M-38510/22D
12 August 2005
SUPERSEDING
MIL-M-38510/22C
27 February 1989

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, HIGH-SPEED TTL, FLIP-FLOPS, MONOLITHIC SILICON

Inactive for new design after 6 September 1996.
This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE
1.1 Scope. This specification covers the detail requirements for monolithic silicon, high speed TTL, bistable logic microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.4).
1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535.
1.2.1 Device types. The device types are as follows:

Device type	Circuit
01	Single J-K master-slave flip-flop
02	Dual J-K master-slave flip-flop
03	Dual, D-type edge-triggered flip-flop
04	Dual J-K master-slave flip-flop
05	Single J-K edge-triggered flip-flop
06	Dual J-K edge-triggered flip-flop

1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
1.2.3 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
A	GDFP5-F14 or CDFP6-F14	14	Flat pack
B	GDFP4-F14	14	Flat pack
C	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack

[^0]
1.3 Absolute maximum ratings.

Supply voltage range	-0.5 to 7.0 V dc
Input voltage range	-1.5 V dc at 12 mA to 5.5 V dc
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum power dissipation per flip-flop (P_{D}): 1/	
Device types 01, 02, 03, and 04	137 mW
Device types 05 and 06	210 mW
Lead temperature (soldering, 10 seconds)	$+300^{\circ} \mathrm{C}$
Thermal resistance, junction-to-case (θ_{Jc}):	(See MIL-STD-1835)
Junction temperature (T_{J})	$+175^{\circ} \mathrm{C}$

1.4 Recommended operating conditions.

Supply voltage .. 4.5 V dc minimum to 5.5 V dc
maximum

2. APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3,4 , or 5 of this specification, whether or not they are listed.

[^1]
2.2 Government documents.

2.2.1 Specifications and standards. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

```
MIL-STD-883 - Test Method Standard for Microelectronics.
MIL-STD-1835 - Interface Standard Electronic Component Case Outlines
```

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
2.3 Order of precedence. In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.3).
3.2 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
3.3 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
3.3.1 Case outlines. The case outlines shall be as specified in 1.2.3.
3.3.2 Terminal connections. The terminal connections shall be as specified on figures 1 .
3.3.3 Truth tables. The truth tables shall be as specified on figures 2.
3.3.4 Schematic circuits. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
3.5 Electrical performance characteristics. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
3.6 Electrical test requirements. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
3.8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 3 (see MIL-PRF-38535, appendix A).

TABLE I. Electrical performance characteristics.

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified		Device types	Limits		Unit	
				Min	Max			
Maximum clock frequency 2/	$\mathrm{f}_{\text {MAX }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	Figure 4		01	20		MHz
			Figure 6	02	20			
			Figure 8	03	28			
			Figure 11	04	20			
			Figure 13	05	30			
			Figure 15	06	30			
Propagation delay to a logical 1 (clear or preset to output)	tplH1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	Figure 3	01	2	20	ns	
			Figure 5	02	"	20		
			Figure 7	03	"	27		
			Figure 10	04	"	20		
			Figure 12	05	"	28		
			Figure 14	06	"	18		
Propagation delay to a logical 0 (clear or preset to output)	$\mathrm{t}_{\text {PLL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	Figure 3	01	2	31	ns	
			Figure 5	02	"	31		
			Figure 7	03	"	38		
			Figure 10	04	"	32		
			Figure 12	05	"	28		
			Figure 14	06	"	46		
Propagation delay to a logical 1 (clock to output)	tpLH2	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	Figure 4	01	2	28	ns	
			Figure 6	02	"	35		
			Figure 8 and 9	03	"	22		
			Figure 11	04	"	28		
			Figure 13	05	"	23		
			Figure 15	06	"	23		
Propagation delay to a logical 0 (clock to output)	$\mathrm{t}_{\text {PHL2 }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=280 \Omega \end{aligned}$	Figure 4	01	2	37	ns	
			Figure 6	02	"	42		
			Figure 8 and 9	03	"	28		
			Figure 11	04	"	36		
			Figure 13	05	"	28		
			Figure 15	06	"	28		

1/ Not more than one output should be shorted at a time.
2/ $f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be onehalf of the input frequency.

TABLE II. Electrical test requirements.

MIL-PRF-38535 test requirements 	Class S devices	Class B devices
	1	1
Final electrical test parameters	$1 *, 2,3,7$, $9,10,11$	$1^{*}, 2,3,7,9$
Group A test requirements	$1,2,3,7,8$, $9,10,11$	$1,2,3,7,9$
Group B electrical test parameters when using the method 5005 QCI option	$1,2,3$	$\mathrm{~N} / \mathrm{A}$
Group C end-point electrical parameters	$1,2,3$	$1,2,3$
Additional electrical subgroups for Group C periodic inspections	N / A	10,11
Group D end-point electrical parameters	$1,2,3$	$1,2,3$

*PDA applies to subgroup 1.

4. VERIFICATION

4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
4.2 Screening. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and conformance inspection. The following additional criteria shall apply:
a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
c. Additional screening for space level product shall be as specified in MIL-PRF-38535.
4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
4.4 Technology Conformance Inspection (TCI). Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
a. Tests shall be as specified in table II herein.
b. Subgroups 4,5 , and 6 shall be omitted.
4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
a. End-point electrical parameters shall be as specified in table II herein.
b. Subgroups 3 and 4 shall be added to the group C inspection requirements for class C devices and shall consist of the tests, conditions, and limits specified for subgroups 10 and 11 of group A. The sample size series number shall be 5 (45 devices accept on 0).
c. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
4.4.4 Group D inspection. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
4.5 Methods of inspection. Methods of inspection shall be as specified and as follows:
4.5.1 Voltage and current. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

FIGURE 1. Terminal connections.

DEVICE TYPE 03

DEVICE TYPE 04
CASES E AND F

FIGURE 1. Terminal connections - Continued.

DEVICE TYPE 05

FIGURE 1. Terminal connections - Continued.

Device type 01		
Truth table		
t_{n}		t_{n+1}
J	K	Q
L	L	Qn
L	H	L
H	L	H
H	H	$\bar{Q} \mathrm{n}$

Positive logic: Low input to preset sets Q to high level.
Low input to clear sets Q to low level.
Preset and clear are independent of clock.
NOTES:

1. $\mathrm{J}=\mathrm{J} 1 \cdot \mathrm{~J} 2 \cdot \mathrm{~J} 3$
2. $\mathrm{K}=\mathrm{K} 1 \cdot \mathrm{~K} 2 \cdot \mathrm{~K} 3$
3. $\mathrm{tn}=$ Bit time before clock pulse.
4. $\mathrm{tn}+1=$ Bit time after clock pulse.

Device type 02

Truth table Each flip-flop		
t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
J	K	Q
L	L	Qn
L	H	L
H	L	H
H	H	$\overline{\mathrm{Q}} \mathrm{n}$

Positive logic: Low input to clear sets Q to low level.
Clear is independent of clock.

NOTES:

1. $\mathrm{tn}=$ Bit time before clock pulse.
2. $\mathrm{tn}+1=$ Bit time after clock pulse.

FIGURE 2. Truth table.

Device type 03		
Truth table Each flip-flop		
t_{n}	$\mathrm{t}_{\mathrm{n}+1}$	
Input D	Output Q	Output $\overline{\mathrm{Q}}$
L	L	H
H	H	L

Positive logic: Low input to preset sets Q to high level.
Low input to clear sets Q to low level.
Preset and clear are independent of clock.

1. $\mathrm{tn}=$ Bit time before clock pulse.
2. $\mathrm{tn}+1=$ Bit time after clock pulse.

Device type 04		
Truth table Each flip-flop		
t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
J	K	Q
L	L	Qn
L	H	L
H	L	H
H	H	$\overline{\mathrm{Q}} \mathrm{n}$

Positive logic: Low input to preset sets Q to high level.
Low input to clear sets Q to low level.
Preset and clear are independent of clock.

NOTES:

1. $\mathrm{tn}=$ Bit time before clock pulse.
2. $\mathrm{tn}+1=$ Bit time after clock pulse.

FIGURE 2. Truth table - Continued.

Device type 05		
Truth table		
t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
J	K	Q
L	L	Qn
L	H	L
H	L	H
H	H	$\overline{\mathrm{Q}} \mathrm{n}$

Positive logic: NOTES:

1. $J=(J 1 A \cdot J 1 B)+(J 2 A \cdot J 2 B)$
2. $K=(K 1 A \cdot K 1 B)+(K 2 A \cdot K 2 B)$
3. $\mathrm{tn}=$ Bit time before clock pulse.
4. $\mathrm{tn}+1=$ Bit time after clock pulse.

Device type 06		
Truth table Each flip-flop		
t_{n}		$\mathrm{t}_{\mathrm{n}+1}$
J	K	Q
L	L	Qn
L	H	L
H	L	H
H	H	$\overline{\mathrm{Q}} \mathrm{n}$

Positive logic: Low input to preset sets Q to high level. Clear is independent of clock.

NOTES:

1. t = Bit time before clock pulse.
2. $\mathrm{tn}+1=$ Bit time after clock pulse.

FIGURE 2. Truth table - Continued.

VOLTAGE WAVEFORMS

NOTES:

1. Clear or preset inputs dominate regardless of the state of clock or J-K inputs.
2. Clear or preset input pulse characteristics: Vgen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1}=7 \mathrm{~ns}$,
$\mathrm{t}_{\mathrm{p}}($ clear $)=\mathrm{t}_{\mathrm{P}}($ preset $)=20 \mathrm{~ns}, \operatorname{PRR}=1 \mathrm{MHz}, \mathrm{Z}_{\text {OUT }} \approx 50 \Omega$.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (C_{L} includes probe and jig capacitance).
4. $\mathrm{R}_{\mathrm{L}}=280 \Omega \pm 5 \%$.
5. All diodes are 1 N3064, or equivalent.
6. When testing clear to output switching, preset input shall have a negative pulse. When testing preset output switching, clear shall have a negative pulse (see table III).

FIGURE 3. Clear and preset switching test circuit and waveforms for device type 01.

NOTES:

1. Clock input pulse characteristics for $t_{\text {PLH }}, t_{\text {PHL }}$ (clock to output), V gen $=3 V, t_{0}=t_{1}=7 n s, t_{P}(c l o c k)=20$ $\mathrm{ns}, \mathrm{PRR}=1 \mathrm{MHz}$. All J and K inputs are at 2.4 V . When testing $\mathrm{f}_{\mathrm{MAX}}$ the clock input characteristics are Vgen $=3 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clock $)=20 \mathrm{~ns}, \mathrm{f}=25 \mathrm{MHz}$ for subgroup 9 and $\mathrm{f}=20 \mathrm{MHz}$ for subgroups 10 and 11.
2. $\mathrm{J}=\mathrm{J} 1 \cdot \mathrm{~J} 2 \cdot \mathrm{~J} 3$; and $\mathrm{K}=\mathrm{K} 1 \cdot \mathrm{~K} 2 \cdot \mathrm{~K} 3$.
3. All diodes are 1 N 3064 , or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (C_{L} includes probe and jig capacitance).
5. $R_{L}=280 \Omega \pm 5 \%$.

FIGURE 4. Synchronous switching test circuit for device type 01.

VOLTAGE WAVEFORMS

NOTES:

1. Clear inputs dominate regardless of the state of clock or J-K inputs.
2. Clear input pulse characteristics: V gen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1}=7 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{p}}($ clear $)=25 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$.
3. All diodes are 1 N 3064 , or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
5. $R_{L}=280 \Omega \pm 5 \%$.
6. Clock input pulse characteristics: Vgen $=3 \mathrm{~V}, \mathrm{t}_{\mathrm{P}}($ clock $) \geq 20 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$.

FIGURE 5. Clear switching test circuit and waveforms for device type 02.

NOTES:

1. Clock input pulse characteristics for $t_{\text {PLH }}, t_{\text {PHL }}$ (clock to output), V gen $=3 V, t_{0}=t_{1}=7 n s, t_{P}(c l o c k)=25$ $\mathrm{ns}, \mathrm{PRR}=1 \mathrm{MHz}$. All J and K inputs are at 2.4 V . When testing $\mathrm{f}_{\mathrm{MAX}}$ the clock input characteristics are Vgen $=3 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clock $)=25 \mathrm{~ns}, \mathrm{f}=23 \mathrm{MHz}$ for subgroup 9 and $\mathrm{f}=20 \mathrm{MHz}$ for subgroups 10 and 11.
2. All diodes are 1 N 3064 , or equivalent.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
4. $\mathrm{R}_{\mathrm{L}}=280 \Omega \pm 5 \%$.

FIGURE 6. Synchronous switching test circuit for device type 02.

NOTES:

1. Clear or preset inputs dominate regardless of the state of clock or D inputs.
2. All diodes are 1N3064, or equivalent.
3. Clear or preset input pulse characteristics: Vgen $=3 \mathrm{~V}, \mathrm{t}_{0} \leq 7 \mathrm{~ns}$,
$\mathrm{t}_{\mathrm{p}}($ clear $)=\mathrm{t}_{\mathrm{p}}($ preset $)=25 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including probe and jig capacitance).
5. $R_{L}=280 \Omega \pm 5 \%$.
6. When testing clear to output switching, preset input shall have a negative pulse.

When testing preset output switching, clear shall have a negative pulse (see table III).

FIGURE 7. Clear and preset switching test circuit and waveforms for device type 03.

NOTES:

1. Clock input pulse has the following characteristics; Vgen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1} \leq 7 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clock $)=20 \mathrm{~ns}$, PRR $=1 \mathrm{MHz}$. When testing $\mathrm{f}_{\text {MAX }}, \mathrm{f}=36 \mathrm{MHz}$ for subgroup 9 and $\mathrm{f}=28 \mathrm{MHz}$ for subgroups 10 and 11 .
2. D input (pulse A) has the following characteristics: Vgen $=3 \mathrm{~V}, \mathrm{t}_{0} \leq 7 \mathrm{~ns}, \mathrm{t}_{\text {setup }}=10 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=60 \mathrm{~ns}$, PRR is 50% of the clock PRR. D input (pulse B) has the following characteristics: Vgen $=3 \mathrm{~V}$, $\mathrm{t}_{0}=\mathrm{t}_{1} \leq 7 \mathrm{~ns}, \mathrm{t}_{(\text {hold })}=5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=60 \mathrm{~ns}$, and PRR is 50% of the clock PRR.
3. All diodes are 1 N3064, or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
5. $R_{L}=280 \Omega \pm 5 \%$.

FIGURE 8. Synchronous switching test circuit (high level) for device type 03.

NOTES:

1. Clock input pulse has the following characteristics; V gen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1}=7 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}(\mathrm{clock})=20 \mathrm{~ns}$, and PRR = 1 MHz .
2. D input (pulse A) has the following characteristics: Vgen $=3 V, t_{0}=t_{1} \leq 7 n s, t_{\text {setup }}=15 \mathrm{~ns}, \mathrm{t}_{\mathrm{P}}=60 \mathrm{~ns}$, PRR is 50% of the clock PRR. D input (pulse B) has the following characteristics: Vgen $=3 \mathrm{~V}$,
$\mathrm{t}_{0}=\mathrm{t}_{1} \leq 7 \mathrm{~ns}, \mathrm{t}_{(\text {hold })}=5 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}=60 \mathrm{~ns}$, and PRR is 50% of the clock PRR.
3. All diodes are 1N3064, or equivalent.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
5. $R_{L}=280 \Omega \pm 5 \%$.

FIGURE 9. Synchronous switching test circuit (low level) for device type 03.

NOTES:

1. Clear or preset inputs dominate regardless of the state of clock or J-K inputs.
2. All diodes are 1N3064, or equivalent.
3. Clear or preset input pulse characteristics: V gen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1} \leq 7 \mathrm{~ns}$, t_{p} (clear) $=t_{p}($ preset $)=25 \mathrm{~ns}, P R R=1 \mathrm{MHz}$ and $Z_{\text {OUT }} \approx 50 \Omega$.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
5. $R_{L}=280 \Omega \pm 5 \%$.
6. When testing clear to output switching, preset input shall have a negative pulse. When testing preset output switching, clear shall have a negative pulse (see table III).

FIGURE 10. Clear and preset switching test circuit and waveforms for device type 04.

NOTES:

1. Clock input pulse characteristics for $t_{\text {PLH }}, t_{\text {PHL }}$ (clock to output), V gen $=3 V, t_{0}=t_{1}=7 n s, t_{P}(c l o c k)=25$ $\mathrm{ns}, \mathrm{PRR}=1 \mathrm{MHz}$. All J and K inputs are at 2.4 V . When testing $\mathrm{f}_{\mathrm{MAX}}$ the clock input characteristics are Vgen $=3 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clock $)=25 \mathrm{~ns}, \mathrm{f}=23 \mathrm{MHz}$ for subgroup 9 and $\mathrm{f}=20 \mathrm{MHz}$ for subgroups 10 and 11.
2. All diodes are 1 N 3064 , or equivalent.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
4. $R_{L}=280 \Omega \pm 5 \%$.

FIGURE 11. Synchronous switching test circuit for device type 04.

VOLTAGE WAVEFORMS
NOTES:

1. Preset inputs dominate regardless of the state of clock or J-K inputs.
2. Preset input pulse characteristics: Vgen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1}=7 \mathrm{~ns}$, t_{P} (preset) $=16 \mathrm{~ns}, \operatorname{PRR}=1 \mathrm{MHz}$ and $\mathrm{Z}_{\text {OUT }} \approx 50 \Omega$.
3. Clock input pulse characteristics: Vgen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1}=3 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{Z}_{\text {OUT }} \approx 50 \Omega$, and $t_{p}($ clock $)=20 \mathrm{~ns}$.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
5. $R_{L}=280 \Omega \pm 5 \%$.
6. All diodes are 1 N3064, or equivalent.

FIGURE 12. Preset switching test circuit and waveforms for device type 05.

NOTES:

1. Clock input pulse characteristics for $t_{\text {pLH, }} t_{\text {PhL }}$ (clock to output), V gen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1}=7 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clock $)=20 \mathrm{~ns}, \operatorname{PRR}=1$ MHz . When testing $\mathrm{f}_{\text {max }}$ the clock input characteristics are Vgen $=3 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{p}}($ clock $)=10 \mathrm{~ns}, \mathrm{f}=36 \mathrm{MHz}$ for subgroup 9 and $f=30 \mathrm{MHz}$ for subgroups 10 and 11 . All J and K inputs are at 2.4 V .
$\mathrm{J}=(\mathrm{J} 1 \mathrm{~A} \cdot \mathrm{~J} 1 \mathrm{~B})+(\mathrm{J} 2 \mathrm{~A} \cdot \mathrm{~J} 2 \mathrm{~B})$ and $\mathrm{K}=(\mathrm{K} 1 \mathrm{~A} \cdot \mathrm{~K} 1 \mathrm{~B})+(\mathrm{K} 2 \mathrm{~A} \cdot \mathrm{~K} 2 \mathrm{~B})$.
2. All diodes are 1 N 3064 , or equivalent.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
4. $R_{L}=280 \Omega \pm 5 \%$.
5. J and K input characteristics for $t_{\text {PHL }}$ and $t_{\text {PLH }}$ are V gen $=3 \mathrm{~V}$, rise and fall times 10 ns maximum, and $\mathrm{PW}=20 \mathrm{~ns}$. See table III for which $\mathrm{t}_{\text {setup }}$ to use.
6. For test $84,85,86$, and 87 (high low temperature) the $t_{\text {setup }}$ value shown above should be increased from 10 and 13 ns to 15 and 20 ns respectively.

FIGURE 13. Synchronous switching test circuit for device type 05.

NOTES:

1. Clear inputs dominate regardless of the state of clock or J-K inputs.
2. Clear input pulse characteristics: Vgen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1}=7 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{P}}($ clear $)=16 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}$ and $\mathrm{Z}_{\text {OUT }} \approx 50 \Omega$.
3. Clock input pulse characteristics: Vgen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1}=3 \mathrm{~ns}$, $\operatorname{PRR}=1 \mathrm{MHz}$ and t_{P} (clock) $=20 \mathrm{~ns}$ minimum.
4. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
5. $\mathrm{R}_{\mathrm{L}}=280 \Omega \pm 5 \%$.
6. Apply clock pulse F or G as required by table III.

FIGURE 14. Clear switching test circuit and waveforms for device type 06.

VOLTAGE WAVEFORMS
FIGURE 15. Synchronous switching test circuit for device type 06.

NOTES:

1. Clock input pulse characteristics for $t_{\text {PLH }}, t_{\text {PHL }}$ (clock to output), V gen $=3 \mathrm{~V}, \mathrm{t}_{0}=\mathrm{t}_{1}=7 \mathrm{~ns}, \mathrm{t}_{\mathrm{P}}$ (clock) $=20$ $\mathrm{ns}, \mathrm{PRR}=1 \mathrm{MHz}$. When testing $\mathrm{f}_{\mathrm{mAx}}$ the clock input characteristics are $\mathrm{Vgen}=3 \mathrm{~V}, \mathrm{t}_{1}=\mathrm{t}_{0}=3 \mathrm{~ns}$, t_{p} (clock) $=10 \mathrm{~ns}, \mathrm{f}=36 \mathrm{MHz}$ for subgroup 9 and $\mathrm{f}=30 \mathrm{MHz}$ for subgroups 10 and 11 . All J and K inputs are at 2.4 V .
2. All diodes are 1 N3064, or equivalent.
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \pm 5 \%$ (including jig and probe capacitance).
4. $R_{L}=280 \Omega \pm 5 \%$.
5. J and K input characteristics for $\mathrm{t}_{\text {PHL }}$ and $t_{\text {PLH }}$ are $\mathrm{Vgen}=3 \mathrm{~V}$, rise and fall times 10 ns maximum, and PW = 20 ns. See table III for which $\mathrm{t}_{\text {setup }}$ to use.
6. For test 93 through 100 (high low temperature) the $t_{\text {setup }}$ value shown above should be increased from 10 and 13 ns to 15 and 20 ns respectively.

FIGURE 15. Synchronous switching test circuit for device type 06-Continued.

TABLE III. Group A inspection for device type 01. 1/

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD-883 } \\ \text { method } \end{array}$	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal			Unit
			Case C	9	12	13	14	2	1	3	4	5	6	7	8	10	11		Min	Max	
			Test no.	K1	Clock	Preset	V_{cc}	Clear	NC	J1	J2	J3	\bar{Q}	GND	Q	K2	K3				
$\begin{array}{c\|} \hline 1 \\ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{array}$	VOH	3006	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.5 \mathrm{~mA} \\ & -0.5 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & -0.5 \mathrm{~mA} \\ & -0.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	Q Q Q Q	$\begin{gathered} \hline 2.4 \\ " ‘ \\ " \\ \hline \end{gathered}$		V
	$\overline{V_{O L}}$	3007	$\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~mA} \\ & 20 \mathrm{~mA} \end{aligned}$		20 mA 20 mA	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Q} \\ & \hline \mathrm{Q} \\ & \mathrm{Q} \\ & \hline \mathrm{Q} \\ & \hline \end{aligned}$		$\begin{gathered} 0.4 \\ " 4 \\ " \\ \hline " \\ \hline 1 \end{gathered}$	" ${ }^{\text {" }}$
	$\mathrm{V}_{\text {IC }}$		9 10 11 12 13 14 15 16 17	-12 mA	-12 mA	-12 mA		-12 mA		-12 mA	-12 mA	-12 mA				-12 mA	-12 mA	K1 K2 K3 J1 J2 J3 Clear Preset Clock		$\begin{gathered} -1.5 \\ " \\ " \\ " \\ " \\ " \\ " \\ \hline \end{gathered}$	
	I_{1}	3009	$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & \hline \end{aligned}$	GND $0.4 \mathrm{~V}$ $4.5 \mathrm{~V}$	$\begin{gathered} \hline 4.5 \mathrm{~V} \\ \text { " } \\ 0.4 \mathrm{~V} \\ 0.4 \mathrm{~V} \end{gathered}$	B " "	$5.5 \mathrm{~V}$	B B		$\begin{aligned} & \hline 0.4 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \text { GND } \\ & \text { "' } \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.5 \mathrm{~V} \\ 0.4 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ \text { GND } \\ " \quad \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 0.4 \mathrm{~V} \\ \text { GND } \\ \text { " } \\ 4.5 \mathrm{~V} \end{gathered}$		""		$\begin{gathered} \text { GND } \\ " \quad \\ 4 . \\ 4.5 \mathrm{~V} \\ 0.4 \mathrm{~V} \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { GND } \\ " \\ \text { " } \\ 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 0.4 \mathrm{~V} \\ 4.5 \mathrm{~V} \end{gathered}$	J1 J2 J3 K1 K2 K3 Clock Clock	$\begin{gathered} \hline-1.0 \\ " \\ " \\ " \\ " \\ " \\ " \end{gathered}$	-2.0	$\begin{aligned} & \hline \text { mA } \\ & \text { " } \end{aligned}$
	${ }_{\text {lL2 }}$		$\begin{aligned} & 26 \\ & 27 \end{aligned}$	"	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	0.4 V	"	0.4 V		"	"	"		"		"	"	Preset Clear	$\begin{aligned} & \hline-2.0 \\ & -2.0 \\ & \hline \end{aligned}$	-4.0 -4.0	"
	I_{1+1}	3010	$\begin{aligned} & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$	GND	GND		GND		$\begin{aligned} & \hline 2.4 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \hline \text { GND } \\ & 2.4 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & 2.4 \mathrm{~V} \end{aligned}$		"،		$\begin{aligned} & \text { GND } \\ & 2.4 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & 2.4 \mathrm{~V} \end{aligned}$	J1 J2 J3 K1 K2 K3		50 " "	$\mu \mathrm{A}$
	I_{1+2}		34 35 36 37 38 39	$\begin{aligned} & 5.5 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \end{aligned}$	" ${ }^{\text {" }}$	GND		GND		$\begin{aligned} & 5.5 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 5.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & 5.5 \mathrm{~V} \end{aligned}$		""		$\begin{aligned} & \text { GND } \\ & 5.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & 5.5 \mathrm{~V} \end{aligned}$	J1 J2 J3 K1 K2 K3		100	
	1_{1+3}		$\begin{aligned} & 40 \\ & 41 \end{aligned}$	GND	"	2.4 V	"	2.4 V		GND	GND	GND		"		GND	GND	Clear Preset		"	"
	I_{1+4}		$\begin{aligned} & 42 \\ & 43 \end{aligned}$	GND	"	5.5 V		5.5 V		GND	GND	GND		"		GND	GND	Preset Clear		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	"
	$\mathrm{I}_{\text {H5 }}$		$\begin{aligned} & 44 \\ & 45 \end{aligned}$	GND	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	GND	"	GND			${ }^{\prime}$	${ }^{\prime}$		"		GND	GND	Clock		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	"
	IH6 $^{\text {¢ }}$		$\begin{aligned} & 46 \\ & 47 \end{aligned}$	"	$\begin{aligned} & 5.5 \mathrm{~V} \\ & 5.5 \mathrm{~V} \\ & \hline \end{aligned}$	GND	"	GND		"	"	"		"		"	"	"		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	"

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued. 1/

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued. 1/

$A=$ Normal clock pulse.
$\mathrm{B}=$ Momentary GND, then 4.5 V .
$\mathrm{J}=$ Input pulse $\mathrm{t}_{\mathrm{p}} \geq 100 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.5 \mathrm{~V}$.
1/ Terminal conditions (pins not designated may be $\mathrm{H}>2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
2/ Tests shall be performed in sequence
3/ Input voltages shown are: $\mathrm{A}=2.0 \mathrm{~V}$ minimum and $\mathrm{B}=0.8 \mathrm{~V}$ maximum.
4/ Output voltages shall be either: $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.
5/ $f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 02. 1/

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD-883 } \\ \text { method } \\ \hline \end{array}$	Cases A,B,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal		nits	Unit
			Case C	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min ${ }^{\text {Max }}$		
			Test no.	Clock 1	Clear 1	K1	V_{cc}	Clock 2	Clear 2	J2	$\overline{\mathrm{Q}} 2$	Q2	K2	GND	Q1	Q1	J1		Min	Max	
$\begin{array}{c\|} \hline 1 \\ T_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{array}$	$\mathrm{V}_{\text {OH }}$	3006	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	0.8 V	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.5 \mathrm{~V} \\ " \\ " \\ " \\ " \\ " \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	0.8 V	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.5 \mathrm{~mA} \\ & -0.5 \mathrm{~mA} \end{aligned}$	-0.5 mA	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { GND } \\ " \\ " \\ " \\ " \end{gathered}$	-0.5 mA	$\begin{aligned} & -0.5 \mathrm{~mA} \\ & -0.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	Q 1 Q 1 Q 1 Q 2 Q 2 Q 2 Q 2	2.4		V
	$\mathrm{V}_{\text {OL }}$	3007	$\begin{gathered} \hline 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \hline \end{gathered}$	A	0.8 V	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	0.8 V	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	20 mA	$\begin{aligned} & 20 \mathrm{~mA} \\ & 20 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	" " " "	$\begin{aligned} & 20 \mathrm{~mA} \\ & 20 \mathrm{~mA} \end{aligned}$	20 mA	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	Q1 Q1 Q1 Q2 Q2 Q2		0.4 $"$ $"$ $"$ $"$ 	" " "
	$\mathrm{V}_{1 \mathrm{C}}$		$\begin{aligned} & \hline 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & \hline \end{aligned}$	-12 mA	-12 mA	-12 mA		-12 mA	-12 mA	-12 mA			-12 mA				-12 mA	J1 J2 K1 K2 Clear 1 Clock 1 Clear 2 Clock 2		-1.5	
	$\mathrm{I}_{\text {L1 }}$	3009	21 22 23 24 25 26	$\begin{gathered} \underline{2} \text { ! } \\ \underline{2} \prime \\ 0.4 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ \mathrm{~B} \end{gathered}$	$\begin{aligned} & 0.4 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$5.5 \mathrm{~V}$	$\begin{gathered} \underline{2} / \\ \underline{2} / \\ 0.4 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ \mathrm{~B} \\ \hline \end{gathered}$	$\begin{aligned} & 0.4 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \hline \end{aligned}$			0.4 V 4.5 V	" ${ }^{\text {" }}$			0.4 V 4.5 V	$\begin{gathered} \text { J1 } \\ \text { K1 } \\ \text { J2 } \\ \text { K2 } \\ \text { Clock } 1 \\ \text { Clock } 2 \\ \hline \end{gathered}$	-1.0		mA " " " "
	$I_{\text {LL2 }}$		$\begin{aligned} & 27 \\ & 28 \end{aligned}$	4.5 V	0.4 V		"	4.5 V	0.4 V	4.5 V				"			4.5 V	Clear 1 Clear 2	$\begin{aligned} & -2.0 \\ & -2.0 \end{aligned}$	$\begin{array}{\|l\|} \hline-4.0 \\ -4.0 \\ \hline \end{array}$	"
	I_{1+1}	3010	29 30 31 32	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{gathered} \text { GND } \\ \text { B } \end{gathered}$	2.4 V		$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{gathered} \text { GND } \\ \mathrm{B} \end{gathered}$	2.4 V			2.4 V	" ${ }^{\text {" }}$			2.4 V	$\begin{aligned} & \hline \text { J1 } \\ & \text { K1 } \\ & \text { J2 } \\ & \text { K2 } \\ & \hline \end{aligned}$		50 $"$ $"$	$\mu \mathrm{A}$ $"$ $"$ $"$
	$\mathrm{I}_{\mathbf{H} 2}$		33 34 35 36	$\begin{aligned} & \hline \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{gathered} \text { GND } \\ \text { B } \end{gathered}$	5.5 V	"	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$	$\begin{gathered} \text { GND } \\ \mathrm{B} \\ \hline \end{gathered}$	5.5 V			5.5 V	" ${ }^{\prime}$			5.5 V	$\begin{aligned} & \hline \mathrm{J} 1 \\ & \mathrm{~K} 1 \\ & \mathrm{~J} 2 \\ & \mathrm{~K} 2 \\ & \hline \end{aligned}$		100 $"$ $"$	"
	$\mathrm{I}_{\text {нз }}$		37 38	GND	E		"	GND	E	GND				"			GND	Clear 1 Clear 2		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	"
	I_{14}		39 40	GND	F		"	GND	F	GND				"			GND	Clear 1 Clear 2		$\begin{aligned} & \hline 200 \\ & 200 \end{aligned}$	"
	І $_{\text {н }}$		41 42	2.4 V	GND	GND	"	2.4 V	GND	GND			GND	"			GND	Clock 1 Clock 2		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	"
	I_{146}		43 44	5.5 V	GND	GND	"	5.5 V	GND	GND			GND	"			GND	Clock 1 Clock 2		$\begin{array}{\|l\|} \hline 200 \\ 200 \\ \hline \end{array}$	"

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued. 1/

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued. 1/

$A=\quad$ Normal clock pulse.
$B=\quad$ Momentary GND, then 4.5 V .
$\mathrm{D}=\quad$ Momentary 4.5 V , then GND.
$\mathrm{E}=\quad$ Momentary GND, then 2.4 V .
$F=\quad$ Momentary GND, then 5.5 V .

* $=$ Test time limit $\geq 100 \mathrm{~ns}$.

1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
2/ Input shall be one normal clock pulse, then 4.5 V
3/ Tests shall be performed in sequence.
$\underline{4} /$ Input voltages shown are: $A=2.0 \mathrm{~V}$ minimum and $B=0.8 \mathrm{~V}$ maximum.
$\underline{\text { 5/ }}$ Output voltages shall be either: $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator, or $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $L \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.
6/ $f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 03. 1/

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. 1/

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. 1/

Subgroup	Symbol	$\begin{array}{\|l\|} \text { MIL- } \\ \text { STD-883 } \\ \text { method } \end{array}$	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal			Unit
			Case C	3	2	1	14	13	12	11	10	9	8	7	6	5	4		Min	Max	
			Test no.	Clock 1	D1	Clear 1	V_{cc}	Clear 2	D2	Clock 2	Preset 2	Q2	Q2	GND	Q1	Q1	Preset 1				
$\begin{array}{c\|} 9 \\ \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{array}$	$\mathrm{t}_{\text {PLH2 }}$	3003	94	IN	IN(A)	B	5.0 V							GND		OUT	5.0 V	Clock 1 to Q1	2	17	ns
		(Fig. 8)																		،	"
		(Fig. 9)	95	IN	$\mathrm{IN}(\mathrm{A})$	5.0 V	"							"	OUT		B	Clock 1 to Q1 Clock 2 to Q2	"	"	"
		$\begin{aligned} & \text { (Fig. 8) } \\ & \text { (Fig. } \end{aligned}$	96 97				"	$\begin{aligned} & { }^{B} \mathrm{~B} \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \operatorname{IN}(\mathrm{A}) \\ & \operatorname{IN}(\mathrm{A}) \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \text { IN } \end{aligned}$	$5.0 \mathrm{~V}$	OUT	OUT	"				$\begin{aligned} & \text { Clock } 2 \text { to Q2 } \\ & \text { Clock } 2 \text { to } \mathrm{Q} 2 \end{aligned}$	"	"	"
	$\mathrm{t}_{\text {PHL2 }}$	$\begin{gathered} 3003 \\ \text { (Fig. 9) } \end{gathered}$	98	IN		5.0 V										OUT	B	Clock 1 to Q1		22	"
		(Fig. 8)	99	IN	IN(B)	B	"							"	OUT		5.0 V	Clock 1 to $\overline{\text { Q }}$	"	"	"
		(Fig. 9)	100				"	5.0 V	$\mathrm{IN}(\mathrm{B})$	IN	B	OUT		"				Clock 2 to Q2	"	"	"
		(Fig. 8)	101				"	B	$\mathrm{IN}(\mathrm{B})$	IN	5.0 V		OUT	"				Clock 2 to Q2	"	"	"
$\begin{array}{c\|} 10 \\ \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{aligned} & \text { (Fig. 8) } \\ & 5 \text { 5 } \end{aligned}$	102	IN	E		"							"		OUT	5.0 V	Q1	28	"	MHz
			103				"							"	OUT		5.0 V	Q1	"	"	
			$\begin{aligned} & 104 \\ & 105 \end{aligned}$				"		$\begin{aligned} & E \\ & E \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$5.0 \mathrm{~V}$	OUT	OUT	"				Q2	"	"	"
	$\mathrm{t}_{\text {PLH1 }}$	$\begin{gathered} \hline 3003 \\ \text { (Fig. 7) } \end{gathered}$	106				"							"	OUT			Clear 1 to Q1		27	
			107			J	"							"		OUT	IN	Preset 1 to Q1	${ }^{\prime}$	"	${ }^{\text {a }}$
			108				"	IN			J		OUT	"				Clear 2 to Q2	"	"	"
			109				"	J			IN	OUT		"				Preset 2 to Q2	"	"	"
	$\mathrm{t}_{\text {PHL1 }}$		110				"							"		OUT		Clear 1 to $\overline{\text { Q }} 1$	"	38	"
			111			IN	"							"	OUT		IN	Preset 1 to Q1	"	"	"
			112				"	IN				OUT		"				Clear 2 to Q2	"	"	"
			113				"	J			IN		OUT	"				Preset 2 to Q2	"	"	"
	$\mathrm{tpLH2}$	3003	114	IN	IN(A)	B	"							"		OUT	5.0 V	Clock 1 to Q1	"	22	"
		(Fig. 8)																			
		(Fig. 9)	115	IN	IN(A)	5.0 V	"							"	OUT		B	Clock 1 to $\overline{\text { Q }}$	"	"	"
		(Fig. 8)	116				"	B	IN(A)	IN	5.0 V	OUT		"				Clock 2 to Q2	"	"	"
		(Fig. 9)	117				"	5.0 V	IN(A)	IN	B		OUT	"				Clock 2 to $\overline{\text { Q }}$	"	"	"
	$\mathrm{t}_{\text {PHL2 }}$	3003	118	IN	$\mathrm{IN}(\mathrm{B})$	5.0 V	"							"		OUT	B	Clock 1 to Q1	"	28	"
		(Fig. 9)																			
		(Fig. 8)	119	IN	$\mathrm{IN}(\mathrm{B})$	B	"								OUT		5.0 V			"	"
		(Fig. 9) (Fig. 8)	$\begin{aligned} & 120 \\ & 121 \\ & \hline \end{aligned}$				"	5.0 V B	$\begin{aligned} & \operatorname{IN}(\mathrm{B}) \\ & \operatorname{IN}(\mathrm{B}) \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{gathered} \mathrm{B} \\ 5.0 \mathrm{~V} \end{gathered}$	OUT	OUT	"				Clock 2 to $\underline{Q} 2$ Clock 2 to Q2	"	"	"
11	Same	termina	dition	mits	group	ex	c														

A = Normal clock pulse.
 $B=$ Momentary GND, then 4.5 V .
 $\mathrm{D}=$ Momentary 4.5 V , then GND .

$\mathrm{E}=\operatorname{Input} \mathrm{D}$ connected to $\overline{\mathrm{Q}}$.
$\mathrm{J}=$ Input pulse $\mathrm{t}_{\mathrm{p}} \geq 100 \mathrm{~ns}, \mathrm{PRR}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=4.5 \mathrm{~V}$.
1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
2/ Tests shall be performed in sequence.
3/ Input voltages shown are: $\mathrm{A}=2.0 \mathrm{~V}$ minimum and $\mathrm{B}=0.8 \mathrm{~V}$ maximum.
4/ Output voltages shall be either: a. $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or b. $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.

5/ The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 04. 1/

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \end{array}$	$\begin{gathered} \text { Cases } \\ \mathrm{E}, \mathrm{~F} \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit
			Test no.	Clock 1	$\begin{gathered} \text { Preset } \\ 1 \end{gathered}$	Clear 1	J1	V_{cc}	Clock 2	$\begin{gathered} \text { Preset } \\ 2 \end{gathered}$	Clear 2	J2	Q2	Q2	K2	GND	Q1	Q1	K1		Min	Max	
$\begin{gathered} 1 \\ T_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {OH }}$	3006	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$4.5 \mathrm{~V}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\left.\begin{aligned} & -0.5 \mathrm{~mA} \\ & -0.5 \mathrm{~mA} \end{aligned} \right\rvert\,$	-0.5 mA -0.5 mA	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	GND	$\left\|\begin{array}{l} -0.5 \mathrm{~mA} \\ -0.5 \mathrm{~mA} \end{array}\right\|$	$\begin{aligned} & -0.5 \mathrm{~mA} \\ & -0.5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	Q1 Q1 Q1 Q1 Q2 Q2 Q2 Q2	2.4		V
	$\mathrm{V}_{\text {oL }}$	3007	$\begin{gathered} \hline 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~mA} \\ & 20 \mathrm{~mA} \end{aligned}$	20 mA 20 mA	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 20 \mathrm{~mA} \\ & 20 \mathrm{~mA} \end{aligned}$	20 mA 20 mA	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 0.8 \mathrm{~V} \end{aligned}$	Q 1 Q 1 Q 1 Q 1 Q 2 Q 2 Q 2 Q 2		0.4 $"$ " " " "	""
	V_{10}		$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & \hline \end{aligned}$	-12 mA	-12 mA	-12 mA	-12 mA		-12 mA	-12 mA	-12 mA	-12 mA			-12 mA				-12 mA	$\begin{aligned} & \text { J1 } \\ & \text { K1 } \\ & \text { J2 } \\ & \text { K2 } \end{aligned}$ Clock 1 Preset 1 Clear 1 Clock 2 Preset 2 Clear 2		-1.5 ${ }^{\text {" }}$	
	$\mathrm{I}_{\text {L1 }}$	3009	$\begin{aligned} & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \\ & 0.4 \mathrm{~V} \\ & 0.4 \mathrm{~V} \end{aligned}$	B B	B	$\begin{aligned} & 0.4 \mathrm{~V} \\ & \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.5 \mathrm{~V} \\ \text { " } \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \\ & 0.4 \mathrm{~V} \\ & 0.4 \mathrm{~V} \end{aligned}$	B B	B	$\begin{aligned} & 0.4 \mathrm{~V} \\ & \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.4 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	"			$\begin{aligned} & 0.4 \mathrm{~V} \\ & \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	J1 K1 J2 K2 Clock 1 Clock 1 Clock 2 Clock 2	-1.0	-2.0 ${ }_{\text {c }}$	mA " " " " " "
	$\mathrm{I}_{\text {LL2 }}$		35 36 37 38	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	0.4 V	0.4 V	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ \hline \end{array}$	0.4 V	0.4 V	$\begin{array}{r} 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ \hline \end{array}$			$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & \hline \end{aligned}$				$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	Clear 1 Preset 1 Clear 2 Preset 2	-2.0	-4.0 $"$ $"$	"
	I_{1+1}	3010	39 40 41 42	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	GND	GND	2.4 V	"	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	GND	GND	2.4 V			2.4 V	"			2.4 V	$\begin{aligned} & \text { J1 } \\ & \text { K1 } \\ & \text { J2 } \\ & \text { K2 } \end{aligned}$		50 " " "	$\mu \mathrm{A}$ \prime $"$ $"$
	I_{1+2}		$\begin{aligned} & 43 \\ & 44 \\ & 45 \\ & 46 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	GND	GND	5.5 V		$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	GND	GND	5.5 V			5.5 V	""			5.5 V	$\begin{array}{r} \hline \\ \hline \text { J1 } \\ \text { K1 } \\ \text { J2 } \\ \text { K2 } \\ \hline \end{array}$		$\stackrel{100}{"}$	"،
	$\mathrm{I}_{\text {ни }}$		$\begin{aligned} & 47 \\ & 48 \\ & 49 \\ & 50 \\ & 51 \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \end{aligned}$	E	$\begin{gathered} \text { GND } \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \end{aligned}$	E	$\begin{gathered} \text { GND } \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$			$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$				GND	Clock 1 Clear 1 Preset 1 Clock 2 Clear 2 Preset 2		${ }^{100}$	"،
	I_{144}		$\begin{aligned} & 53 \\ & 54 \\ & 55 \\ & 56 \\ & 57 \\ & 58 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \mathrm{~V} \\ & \text { GND } \\ & \text { GND } \end{aligned}$	F	$\begin{gathered} \text { GND } \\ \mathrm{F} \end{gathered}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	"،	5.5 V GND GND	F	$\begin{gathered} \text { GND } \\ \mathrm{F} \end{gathered}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$			$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	"،			GND GND	Clock 1 Clear 1 Preset 1 Clock 2 Clear 2 Preset 2		200	"،

TABLE III. Group A inspection for device type 04 - Continued. 1/

Subgroup	Symbol	$\begin{array}{c\|} \hline \text { MIL- } \\ \text { STD- } \\ 883 \\ \text { method } \end{array}$	$\begin{gathered} \text { Cases } \\ E, F \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Limits		Unit	
			Test no.	Clock 1	Preset 1	Clear 1	J1	V_{cc}	Clock 2	Preset	Clear 2	J2	Q2	Q2	K2	GND	Q1	Q1	K1		Min	Max		
$\begin{array}{c\|} 1 \\ T_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{array}$	Ios	3011	$\begin{gathered} 59^{* *} \\ 60 \\ 61^{* *} \\ 62 \\ \hline \end{gathered}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \hline 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$5.5 \mathrm{~V}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \\ & \hline \end{aligned}$	GND	GND	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \\ & \hline \end{aligned}$	GND	GND	GND	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { Q1 } \\ & \hline \text { Q1 } \\ & \text { Q2 } \\ & \text { Q2 } \\ & \hline \end{aligned}$	-40 $"$ 		mA	
	I_{Cc}	3005	$\begin{aligned} & 62 \\ & 64 \\ & 64 \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \mathrm{GND} \\ & 4.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$	"	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \hline 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$	"			$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{c}} \\ & \mathrm{~V}_{\mathrm{cc}} \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	"	
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }}$ tests are omitted.																							
3	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {IC }} \mathrm{C}$ tests are omitted.																							
7			65	A	B	B	B	4.5 V	A	B	B	B	H	H	B	GND	H	H	B	All	H or L as shown $4 /$			
$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$			66	"	B	A	"		"	B	A	"	L	H	"		L	H		outputs				
2/3/			67	"	A	B	"	"	"	A	B	"	H	L	"	"	H	L	"					
			68	B	"	A	"	"	B	"	A	"	"	"	"	"	"	"	"	"				
			69	A	"	"	"	"	A	"	"	"	"	"	"	"	"	"	"	"				
			70	B	"	"	"	"	B	"	"	"	"	"	"	"	"	"	"	"				
			71	B	"	"	A	"	B	"	"	A	"	"	A	"	"	"	A	"				
			72	A	"	"	"	"	A	"	"	"	"	"	"	"	"	"	"	"				
			73	B	"	"	"	"	B	"	"	"	L	H	"	"	L	H	"	"				
			74	B	"	"	B	"	B	"	"	B	"	"	B	"	"	"	B	"				
			75	A	"	"	"	"	A	"	"	"	"	"	"	"	"	"	"	"				
			76	B	"	"	"	"	B	"	"	"	"	"	"	"	"	"	"	"				
			77	B	"	"	A	"	B	"	"	A	"	"	A	"	"	"	A	"				
			78	A	"	"	"	"	A	"	"	"	"	"	"	"	"	"	"	"				
			79	B	"	"	"	"	B	"	"	*A	H	L	"	"	H	L	"	"		"		
8 2/3/	Same tests, terminal conditions, and limits as for subgroup 7, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$.																							
$\begin{gathered} 9 \\ T_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{f}_{\text {MAX }} \\ & \underline{5} / \end{aligned}$	(Fig. 11)	80 81 82 83	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.0 \mathrm{~V} \\ \text { " } \\ \text { " } \end{gathered}$	$\begin{aligned} & \text { IN } \\ & \mathbb{I N} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	OUT	OUT		$\begin{gathered} \hline \text { GND } \\ " \\ " \\ \hline \end{gathered}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$		25			
																					"		"	
															$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$						"		"	
	$\mathrm{t}_{\text {PLH1 }}$	$\begin{array}{\|c\|} \hline 3003 \\ \text { (Fig. 10) } \end{array}$														"								
			85	2.4 V	IN	N	2.4 V	"								"		OUT	2.4 V	Preset 1 to Q1	"	16	"	
			86					"	2.4 V		IN	2.4 V	OUT		2.4 V	"				Clear 2 to Q2	"	"	"	
			87					"	2.4 V	IN		2.4 V		OUT	2.4 V	"				Preset 2 to Q2	"	"		
	$\mathrm{t}_{\text {PHL1 }}$		$\begin{aligned} & \hline 88 \\ & 89 \\ & 90 \\ & 91 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	IN	IN	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	" ${ }^{\prime}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$		IN	$\begin{array}{r} 2.4 \mathrm{~V} \\ 2.4 \mathrm{~V} \\ \hline \end{array}$	OUT	OUT			OUT	OUT	$\begin{aligned} & \hline 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	Clear 1 to Q1 Preset 1 to Q1 Clear 2 to Q2 Preset 2 to Q2	"	27		
																"					"	"	"	
															2.4 V	"					"	"		
															2.4 V	"					"	"		
	$\mathrm{t}_{\text {PLH2 }}$	$\begin{array}{\|c\|} \hline 3003 \\ \text { (Fig. 11) } \end{array}$	92	IN														OUT	2.4 V	Clock 1 to Q 1	${ }^{\prime}$	${ }^{24}$		
			93	IN	5.0 V	5.0 V	2.4 V	"								"	OUT		2.4 V	Clock 1 to Q1	"	${ }^{\prime}$		
			94					"	IN	5.0 V	5.0 V	2.4 V		OUT	2.4 V	"				Clock 2 to Q2	"	"	"	
			95					"	IN	5.0 V	5.0 V	2.4 V	OUT		2.4 V	"				Clock 2 to Q2	"	"		
	$\mathrm{t}_{\text {PHL2 }}$		96	IN	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	"	$\begin{aligned} & \text { IN } \\ & \text { IN } \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	OUT	OUT		"	OUT	OUT	2.4 V	Clock 1 to Q 1	"	30	"	
			97					"								"			2.4 V	Clock 1 to Q1	"	"	"	
			98					"							2.4 V	"				Clock 2 to Q2	"	"	"	
			99					"							2.4 V	"				Clock 2 to Q2	"	"	"	

See footnotes at end of device 04.

TABLE III. Group A inspection for device type 04 - Continued. 1/

Subgroup	Symbol	MIL- STD- 883 method	Cases $E, F$$\|$	$\begin{array}{\|c\|} \hline 1 \\ \hline \text { Clock } 1 \\ \hline \end{array}$	2 Preset 1		4J1	$\frac{5}{\mathrm{~V}_{\mathrm{cc}}}$		7 Preset 2	8	9J2	$\begin{gathered} 10 \\ \hline \overline{\text { Q2 }} \end{gathered}$	$\begin{array}{r} 11 \\ \hline \text { Q2 } \end{array}$	$\frac{12}{\text { K2 }}$	$\begin{gathered} 13 \\ \hline \text { GND } \end{gathered}$	$\begin{gathered} \hline 14 \\ \hline \overline{\text { Q1 }} \end{gathered}$	$\begin{aligned} & 15 \\ & \hline \text { Q1 } \end{aligned}$	$\begin{gathered} 16 \\ \hline \text { K1 } \end{gathered}$	Measured terminal	Limits		Unit
																					Min	Max	
$\begin{array}{c\|} 10 \\ \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \hline f_{\text {MAX }} \\ & \underline{5 /} \end{aligned}$	(Fig. 11)	$\begin{aligned} & 100 \\ & 101 \\ & 102 \\ & 103 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$5.0 \mathrm{~V}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	GND	OUT		$\begin{aligned} & \hline 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \frac{\mathrm{Q}}{\mathrm{Q}} 1 \\ & \mathrm{Q} 1 \\ & \mathrm{Q} 2 \\ & \mathrm{Q} 2 \end{aligned}$	20		
	$\mathrm{tPLH1}$	$\left\|\begin{array}{c} 3003 \\ \text { (Fig. 10) } \end{array}\right\|$	$\begin{aligned} & 104 \\ & 105 \\ & 106 \\ & 107 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	IN	IN	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	IN	IN	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	" ${ }^{\prime}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	Clear 1 to Q 1 Preset 1 to Q1 Clear 2 to Q2 Preset 2 to Q2	$\stackrel{2}{*}$	20 $"$ " "	ns
	$\mathrm{t}_{\text {PHL1 }}$		108 109 110 111	$\begin{aligned} & \hline 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	IN	IN	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	" ${ }^{\prime}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	IN	IN	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	" ${ }^{\text {" }}$	OUT	OUT	$\begin{aligned} & \hline 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	Clear 1 to Q1 Preset 1 to Q1 Clear 2 to Q2 Preset 2 to Q2	${ }^{\prime}{ }^{\prime}$	32 " "	" ${ }^{\prime}$
	$\mathrm{t}_{\text {PLH2 }}$	3003 (Fig. 11) $"$ $"$ $"$ $"$ $"$ $"$	$\begin{aligned} & 112 \\ & 113 \\ & 114 \\ & 115 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{IN} \\ & \text { IN } \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	""	$\begin{aligned} & \text { IN } \\ & \text { IN } \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \\ & \hline \end{aligned}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \\ & \hline \end{aligned}$	" ${ }^{\prime}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	Clock 1 to Q1 Clock 1 to Q1 Clock 2 to Q2 Clock 2 to Q2	" ${ }^{\prime}$	28 " " "	" ${ }^{\text {" }}$
	$\mathrm{t}_{\text {PHL2 }}$		$\begin{aligned} & \hline 116 \\ & 117 \\ & 118 \\ & 119 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{IN} \\ & \text { IN } \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	"،	$\begin{aligned} & \text { IN } \\ & \text { IN } \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \\ & \hline \end{aligned}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \\ & \hline \end{aligned}$	" ${ }^{\text {" }}$	OUT	OUT	$\begin{aligned} & \hline 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	Clock 1 to Q1 Clock 1 to Q1 Clock 2 to 2 Clock 2 to Q2	"،	36 " "	"
11	Same	term	cond	an	s	ubg	10,	pt	$5^{\circ} \mathrm{C}$.														

A = Normal clock pulse.
$B=$ Momentary GND, then 4.5 V .
$\mathrm{E}=$ Momentary GND, then 2.4 V .
F = Momentary GND, then 5.5 V .
** $=$ Test time limit $\leq 100 \mathrm{~ns}$.
1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
$\underline{2 /}$ Tests shall be performed in sequence.
3/Input voltages shown are: $\mathrm{A}=2.0 \mathrm{~V}$ minimum and $\mathrm{B}=0.8 \mathrm{~V}$ maximum.
4/ Output voltages shall be either: $\mathrm{a} . \mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or b .
$\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.
5/ $f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 05. 1/

Subgroup	Symbol	MIL-STD-883 method	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured			Unit
			Case C	9	10	13	14	1	2	3	4	5	6	7	8	11	11		Min	Max	
			Test no.	K1A	K1B	Clock	V_{cc}	J1A	J1B	J2A	J2B	Preset	Q	GND	\bar{Q}	K2A	K2B				
$\begin{array}{c\|} \hline 1 \\ \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \\ \hline \end{array}$	$\mathrm{V}_{\text {OH }}$	3006		0.8 V	0.8 V	A	4.5 V	2.0 V	2.0 V	2.0 V	2.0 V		-0.5 mA	GND		0.8 V	0.8 V	Q	2.4		V
			2 3	2.0 V 20 V	2.0 V 2.0 V	$\stackrel{\text { A }}{\text { a }}$	"	0.8 V 2.0 V	0.8 V 20 V	0.8 V 2.0 V	0.8 V			${ }^{\prime}$	-0.5 mA	2.0 V 20 V	2.0 V 20 V	$\overline{\mathrm{Q}}$	"		"
	$\mathrm{V}_{\text {OL }}$		3	2.0 V	2.0 V		"	2.0 V	$\frac{2.0 \mathrm{~V}}{2.0 \mathrm{~V}}$	2.0 V						2.0 V	2.0 V				
		3007	4 5	0.8 V 2.0 V	0.8 V 2.0 V	A	"	2.0 V 0.8 V	0.8 V	20 mA	"	20 mA	0.8 V 2.0 V	0.8 V 2.0 V	Q		0.4	"			
			6	2.0 V	2.0 V	2.0 V	"	2.0 V	2.0 V	2.0 V		0.8 V		"	20 mA	2.0 V	2.0 V	$\frac{\mathrm{Q}}{\text { Q }}$		"	"
	V_{10}		7				"	-12 mA										J1A		-1.5	"
			8				"		-12 mA					"				J1B		.	"
			9				"			-12 mA				"				J2A		"	"
			10				"				-12 mA			"				J2B		"	"
			11	-12 mA			"							"				K1A		"	"
			12		-12 mA		"							"				K1B		"	"
			13				"							"		-12 mA		K2A		"	"
			14				"							"			-12 mA	K2B		"	"
			15			-12 mA	"							"				Clock		"	"
			16				"					-12 mA		"				Preset		"	"
	I_{11}	3009	17	4.5 V	4.5 V	4.5 V	5.5 V	4.5 V	4.5 V	4.5 V	4.5 V	0.4 V		"		4.5 V	4.5 V	Preset	-0.7	-2.0	mA
			18*			2/		0.4 V	4.5 V	GND		4.5 V		"				J1A			
			19*	"	"		"	4.5 V	0.4 V	GND	"			"		"	"	J1B	"	"	"
			20*	"	"	"	"	GND	4.5 V	0.4 V	"	"		"		"	"	J2A	"	"	"
			21*	"	"	"	"	GND		4.5 V	0.4 V	"		"		"	"	J2B	*	"	"
			22	0.4 V	"	4.5 V	"	4.5 V	"	"	4.5 V	GND		"		"	"	K1A	"	"	"
			23	4.5 V	0.4 V	"	"	"	"	"	"	"		"		"	"	K1B	"	"	"
			24		4.5 V	"	"	"	"	"	"	"		"		0.4 V	"	K2A	*	"	"
			25	"		"	"	"	"	"	"	"		"		4.5 V	0.4 V	K2B	"	"	"
	$\mathrm{I}_{\text {LL2 }}$		26	"	"	0.4 V	"	"	"	"	"	"		"		"	4.5 V	Clock	-2.0	-4.8	"
	I_{1+1}	3010	27	"	"	GND	"	2.4 V	GND	GND	GND	"		"		"	"	J1A		50	$\mu \mathrm{A}$
			28	"	"	"	"	GND	2.4 V	GND	GND	"		"		"	"	J1B		"	"
			29	"	"	"	"	"	GND	2.4 V	GND	"		"		"	"	J2A		"	"
			30	"	"	"	"	"	GND	GND	2.4 V	"		"		"	"	J2B		"	"
			31	2.4 V	GND	"	"	4.5 V		"		GND	GND	K1A		"	"				
			32	GND	2.4 V	"	"	"	"	"	"	"		"		GND	"	K1B		"	"
			33	"	GND	"	"	"	"	"	"	"		"		2.4 V	"	K2A		"	"
			34	"	GND	"	"	"	"	"	"	"		"		GND	2.4 V	K2B		"	"
	$\mathrm{I}_{\mathbf{H} \mathbf{2}}$		35	4.5 V	4.5 V	"	"	5.5 V	GND	GND	GND	GND		"		4.5 V	4.5 V	J1A		100	"
			36	"	"	"	"	GND	4.5 V	GND	GND	"		"		"	"	J1B		"	"
			37	"	"	"	"	"	GND	5.5 V	GND	"		"		"	"	J2A		"	"
			38	"	"	"	"	"	GND	GND	5.5 V	"		"		"	"	J2B		"	"
			39	5.5 V	GND	"	"	4.5 V		"		GND	GND	K1A		"	"				
			40	GND	5.5 V	"	"	"	"	"	"	"		"		GND	"	K1B		"	"
			41	"	GND	"	"	"	"	"	"	"		"		5.5 V	"	K2A		"	"
			42	"	"	"	"	"	"	"	"	"		"		GND	5.5 V	K2B		"	"
	I_{1+3}		43^{*}	"	"	D	"	"	"	"	"	2.4 V		"		"	GND	Preset		"	"
	I_{1+4}		44*	"	"	D	"	"	"	"	"	5.5 V		"		"	"	Preset		200	"
	l_{145}		45	"	"	2.4 V	"	GND	GND	GND	GND	GND		"		"	"	Clock		-1	mA
	$\mathrm{I}_{\text {нн }}$		46	"	"	5.5 V	"	GND	GND	GND	GND	GND		"		"	"	Clock		1	mA

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05. 1/

TABLE III. Group A inspection for device type 05. 1/

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD-883 } \\ \text { method } \end{array}$	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal		nits	Unit
			Case C	9	10	13	14	1	2	3	4	5	6	7	8	11	11		Min	Max	
			Test no.	K1A	K1B	Clock	V_{cc}	J1A	J1B	J2A	J2B	Preset	Q	GND	Q	K2A	K2B				
$\begin{array}{c\|} \hline 10 \\ T_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & f_{\text {max }} \underline{6 / 1} \\ & \hline \underline{6} \end{aligned}$	(Fig. 13)	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	2.4 V	2.4 V	IN	5.0 V	2.4 V	2.4 V	2.4 V	2.4 V	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	OUT	GND	OUT	2.4 V	2.4 V	$\overline{\mathrm{Q}}$	$\begin{aligned} & \hline 30 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{MHz} \\ & \mathrm{MHz} \\ & \hline \end{aligned}$
	$\mathrm{t}_{\text {PLH1 }}$	$\begin{array}{\|c\|} \hline 3003 \\ \text { (Fig. 13) } \end{array}$	$\begin{aligned} & 82 \\ & 83 \end{aligned}$	"	"	"	"	"	"	"	"	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	OUT	"	OUT	"	"	$\begin{array}{\|l\|} \hline \text { Preset to } \mathrm{Q} \\ \text { Preset to } \end{array}$	${ }_{\sim}^{2}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	ns
	$\mathrm{t}_{\text {PLH2 }}$	$\begin{gathered} 3003 \\ \text { (Fig. 13) } \end{gathered}$	$\begin{aligned} & 84 \\ & 85 \end{aligned}$	H	"	"	"	$\begin{gathered} \mathrm{H} \\ 2.4 \mathrm{~V} \end{gathered}$	"	GND	GND		OUT	"	OUT	GND	GND	Clock Q Clock Q	"	$\begin{aligned} & 23 \\ & 23 \end{aligned}$	"
	$\mathrm{t}_{\text {PHL2 }}$		$\begin{aligned} & 86 \\ & 87 \end{aligned}$	$\begin{gathered} \mathrm{L} \\ 2.4 \mathrm{~V} \end{gathered}$	"	"	"	$\frac{2.4 \mathrm{~V}}{\mathrm{M}}$	"	"	"		OUT	"	OUT	"	"	$\begin{aligned} & \text { Clock } \mathrm{Q} \\ & \text { Clock } \mathrm{Q} \end{aligned}$	"	$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$	"
11	Same tests, terminal conditions, and limits as subgroup 10, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$																				

A = Normal clock pulse.
$\mathrm{D}=$ Momentary 4.5 V , then GND.
$\mathrm{H}=\mathrm{t}_{\text {setup }}$ waveform, see figure 13.
$L=t_{\text {setup }}$ waveform, see figure 13.
$M=t_{\text {setup }}$ waveform, see figure 13 .

* $=$ Duration of test should not exceed 1 second
${ }^{* *}=$ Limit duration of this test to 100 ns .
1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).

3/ Tests shall be performed in sequence.
4 4nput voltages shown are: $A=2.0 \mathrm{~V}$ minimum and $B=0.8 \mathrm{~V}$ maximum.
$\overline{5} /$ Output voltages shall be either: a. $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or b . $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.
6/ $f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

TABLE III. Group A inspection for device type 06. 1/

Subgroup	Symbol	MIL-STD-883method	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured			Unit
			Case C	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	
			Test no.	Clock 1	Clear 1	K1	$\mathrm{V}_{\text {cc }}$	Clock 2	Clear 2	J2	Q2	Q2	K2	GND	Q1	Q1	J1				
$\begin{array}{c\|} 1 \\ \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{array}$	$\mathrm{V}_{\text {OH }}$	3006	1	D		0.8 V	4.5 V							GND	-0.5 mA		2.0 V	Q1	2.4		V
			2	D		2.0 V	"							${ }^{\prime \prime}$		-0.5 mA	0.8 V	Q1	"		"
			3		0.8 V		"							"		-0.5 mA		Q1	"		"
			4 5				"	$\begin{aligned} & D \\ & D \end{aligned}$		$2.0 \mathrm{~V}$		-0.5 mA	$\begin{aligned} & 0.8 \mathrm{~V} \\ & 2.0 \mathrm{~V} \end{aligned}$	"				Q2	"		"
			6				"		0.8 V		$\begin{aligned} & -0.5 \mathrm{~mA} \\ & -0.5 \mathrm{~mA} \end{aligned}$			"				Q2	"		"
	$\mathrm{V}_{\text {oL }}$	3007	7	D		2.0 V	"							"	20 mA		0.8 V	Q1		0.4	"
			8	D		0.8 V	"							"		20 mA	2.0 V	Q1		"	"
			9		0.8 V		"					20 mA		"	20 mA			Q1		"	"
			11				"	D		2.0 V	20 mA		0.8 V	"				Q2		"	"
			12				"		0.8 V			20 mA		"				Q2		"	"
	V_{10}		13				"										-12 mA	J1		-1.5	"
			14				"			-12 mA				"				J2			"
			15			-12 mA	"							"				K1		"	"
			16				"						-12 mA	"				K2		"	"
			17		-12 mA		"							"				Clear 1		"	"
			18	-12 mA			"							"				Clock 1		"	"
			19				"		-12 mA					"				Clear 2		"	"
			20				"	-12 mA						"				Clock 2		"	"
	$l_{\text {L1 }}$	3009	21	4.5 V	GND	4.5 V	5.5 V							"			0.4 V	J1	-0.7	-2.0	mA
			22**	2/	4.5 V	0.4 V								"			4.5 V	K1	"		"
			23				"	4.5 V	GND	0.4 V	GND		4.5 V	"		GND		J2	"	"	"
			24**				"	$\underline{2}$	4.5 V	4.5 V			0.4 V	"				K2	"	"	"
			25	4.5 V	0.4 V	4.5 V	"							"			4.5 V	Clear 1	"	"	"
			26				"	4.5 V	0.4 V	4.5 V			4.5 V	"				Clear 2	"	"	"
	$\mathrm{I}_{\text {LL2 }}$		27	0.4 V	GND	4.5 V	"							"			4.5 V	Clock 1	-2.0	-4.8	"
			28				"	0.4 V	GND	4.5 V			4.5 V	"				Clock 2	-2.0	-4.8	"
	I_{1+1}	3010	29	D	4.5 V	GND	"							"			2.4 V	J1		50	$\mu \mathrm{A}$
			30				"	D	4.5 V	2.4 V			GND	"				J2		"	"
			31	GND	GND	2.4 V	"							"			4.5 V	K1		"	"
			32				"	GND	GND	4.5 V			2.4 V	"				K2		"	"
	$\mathrm{I}_{\mathbf{H} \mathbf{2}}$		33	D	4.5 V	GND	"							"			5.5 V	J1		1	mA
			34				"	D	4.5 V	5.5 V			GND	"				J2		"	"
			35	GND	GND	5.5 V	"							"			4.5 V	K1		"	"
			36				"	GND	GND	4.5 V			5.5 V	"				K2		"	"
	$\mathrm{I}_{\text {нз }}$		37	2.4 V	GND	GND	"							"			GND	Clock 1	-1	"	"
			38				"	2.4 V	GND	GND			GND	"				Clock 2	-1	"	"
	I_{1+4}		39	5.5 V	GND	GND	"							"			GND	Clock 1		"	"
			40				"	5.5 V	GND	GND			GND	"				Clock 2		"	"
	$I_{\text {Нн5 }}$		41*	$\underline{2}$	2.4 V	4.5 V	"							"			GND	Clear 1		100	$\mu \mathrm{A}$
			42*				"	$\underline{2}$	2.4 V	GND			4.5 V	"				Clear 2		100	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {нб }}$		43*	2/	5.5 V	4.5 V	"							"			GND	Clear 1		1	mA
			44*				"	2/	5.5 V	GND			4.5 V	"				Clear 2		1	mA

See footnotes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued. 1/
\pm

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD-883 } \\ \text { method } \end{array}$	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit	
			Case C	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max		
			Test no.	Clock 1	Clear 1	K1	V_{cc}	Clock 2	Clear 2	J2	Q2	Q2	K2	GND	Q1	Q1	J1					
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{gathered}$	los	3011	$\begin{gathered} 45^{* *} \\ 46 \\ 47^{* *} \\ 48 \\ \hline \end{gathered}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.5 \mathrm{~V} \\ " \\ " \\ \hline \end{gathered}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	GND	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	GND	GND	$\begin{aligned} & \text { GND } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 24 . \mathrm{V} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{Q}} 1 \\ & \text { Q1 } \\ & \text { Q2 } \\ & \text { Q2 } \\ & \hline \end{aligned}$	-40 $"$ 	-100 $"$ $"$ 	mA	
	I_{cc}	3005	49	GND	GND	GND	"	GND	GND	GND			GND	"			GND	V_{cc}		76	"	
2	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{c}}=+125^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {Ic }}$ tests are omitted.																					
3	Same tests, terminal conditions, and limits as for subgroup 1, except $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ and $\mathrm{V}_{1 \mathrm{C}}$ tests are omitted.																					
$\begin{array}{c\|} \hline 7 \\ \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \\ \underline{3} / \underline{4} / \end{array}$			50	A	B	B	4.5 V	A	B	B	H	L	B	GND	L	H	B	Alloutputs				
			51	A	A	"	"	A	A	"	"	"	"		"	"	"					
			52	B	"	"	"	B	"	"	"	"	"	"	"	"	"		as shown $\underline{5 /}$			
			53	A	"	"	"	A	"	A	"	"	"	"	"	"	A	"	"			
			54	B	"	"	"	B	"	"	L	H	"	"	H	L	"	"	"			
			55	A	"	"	"	A	"	"	L	H	"	"	H	L	"	"				
			56	A	B	"	"	A	B	"	H	L	"	"	L	H	"	"	"			
			57	B	B	"	"	B	B	"	"	"	"	"	"	"	"	"				
			58	A	A	A	"	A	A	"	"	"	A	"	"	"	"	"	"			
			59	B	"	A	"	B	"	"	L	H	A	"	H	L	"	"	"			
			60	A	"	B	"	A	"	B	"	"	B	"	"	"	B	"				
			61	B	"	B	"	B	"	B	,	"	B	"	"	"	B	"	"			
			62	A	"	A	"	A	"	A	"	"	A	"	"	"	A	"	"			
			63	B	"	A	"	B	"	A	H	L	A	"	L	H	A	"				
$8 \underline{3 / 4 /}$	Same tests, terminal conditions, and limits as for subgroup 7, except $\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$.																					
$\begin{gathered} 9 \\ \hline \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{f}_{\text {max }}$ 6/	(Fig. 15)	64	IN	5.0 V	2.4 V	5.0 V							GND	OUT		2.4 V	Q1	36		MHz	
			65	IN	5.0 V	2.4 V	"									OUT	2.4 V	Q1	"		"	
			66					IN	5.0 V	2.4 V		OUT	2.4 V	"				Q2	"		"	
			67				"	IN	5.0 V	2.4 V	OUT		2.4 V	"				Q2	"		"	
	$\mathrm{t}_{\text {PLH1 }}$	$\begin{gathered} 3003 \\ (\text { Fig. 14) } \end{gathered}$	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	G	IN	2.4 V	"	B	IN	2.4 V	OUT		2.4 V	"		OUT	2.4 V	Clear 1 to \underline{Q} Clear 2 to Q	2	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	
	$\mathrm{t}_{\text {PHL1 }}$		70	F	IN	2.4 V	"							"	OUT		2.4 V2.4 V	Clear 1 to Q	"'	38 38 23 23		
			71				"	G	IN	2.4 V		OUT	2.4 V	"				Clock 2 to Q				
			72	G	IN	2.4 V	"							"	OUT			Clock 1 to Q				
			73				"	G	IN	2.4 V		OUT	2.4 V	"				Clear 2 to Q				
	$\mathrm{t}_{\text {PLH2 }}$	$\begin{gathered} 3003 \\ \text { (Fig. 15) } \end{gathered}$	74	IN			"							"	OUT		N	Clock 1 to Q	"	18	"	
			75	IN		P	"							"		OUT	2.4 V	Clock 1 to $\overline{\mathrm{Q}}$	"	"	"	
			76				"	IN		IN		OUT	2.4 V	"				Clock 2 to Q	"	"	"	
			77				"	IN		2.4 V	OUT		P	"				Clock 2 to \bar{Q}	"	"	"	
	$\mathrm{t}_{\text {PHL2 }}$		78	IN		R	"							"	OUT	OUT	$\begin{gathered} 2.4 \mathrm{~V} \\ \mathrm{~S} \end{gathered}$	Clock 1 to Q	$"$ 23 $"$ $"$ $"$ $"$ " $"$			
			79	IN		2.4 V	"							"				Clock 1 to $\overline{\mathrm{Q}}$				
			80				"	IN		2.4 V		OUT	R	"				Clock 2 to Q				
			81				"	IN		S	OUT		2.4 V	"				Clock 2 to \bar{Q}				

See footnotes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued. 1/

Subgroup	Symbol	$\begin{array}{\|c\|} \hline \text { MIL- } \\ \text { STD-883 } \\ \text { method } \end{array}$	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal			Unit
			Case C	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	
			Test no.	Clock 1	Clear 1	K1	V_{cc}	Clock 2	Clear 2	J2	Q2	Q2	K2	GND	Q1	Q1	J1				
$\begin{array}{c\|} 10 \\ \mathrm{~T}_{\mathrm{C}}=+125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \hline f_{\text {max }} \\ & \underline{6} / \end{aligned}$	(Fig. 15)	$\begin{aligned} & \hline 82 \\ & 83 \\ & 84 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5.0 \mathrm{~V} \\ " \\ " \\ \hline \end{gathered}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~V} \\ & 5.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \\ & \hline \end{aligned}$	GND	OUT	OUT	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { Q1 } \\ & \hline \text { Q1 } \\ & \text { Q2 } \\ & \hline \text { Q2 } \end{aligned}$	30		$\begin{gathered} \hline \mathrm{MHz} \\ \text { " } \\ \text { " } \\ \hline \end{gathered}$
	$\mathrm{t}_{\text {PLH1 }}$	$\begin{gathered} 3003 \\ (\text { Fig. 14) } \end{gathered}$	$\begin{aligned} & 86 \\ & 87 \\ & \hline \end{aligned}$	G	IN	2.4 V		G	IN	2.4 V	OUT		2.4 V	"		OUT	2.4 V	$\begin{aligned} & \text { Clear } 1 \text { to } \overline{\mathrm{Q}} \\ & \text { Clear } 2 \text { to } \overline{\mathrm{Q}} \\ & \hline \end{aligned}$	${ }^{2}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	${ }^{\text {n }}$
	$\mathrm{t}_{\text {PHL1 }}$		$\begin{aligned} & \hline 88 \\ & 89 \\ & 90 \\ & 91 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F } \\ & \text { G } \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \hline 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$		F G	IN IN	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 2.4 \mathrm{~V} \end{aligned}$	" ${ }^{\text {" }}$	$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$		2.4 V 2.4 V	Clear 1 to Q Clear 2 to Q Clock 1 to Q Clock 2 to Q	" ${ }^{\text {" }}$	46 46 28 28	"
	$\mathrm{t}_{\text {PLH2 }}$	$\begin{array}{\|c\|} \hline 3003 \\ \text { (Fig. 15) } \end{array}$	$\begin{aligned} & 92 \\ & 93 \\ & 94 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$		$\begin{gathered} 2.4 \mathrm{~V} \\ \mathrm{P} \end{gathered}$		$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$		$\begin{gathered} \mathrm{N} \\ 2.4 \mathrm{~V} \end{gathered}$	OUT	OUT	$\underset{\mathrm{P}}{2.4 \mathrm{~V}}$	" ${ }^{\prime}$	OUT	OUT	$\begin{gathered} \mathrm{N} \\ 2.4 \mathrm{~V} \end{gathered}$	Clock 1 to Q Clock 1 to Q Clock 2 to \underline{Q} Clock 2 to Q	" ${ }^{\prime}$	23 "	"'
	$\mathrm{t}_{\text {PHL2 }}$		$\begin{aligned} & 96 \\ & 97 \\ & 98 \\ & 99 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$		$\begin{gathered} \mathrm{R} \\ 2.4 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \text { IN } \\ & \text { IN } \\ & \hline \end{aligned}$		$\begin{gathered} 2.4 \mathrm{~V} \\ \mathrm{~S} \end{gathered}$	OUT	OUT	$\begin{gathered} \mathrm{R} \\ 2.4 \mathrm{~V} \\ \hline \end{gathered}$	" ${ }^{\prime}$	OUT	OUT	$\begin{gathered} 2.4 \mathrm{~V} \\ \mathrm{~S} \end{gathered}$	Clock 1 to Q Clock 1 to Q Clock 2 to \underline{Q} Clock 2 to Q	" ${ }^{\prime}$	28 " 	" ${ }^{\text {" }}$

A = Normal clock pulse.
$\mathrm{D}=$ Momentary 4.5 V , then GND.
F = Momentary 0 V , then Vgen, see figure 14.
$\mathrm{G}=$ Momentary Vgen, then 0 V , see figure 14.
$\mathrm{N}=\mathrm{t}_{\text {setup }}$ waveform, see figure 15.
$P=t_{\text {setup }}$ waveform, see figure 15.
$R=t_{\text {setup }}$ waveform, see figure 15.
$S=t_{\text {setup }}$ waveform, see figure 15.

* $=$ Duration of test should not exceed 1 second.
** $=$ Limit duration of this test to 100 ns .
1/ Terminal conditions (pins not designated may be $\mathrm{H} \geq 2.0 \mathrm{~V}$, or $\mathrm{L} \leq 0.8 \mathrm{~V}$, or open).
2/ Input shall be 4.5 V with a momentary ground, then $4.5 \mathrm{~V}\left[\begin{array}{c}\square \\ \hline \\ 0.5 \mathrm{~V}\end{array}\right]$.
3/ Tests shall be performed in sequence.
4/ Input voltages shown are: $A=2.0$ volts minimum and $B=0.8$ volts maximum.
$\underline{5} /$ Output voltages shall be either: a. $\mathrm{H}=2.4 \mathrm{~V}$, minimum and $\mathrm{L}=0.4 \mathrm{~V}$, maximum when using a high speed checker double comparator; or b. $\mathrm{H} \geq 1.5 \mathrm{~V}$ and $\mathrm{L} \leq 1.5 \mathrm{~V}$ when using a high speed checker single comparator.

6/ $f_{\text {MAX }}$, minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but it is not mandatory)
6.1 Intended use. Microcircuits conforming to this specification are intended for logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of the specification.
b. PIN and compliance identifier, if applicable (see 1.2).
c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
d. Requirements for certificate of compliance, if applicable.
e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
g. Requirements for product assurance options.
h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
i. Requirements for "JAN" marking.
j. Packaging requirements (see 5.1).
6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
6.4 Superseding information. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:
GND
Ground zero voltage potential
VIN Voltage level at an input terminal

6.6 Logistic support. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
6.7 Substitutability. The cross-reference information below is presented for the convenience of users.

Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	
01	54 H 72 (circuit A)
02	S54H72 (circuit B)
02	54 H 73 (circuit A)
02	MC54H73 (circuit B)
03	S54H73 (circuit C)
03	54 H 74 (circuit A)
03	MC54H74 (circuit B)
04	S54H74 (circuit C)
04	54 H 76 (circuit A)
05	S54H76 (circuit B)
05	54 H 101 (circuit A)
05	MC54H101 (circuit B)
06	S54H101 (circuit C)
06	54 H 103 (circuit A)
06	54 H 103 (circuit B)
	S54H103 (circuit C)

6.8 Changes from previous issue. Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians:	Preparing activity:
Army - CR	DLA - CC
Navy - EC	(Project 5962-2113)
Air Force -11	
DLA - CC	

Review activities:
Army - MI, SM
Navy - AS, CG, MC, SH, TD
Air Force-03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.

[^0]: Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43218-3990, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

[^1]: 1/ Must withstand the added P_{D} due to short circuit condition (e.g., los) at one output for 5 seconds duration.
 $\underline{\underline{2} / D e v i c e ~ w i l l ~ f a n o u t ~ i n ~ b o t h ~ h i g h ~ a n d ~ l o w ~ l e v e l s ~ t o ~ t h e ~ s p e c i f i e d ~ n u m b e r ~ o f ~ i n p u t s ~ o f ~ t h e ~ s a m e ~ d e v i c e ~ t y p e ~ a s ~ t h a t ~}$ being tested.

