Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Dual/Quad SPST, CMOS Analog Switches

$\mathrm{HI}-200 / \mathrm{HI}-201$ (dual/quad) are monolithic devices comprising independently selectable SPST switches which feature fast switching speeds (HI-200 240ns, and HI-201 185ns) combined with low power dissipation (15 mW at $25^{\circ} \mathrm{C}$). Each switch provides low "ON" resistance operation for input signal voltage up to the supply rails and for signal current up to 80mA. Rugged DI construction eliminates latch-up and substrate SCR failure modes.

All devices provide break-before-make switching and are TTL and CMOS compatible for maximum application versatility. $\mathrm{HI}-200 / \mathrm{HI}-201$ are ideal components for use in high frequency analog switching. Typical applications include signal path switching, sample and hold circuit, digital filters, and operational amplifier gain switching networks.

Ordering Information

PART NUMBER	TEMP. RANGE (${ }^{\circ}$ C)	PACKAGE	PKG. DWG. \#
HI3-0200-5Z (Note)	0 to 75	14 Ld PDIP* (Pb-free)	E14.3
HI1-0201-2	-55 to 125	16 Ld CERDIP	F16.3
HI1-0201-4	-25 to 85	16 Ld CERDIP	F16.3
HI1-0201-5	0 to 75	16 Ld CERDIP	F16.3
HI3-0201-5	0 to 75	16 Ld PDIP	E16.3
HI3-0201-5Z (Note)	0 to 75	16 Ld PDIP* (Pb-free)	E16.3
HI4P0201-5	0 to 75	20 Ld PLCC	N20.35
HI4P0201-5Z (Note)	0 to 75	20 Ld PLCC (Pb-free)	N20.35
HI9P0201-5	0 to 75	16 Ld SOIC	M16.15
HI9P0201-5Z (Note)	0 to 75	16 Ld SOIC (Pb-free)	M16.15
HI9P0201-9	-40 to 85	16 Ld SOIC	M16.15
HI9P0201-9Z (Note)	-40 to 85	16 Ld SOIC (Pb-free)	M16.15

*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

Features

- Pb-Free Available (RoHS Compliant)
- Analog Voltage Range . $\pm 15 \mathrm{~V}$
- Analog Current Range . 80mA
- Turn-On Time. 240ns
- Low ron . 55Ω
- Low Power Dissipation. 15mW
- TTL/CMOS Compatible

Applications

- High Frequency Analog Switching
- Sample and Hold Circuits
- Digital Filters
- Operational Amplifier Gain Switching Networks

Functional Diagram

TRUTH TABLE

LOGIC	HI-200	HI-201
0	ON	ON
1	OFF	OFF

Pinouts (Switches Shown For Logic "1" Input)

HI-201 (PLCC)
TOP VIEW

Schematic Diagrams

TTL/CMOS REFERENCE CIRCUIT V $\mathrm{V}_{\text {REF }}$ CELL HI-200

TTL/CMOS REFERENCE CIRCUIT V REF CELL
HI-201

Schematic Diagrams (Continued)
SWITCH CELL

DIGITAL INPUT BUFFER AND LEVEL SHIFTER

Absolute Maximum Ratings	
Supply Voltage (V+ to V-)	44 V (± 22)
$V_{\text {REF }}$ to Ground.	20V, -5 V
Digital Input Voltage.	. (V+) +4V to (V-) -4V
Analog Input Voltage (One Switch)	. (V+) +2V to (V-) -2V
Operating Conditions	
Temperature Ranges	
HI-201-2.	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HI-201-4.	. $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
HI-200-5, HI-201-5.	$\ldots 0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HI-201-9.	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$

CERDIP Package	75	20
PLCC Package.	80	N/A
PDIP Package*	95	N/A
SOIC Package	110	N/A

Maximum Storage Temperature $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Junction Temperature (Hermetic Packages). $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Packages) $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering, 10s) $300^{\circ} \mathrm{C}$
(PLCC and SOIC - Lead Tips Only)
*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in reflow solder processing applications.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=$ Open; $\mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=2.4 \mathrm{~V}$, VAL $($ Logic Level Low $)=0.8 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	-2			-4, -5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
DYNAMIC CHARACTERISTICS									
Switch ON Time, toN HI-200		25	-	240	500	-	240	-	ns
HI-201		25	-	185	500	-	185	-	ns
		Full	-	1000	-	-	1000	-	ns
Switch OFF Time, tOFF HI-200		25	-	330	500	-	500	-	ns
HI-201		25	-	220	500	-	220	-	ns
		Full	-	1000	-	-	1000	-	ns
Off Isolation HI-200	(Note 4)	25	-	70	-	-	70	-	dB
HI-201		25	-	80	-	-	80	-	dB
Input Switch Capacitance, $\mathrm{C}_{\text {S(OFF) }}$		25	-	5.5	-	-	5.5	-	pF
Output Switch Capacitance, $\mathrm{C}_{\mathrm{D}}(\mathrm{OFF})$		25	-	5.5	-	-	5.5	-	pF
Output Switch Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$		25	-	11	-	-	11	-	pF
Digital Input Capacitance, $\mathrm{C}_{\text {A }}$		25	-	5	-	-	5	-	pF
Drain-to-Source Capacitance, $\mathrm{C}_{\text {DS(OFF) }}$		25	-	0.5	-	-	0.5	-	pF
DIGITAL INPUT CHARACTERISTICS									
Input Low Threshold, $\mathrm{V}_{\text {AL }}$		Full	-	-	0.8	-	-	0.8	V
Input High Threshold, $\mathrm{V}_{\text {AH }}$		Full	2.4	-	-	2.4	-	-	V
Input Leakage Current (High or Low), IA	(Note 3)	Full	-	-	1.0	-	-	1.0	$\mu \mathrm{A}$
ANALOG SWITCH CHARACTERISTICS									
Analog Signal Range, V_{S}		Full	-15	-	+15	-15	-	+15	V
ON Resistance, ron	(Note 2)	25	-	55	70	-	55	80	Ω
		Full	-	80	100	-	72	100	Ω

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=\mathrm{Open} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=2.4 \mathrm{~V}$, VAL (Logic Level Low) $=0.8 \mathrm{~V} \quad$ (Continued)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	-2			-4, -5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
OFF Input Leakage Current, IS(OFF) HI-200	(Note 6)	25	-	1	5	-	1	50	nA
		Full	-	100	500	-	10	500	nA
HI-201		25	-	2	5	-	2	50	nA
		Full	-	-	500	-	-	250	nA
OFF Output Leakage Current, $I_{\mathrm{D}(\mathrm{OFF})}$ HI-200	(Note 6)	25	-	1	5	-	1	50	nA
		Full	-	100	500	-	10	500	nA
HI-201		25	-	2	5	-	2	50	nA
		Full	-	35	500	-	35	250	nA
ON Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ HI-200	(Note 6)	25	-	1	5	-	1	50	nA
		Full	-	100	500	-	10	500	nA
HI-201		25	-	2	5	-	2	50	nA
		Full	-	-	500	-	-	250	nA

POWER SUPPLY CHARACTERISTICS (Note 5)

Power Dissipation, P_{D}	25	-	15	-	-	15	-	mW
	Full	-	-	60	-	-	60	mW
Current, I+	25	-	0.5	-	-	0.5	-	mA
	Full	-	-	2.0	-	-	2.0	mA
Current, I-	25	-	0.5	-	-	0.5	-	mA
	Full	-	-	2.0	-	-	2.0	mA

NOTES:
2. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$, IOUT $=1 \mathrm{~mA}$.
3. Digital Inputs are MOS gates: typical leakage is $<1 \mathrm{nA}$.
4. $\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz}$.
5. $\mathrm{V}_{\mathrm{A}}=+3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ for Both Switches.
6. Refer to Leakage Current Measurements (Figure 2).

Test Circuits and Waveforms $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}=\mathrm{Open}$

FIGURE 1A. ON RESISTANCE TEST CIRCUIT

Test Circuits and Waveforms $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}=$ Open (Continued)

FIGURE 1B. ON RESISTANCE vs TEMPERATURE

FIGURE 1C. HI-200 ON RESISTANCE vs ANALOG SIGNAL LEVEL

FIGURE 1. ON RESISTANCE

FIGURE 2B. OFF LEAKAGE CURRENT TEST CIRCUIT

FIGURE 2C. ON LEAKAGE CURRENT TEST CIRCUIT
FIGURE 2A. LEAKAGE CURRENT vs TEMPERATURE
FIGURE 2. LEAKAGE CURRENTS

FIGURE 3A. SWITCH CURRENT vs VOLTAGE

FIGURE 3B. TEST CIRCUIT

FIGURE 3. SWITCH CURRENT

Test Circuits and Waveforms $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SUPPLY}}= \pm \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}=\mathrm{Open}$ (Continued)

FIGURE 4A. MEASUREMENT POINTS

$\mathrm{V}_{\mathrm{A}}=0$ to 4 V
Vertical: 2V/Div.
Horizontal: 100ns/Div.
FIGURE 4B. WAVEFORMS WITH TTL COMPATIBLE LOGIC INPUT

$\mathrm{V}_{\mathrm{A}}=0$ to 15 V
Vertical: 5V/Div.
Horizontal: 100ns/Div.
FIGURE 4C. WAVEFORMS WITH CMOS COMPATIBLE LOGIC INPUT

FIGURE 4. SWITCH ton AND toff

FIGURE 5. HI-201 OFF ISOLATION vs FREQUENCY
For more information see Application Notes AN520, AN521, AN531, AN532 and AN557.

Application Information

Single Supply Operation

The switch operation of the HI-200/201 is dependent upon an internally generated switching threshold voltage optimized for $\pm 15 \mathrm{~V}$ power supplies. The HI-200/201 does not provide the necessary internal switching threshold in a single supply system. Therefore, if single supply operation is required, the $\mathrm{HI}-300$ series of switches is recommended. The $\mathrm{HI}-300$ series will remain operational to a minimum +5 V single supply.

Switch performance will degrade as power supply voltage is reduced from optimum levels ($\pm 15 \mathrm{~V}$). So it is recommended that a single supply design be thoroughly evaluated to ensure that the switch will meet the requirements of the application.

For further information see Application Notes AN520, AN557, AN1033 and AN1034.

Die Characteristics

METALLIZATION:
Type: CuAl
Thickness: $16 k \AA \pm 2 k \AA$

PASSIVATION:

Type: Nitride over Silox Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$ Silox Thickness: $12 k \AA \pm 2 k \AA$

WORST CASE CURRENT DENSITY:
$2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ at 25 mA

Metallization Mask Layout

Die Characteristics

METALLIZATION:

Type: CuAl
Thickness: $16 k \AA \pm 2 k \AA$

PASSIVATION:

Type: Nitride over Silox Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$ Silox Thickness: $12 k \AA \pm 2 k \AA$

WORST CASE CURRENT DENSITY:

$$
2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2} \text { at } 25 \mathrm{~mA}
$$

Metallization Mask Layout

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

