Document Title 256Kx 4 High Speed Static RAM(5V Operating), Evolutionary Pin Out. Operated at Commercial Temperature Range. # **Revision History** | Rev. No. | <u>History</u> | | | <u>Draft Data</u> | <u>Remark</u> | |----------|--|---|--|-------------------|---------------| | Rev. 0.0 | Initial release with De | sign Target. | | Jan. 18th, 1995 | Design Target | | Rev. 1.0 | | Release to Preliminary Data Sheet. 1.1. Replace Design Target to Preliminary | | | | | Rev. 2.0 | Release to final Data
2.1. Delete Prelimina | | | Feb. 29th, 1996 | Final | | Rev. 3.0 | Update D.C and A.C 3.1. Update D.C para Items Icc Isb Isb1 3.2. Update A.C para Items tcw tAW tWP1(OE=H) tDW | meters Previous spec. (15/17/20ns part) 190/180/170mA 30mA 10mA | Updated spec. (15/17/20ns part) 145/145/140mA 25mA 8mA Updated spec. (15/17/20ns part) 10/11/12ns 10/11/12ns 10/11/12ns 7/8/9ns | Jul. 16th, 1996 | Final | | Rev. 4.0 | | A.C parameters. Previous spec. (15/17/20ns part) 145/145/140mA 3/4/5ns dition for VoH1 with Vcc=5V am to define twP as (Timir | | Jun. 2nd, 1997 | Final | | Rev. 5.0 | 5.1. Delete 17ns Par | t | | Feb. 25th, 1998 | Final | The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters. # 256K x 4 Bit (with OE)High-Speed CMOS Static RAM ### **FEATURES** - Fast Access Time 15, 20ns(Max.) - Low Power Dissipation Standby (TTL) : 25mA(Max.) (CMOS): 8mA(Max.) Operating KM641001A - 15: 125mA(Max.) KM641001A - 20 : 120mA(Max.) - Single 5.0V±10% Power Supply - · TTL Compatible Inputs and Outputs - I/O Compatible with 3.3V Device - Fully Static Operation - No Clock or Refresh required - · Three State Outputs - · Standard Pin Configuration KM641001AJ: 28-SOJ-400A # **GENERAL DESCRIPTION** The KM641001A is a 1,048,576-bit high-speed Static Random Access Memory organized as 262,144 words by 4 bits. The KM641001A uses 4 common input and output lines and has an output enable pin which operates faster than address access time at read cycle. The device is fabricated using SAMSUNGs advanced CMOS process and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The KM641001A is packaged in a 400 mil 28-pin plastic SOJ. # PIN CONFIGURATION (Top View) ### **FUNCTIONAL BLOCK DIAGRAM** ### **PIN FUNCTION** | Pin Name | Pin Function | |--------------------------|---------------------| | A o - A 17 | Address Inputs | | WE | Write Enable | | cs | Chip Select | | ŌĒ | Output Enable | | I/O1 ~ I/O4 | Data Inputs/Outputs | | Vcc | Power(+5.0V) | | Vss | Ground | | N.C | No Connection | ### **ABSOLUTE MAXIMUM RATINGS*** | Parameter | Symbol | Rating | Unit | |---------------------------------------|-----------|-------------|------| | Voltage on Any Pin Relative to Vss | VIN, VOUT | -0.5 to 7.0 | V | | Voltage on Vcc Supply Relative to Vss | Vcc | -0.5 to 7.0 | V | | Power Dissipation | PD | 1.0 | W | | Storage Temperature | Тѕтс | -65 to 150 | °C | | Operating Temperature | TA | 0 to 70 | °C | ^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. # RECOMMENDED DC OPERATING CONDITIONS(TA=0 to 70°C) | Parameter | Symbol | Min | Тур | Max | Unit | |--------------------|--------|-------|-----|-------------|------| | Supply Voltage | Vcc | 4.5 | 5.0 | 5.5 | V | | Ground | Vss | 0 | 0 | 0 | V | | Input High Voltage | VIH | 2.2 | - | Vcc + 0.5** | V | | Input Low Voltage | VIL | -0.5* | - | 0.8 | V | ^{*} $V_{IL}(Min)=-2.0V$ a.c(Pulse Width $\leq 10ns$) for $1 \leq 20mA$ # DC AND OPERATING CHARACTERISTICS (TA=0 to 70°C, Vcc=5.0V±10%, unless otherwise specified) | Parameter | Symbol | Test Conditions | | Min | Max | Unit | |---------------------------|---------------------------------------|---|------|-----|------|------| | Input Leakage Current | I⊔ | Vin = Vss to Vcc | | -2 | 2 | μΑ | | Output Leakage Current | ILO | CS=VIH or OE=VIH or WE=VIL VOUT=Vss to Vcc | | -2 | 2 | μΑ | | Operating Current | | | 15ns | - | 125 | mA | | | | \overline{CS} =VIL, VIN = VIH or VIL, IOUT=0mA | 20ns | - | 120 | | | Standby Current | tandby Current ISB Min. Cycle, CS=VIH | | | - | 25 | mA | | | ISB1 | f=0MHz, CS≥Vcc-0.2V,
Vin≥Vcc-0.2V or Vin≤ 0.2V | | - | 8 | mA | | Output Low Voltage Level | Vol | IoL=8mA | | - | 0.4 | ٧ | | Output High Voltage Level | tput High Voltage Level Voн Iон=-4mA | | 2.4 | - | ٧ | | | | VoH1* | IOH1=-0.1mA | | - | 3.95 | V | ^{*} Vcc=5.0V, Temp =25°C ### CAPACITANCE*(TA=25°C, f=1.0MHz) | Item | Symbol | Test Conditions | MIN | Max | Unit | |--------------------------|--------------|-----------------|-----|-----|------| | Input/Output Capacitance | C 1/0 | VI/0=0V | - | 8 | pF | | Input Capacitance | CIN | VIN=0V | - | 6 | pF | $^{^{\}ast}$ NOTE : Capacitance is sampled and not 100% tested. ^{**} $V_{IH}(Max)=V_{CC}+2.0V$ a.c (Pulse Width ≤ 10 ns) for $I\leq 20$ mA # **AC CHARACTERISTICS**(TA=0 to 70°C, Vcc=5.0V \pm 10%, unless otherwise noted.) ### **TEST CONDITIONS** | Parameter | Value | |--|-----------| | Input Pulse Levels | 0V to 3V | | Input Rise and Fall Times | 3ns | | Input and Output timing Reference Levels | 1.5V | | Output Loads | See below | Output Loads(A) Output Loads(B) for tHZ, tLZ, tWHZ, tOW, tOLZ & tOHZ ^{*} Including Scope and Jig Capacitance # **READ CYCLE** | Parameter | Combal | KM641 | D01A-15 | KM6410 | 001A-20 | Unit | |----------------------------------|-------------|-------|---------|--------|---------|-------| | Farameter | Symbol | Min | Max | Min | Max | Offic | | Read Cycle Time | tRC | 15 | - | 20 | - | ns | | Address Access Time | taa | - | 15 | - | 20 | ns | | Chip Select to Output | tco | - | 15 | - | 20 | ns | | Output Enable to Valid Output | toE | - | 8 | - | 10 | ns | | Chip Enable to Low-Z Output | tLZ | 3 | - | 3 | - | ns | | Output Enable to Low-Z Output | toLZ | 0 | - | 0 | - | ns | | Chip Disable to High-Z Output | tHZ | 0 | 6 | 0 | 8 | ns | | Output Disable to High-Z Output | tonz | 0 | 6 | 0 | 8 | ns | | Output Hold from Address Change | tон | 3 | - | 3 | - | ns | | Chip Selection to Power Up Time | t PU | 0 | - | 0 | - | ns | | Chip Selection to Power DownTime | t PD | - | 15 | - | 20 | ns | # WRITE CYCLE | Parameter | Osenska I | KM641 | 001A-15 | KM641001A-20 | | | |-------------------------------|-------------|-------|---------|--------------|-----|------| | Parameter | Symbol | Min | Max | Min | Max | Unit | | Write Cycle Time | twc | 15 | - | 20 | - | ns | | Chip Select to End of Write | tcw | 10 | - | 12 | - | ns | | Address Set-up Time | tas | 0 | - | 0 | - | ns | | Address Valid to End of Write | taw | 10 | - | 12 | - | ns | | Write Pulse Width(OE High) | twp | 10 | - | 12 | - | ns | | Write Pulse Width(OE Low) | twP1 | 15 | - | 20 | - | ns | | Write Recovery Time | twr | 0 | - | 0 | - | ns | | Write to Output High-Z | twnz | 0 | 8 | 0 | 10 | ns | | Data to Write Time Overlap | tow | 7 | - | 9 | - | ns | | Data Hold from Write Time | t DH | 0 | - | 0 | - | ns | | End Write to Output Low-Z | tow | 3 | - | 3 | - | ns | ### **TIMMING DIAGRAMS** TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$) ### TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH) **CMOS SRAM** KM641001A ### NOTES(READ CYCLE) - WE is high for read cycle. All read cycle timing is referenced from the last valid address to the first transition address. thz and tohz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to - 4. At any given temperature and voltage condition, thz(Max.) is less than ttz(Min.) both for a given device and from device to device. - 5. Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% - 6. Device is continuously selected with CS=VIL - 7. Address valid prior to coincident with $\overline{\text{CS}}$ transition low. - 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle. ### TIMING WAVEFORM OF WRITE CYCLE(1) (OE= Clock) ### TIMING WAVEFORM OF WRITE CYCLE(2) (OE=Low Fixed) ### TIMING WAVEFORM OF WRITE CYCLE(3) (CS=Controlled) ### NOTES(WRITE CYCLE) - 1. All write cycle timing is referenced from the <u>last valid address</u> to the first transition address. 2. A write occurs during the overlap of a <u>low CS</u> and <u>WE</u>. A write begins at the latest transition <u>CS</u> going low and <u>WE</u> going low; A write ends at the earliest transition \overline{CS} going high or \overline{WE} going high. twp is measured from the beginning of write to the end of - 3. tcw is measured from the later of $\overline{\text{CS}}$ going low to end of write. - 4. tas is measured from the address valid to the beginning of write. - 5. twn is measured from the end of write to the address change. twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high. - 6. If \overline{OE} , \overline{CS} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur. 7. Fo<u>r c</u>ommon I/O applications, minim<u>izat</u>ion or elimination of bus contention conditions is necessary during read and write cycle. - 8. If $\overline{\text{CS}}$ goes low simultaneously with $\overline{\text{WE}}$ going or after $\overline{\text{WE}}$ going low, the outputs remain high impedance state. - 9. Dout is the read data of the new address. - 10.When $\overline{\mathrm{CS}}$ is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied. ### **FUNCTIONAL DESCRIPTION** | cs | WE | ŌĒ | Mode | I/O Pin | Supply Current | |---------------|----|----|----------------|--------------|----------------| | Н | Х | X* | Not Select | High-Z | ISB, ISB1 | | L | Н | Н | Output Disable | High-Z | Icc | | L | Н | L | Read | D out | Icc | | L | L | Χ | Write | DIN | lcc | ^{*} NOTE: X means Don t Care. # **PACKAGE DIMENSIONS** # 28-SOJ-400A Units:millimeters/Inches #28 11.18 ± 0.12 0.43 ± 0.10 0.725 ± 0.005 0.0370 ± 0.10 1.27 0.050 0.028** 0.002 0.148 MAX 0.043 ± 0.10 0.