7

Low-Voltage Dual 1:10 Differential ECL/PECL Clock Driver

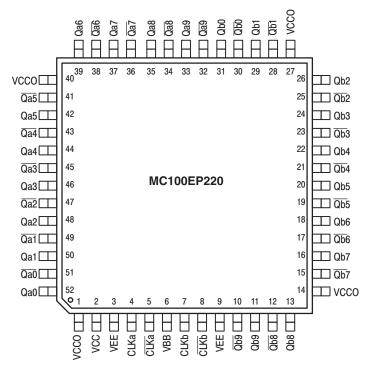
The MC100EP220 is a dual low skew 1-to-10 differential driver, designed with clock distribution in mind. The V_{BB} output provides a DC threshold bias for single ended sources. The V_{BB} can be connected to the true input or the complementary input, the latter will produce an inverted output. If used, the V_{BB} output should be bypassed to ground.

- 225ps Max. Part-to-Part Skew
- 60ps Output-to-Output Skew
- Differential Design
- V_{BB} Output
- Voltage and Temperature Compensated Outputs
- Low Voltage V_{EE} Range of −2.375 to −3.8V
- 65kΩ Input Pulldown Resistors

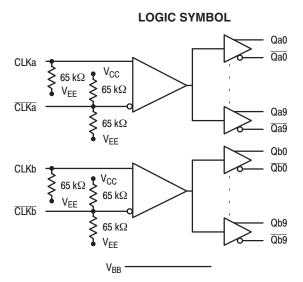
The EP220 is specifically designed, modeled and produced with low skew as the key goal. Optimal design and layout serve to minimize gate—to—gate skew within a device, and empirical modeling is used to determine process control limits that ensure consistent t_{pd} distributions from lot to lot. The net result is a dependable, guaranteed low skew device.

To ensure that the tight skew specification is met it is necessary that both pairs of the differential outputs are terminated into 50Ω , even if only one side is being used. In applications which do not use all of the outputs, it is best to leave unused pairs open to minimize power consumption in the device.

MC100EP220


See Upgrade Product - MC100ES6220

LOW-VOLTAGE
DUAL 1:10 DIFFERENTIAL
ECL/PECL CLOCK DRIVER



TB SUFFIX 52-LEAD LQFP PACKAGE EXPOSED PAD CASE 1336

The MC100EP220, as with most other ECL devices, can be operated from a positive V_{CC} supply in PECL mode. This allows the EP220 to be used for high performance clock distribution in +3.3V or +2.5V systems. Designers can take advantage of the EP220's performance to distribute low skew clocks across the backplane. In a PECL environment, series or Thevenin line terminations are typically used as they require no additional power supplies. For more information on using PECL, designers should refer to Motorola Application Note AN1406/D.

Pinout: 52-Lead LQFP (Top View)

Table 1: PIN CONFIGURATION

Pin	I/O	Туре	Function
CLKA, CLKA	Input	ECL/LVPECL	Differential reference clock signal input for fanout buffer A
CLKB, CLKB	Input	ECL/LVPECL	Differential reference clock signal input for fanout buffer B
Q[0-19], Q[0-19]	Output	LVPECL	Differential clock outputs
VEE ^a	Supply		Negative power supply
V _{CC} , V _{CCO}	Supply		Positive power supply. All V_{CC} and V_{CCO} pins must be connected to the positive power supply for correct DC and AC operation
V _{BB}	Output		DC bias output for single ended input operation

a. In ECL mode (negative power supply mode), VEE is either -3.3V or -2.5V and VCC is connected to GND (0V).
 In PECL mode (positive power supply mode), VEE is connected to GND (0V) and VCC is either +3.3V or +2.5V.
 In both modes, the input and output levels are referenced to the most positive supply (VCC).

Table 2: ABSOLUTE MAXIMUM RATINGS^a

Symbol	Characteristics	Min	Max	Unit	Condition
V _{CC}	Supply Voltage	-0.3	4.6	V	
V _{IN}	DC Input Voltage	-0.3	V _{CC} +0.3	V	
V _{OUT}	DC Output Voltage	-0.3	V _{CC} +0.3	V	
I _{IN}	DC Input Current		±20	mA	
I _{OUT}	DC Output Current		±50	mA	
T _S	Storage temperature	-65	125	°C	

a. Absolute maximum continuos ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions
or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not
implied.

Table 3: GENERAL SPECIFICATIONS

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
V _{TT}	Output termination voltage		V _{CC} - 2 ^a		V	
MM	ESD Protection (Machine model)	75			V	
HBM	ESD Protection (Human body model)	1500			V	
CDM	ESD Protection (Charged device model)	500			V	
LU	Latch-up immunity	200			mA	
C _{IN}			4.0		pF	Inputs
θ_{JA}	Thermal resistance junction to ambient	See application	See application information ^b			
$\theta_{\sf JC}$	Thermal resistance junction to case	See application	n information			

a. Output termination voltage $V_{TT} = 0V$ for $V_{CC} = 2.5V$ operation is supported but the power consumption of the device will increase.

b. Proper thermal management is critical for reliable system operation. This especially true for high-fanout and high drive capability products. Thermal package information and exposed pad land pattern design recommendations are available in the applications section of this data-sheet. In addition, the means of calculating die power consumption, the corresponding die temperature and the relationship to long-term reliability is addressed in the Motorola application note AN1545. Thermal modeling is recommended for the MC100EP220.

Table 4: PECL DC Characteristics ($V_{CCO} = V_{CC} = 2.375V$ to 3.8V, $V_{EE} = GND$)

Symbol	Characteristics	T _A =	-40°C	T _A =	25°C	T _A =	T _A = 85°C		Condition		
		Min	Max	Min	Max	Min	Max				
Clock in	Clock input pair CLKA, CLKB, CLKB (LVPECL differential signals)										
V _{PP}	Differential input voltage ^a V _{CC} =3.3V V _{CC} =2.5V	0.10 0.15		0.10 0.15		0.10 0.15		V V			
V _{CMR}	Differential cross point voltage ^b CLKA, CLKB	1.0	V _{CC} -0.4	1.0	V _{CC} -0.4	1.0	V _{CC} -0.4	V			
All input	s (LVPECL single ended signals)									
V _{IH}	Input high voltage	V _{CC} -1.14		V _{CC} -1.14		V _{CC} -1.14		V			
V _{IL}	Input low voltage		V _{CC} -1.46		V _{CC} -1.46		V _{CC} -1.46	V			
I _{IH}	Input Current		150		150		150	μΑ	$V_{IN} = V_{CC}$ to V_{EE}		
LVPECL	clock outputs (Q0-19, Q0-19)										
V _{OH}	Output High Voltage	V _{CC} -1.20	V _{CC} -0.82	V _{CC} -1.15	V _{CC} -0.82	V _{CC} -1.15	V _{CC} -0.82	V	I _{OH} = -30mA ^c		
V _{OL}	Output Low Voltage	V _{CC} -1.90	V _{CC} -1.40	V _{CC} -1.90	V _{CC} -1.40	V _{CC} -1.9	V _{CC} -1.40	V	I _{OL} = -5mA ^c		
Supply o	Supply current and V _{BB}										
I _{EE}	Max. Supply Current		190		190		190	mA	V _{EE} pin		
I _{CC}	Max. Supply Current ^d		750		750		750	mA	V _{CC} pins		
V _{BB}	Output reference voltage ^e	V _{CC} -1.36	V _{CC} -1.24	V _{CC} -1.36	V _{CC} -1.24	V _{CC} -1.36	V _{CC} -1.24	V			

- a. VPP is the minimum differential input voltage swing required to maintain device functionality.
- b. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.
- c. Equivalent to an output termination of 50Ω to $V_{TT\cdot}$
- d. I_{CC} includes current through the output resistors (all outputs terminated 50Ω to V_{TT}).
- e. V_{BB} output can be used to bias the complementary input when the device is used with single ended clock signals. V_{BB} can sink max. 0.3 mA DC current.

Table 5: ECL DC Characteristics ($V_{CC} = V_{CCO} = GND$, $V_{EE} = -3.8V$ to -2.375V)

Symbol	Characteristics	T _A = -	·40°C	$T_A = 1$	T _A = 25°C		85°C	Unit	Condition		
		Min	Max	Min	Max	Min	Max				
Clock inp	Clock input pair CLKA, CLKB, CLKB for ECL differential signals										
V _{PP}	Differential input voltage ^a										
	V _{EE} =-3.3V	0.10		0.10		0.10		V			
	V _{EE} =-2.5V	0.15		0.15		0.15		V			
V _{CMR}	Differential cross point voltageb	V _{EE} +1.0	-0.4	V _{EE} +1.0	-0.4	V _{EE} +1.0	-0.4	V			
All inputs	ECL single ended signals										
V _{IH}	Input high voltage	-1.14		-1.14		-1.14		V			
V _{IL}	Input low voltage		-1.46		-1.46		-1.46	V			
I _{IH}	Input Current		150		150		150	μΑ	$V_{IN} = V_{EE}$ to V_{CC}		
LVPECL	clock outputs (Q0-19, Q0-19)										
V _{OH}	Output High Voltage	-1.20	-0.82	-1.15	-0.82	-1.15	-0.82	V	I _{OH} = -30 mA ^c		
V _{OL}	Output Low Voltage	-1.90	-1.40	-1.90	-1.40	-1.90	-1.40	V	I _{OL} = -5 mA ^c		
Supply c	Supply current and V _{BB}										
I _{EE}	Max. Supply Current		190		190		190	mA	V _{EE} pin		
I _{CC}	Max. Supply Current ^d		750		750		750	mA	V _{CC} Pins		
V _{BB}	Output reference voltagee	-1.36	-1.24	-1.36	-1.24	-1.36	-1.24	V			

- a. V_{PP} is the minimum differential input voltage swing required to maintain device functionality.
- b. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.
- c. Equivalent to an output termination of 50Ω to $V_{TT}\!.$
- d. I_{CC} includes current through the output resistors (all outputs terminated 50 Ω to V_{TT}).
- e. V_{BB} output can be used to bias the complementary input when the device is used with single ended clock signals. V_{BB} can sink max. 0.3 mA DC current.

Table 6: PECL/ECL AC Characteristics ($V_{CC} = V_{CCO} = 2.375V$ to 3.8V, $V_{EE} = GND$) or ($V_{EE} = -3.8V$ to -2.375V, $V_{CC} = -3.8V$ $V_{CCO} = GND)$

Symbol	Characteristics	T _A = -40°C		T _A = 25°C			T,	√ = 85°	C	Unit	Condi-	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		tion
Clock inp	out pair CLKA, CLKA, CLKB,	CLKB for F	PECL	differential s	signals	•	•		•	•		
V _{PP}	Differential input voltage ^b (peak-to-peak)	0.4		1.0	0.4		1.0	0.4		1.0	V	
V _{CMR}	Differential cross point voltage ^c	1.0		V _{CC} -0.4	1.0		V _{CC} -0.4	1.0		V _{CC} -0.4	٧	
f _{CLK}	Input Frequency (PECL)	0		1.0	0		1.0	0		1.0	GHz	
Clock inp	put pair CLKA, CLKA, CLKB,	CLKB for E	ECL di	fferential si	gnals							
V _{PP}	Differential input voltage (peak-to-peak)	0.4		1.0	0.4		1.0	0.4		1.0	V	
V _{CMR}	Differential cross point voltage	V _{EE} +1.0		-0.4	V _{EE} +1.0		-0.4	V _{EE} +1.0		-0.4	٧	
f _{CLK}	Input Frequency (ECL)	0		1.0	0		1.0	0		1.0	GHz	
PECL/E	CL clock outputs (Q0-19, Q0-	19)										
t _{PD}	Propagation Delay CLKA or CLKB to Qx	300	400	500	350	450	550	425	535	650	ps	
V _{O(P-P)}	Differential output voltage (peak-to-peak)	450	700		500	700		500	700		mV	
t _{sk(O)}	Output-to-output skew (within device)		35	60		35	60		35	60	ps	Diff.
t _{sk(PP)}	Output-to-output skew (part-to-part)			200			200			225	ps	Diff.
t _{JIT(CC)}	Output cycle-to-cycle jitter (RMS)			TBD			TBD			TBD	ps	
DC _O	Positive output pulse width	t _p – 50	t _p	t _p + 50	t _p – 50	t _p	t _p + 50	t _p – 50	t _p	t _p + 50	ps	t _p input positive pulse width
t _r , t _f	Output Rise/Fall Time	100		500	100		500	100		500	ps	20% to 80%

- a. AC characteristics apply for parallel output termination of 50Ω to V_{TT} .
- b. V_{PP} (AC) is the minimum differential input voltage swing required to maintain AC characteristics including tpd and device-to-device skew.
 c. V_{CMR} (AC) is the crosspoint of the differential input signal. AC operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} (AC) or V_{PP} (AC) impacts the device propagation delay and part-to-part skew.

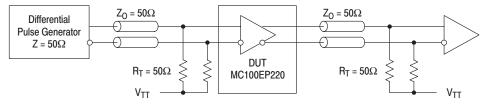


Figure 1. MC100EP220 AC test reference

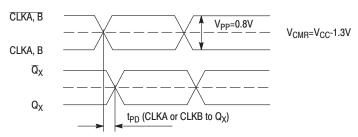


Figure 2. MC100EP220 AC reference measurement waveform

APPLICATIONS INFORMATION

Using the thermally enhanced package of the MC100EP220

The MC100EP220 uses a thermally enhanced exposed pad (EP) 52 lead LQFP package. The package is molded so that the leadframe is exposed at the surface of the package bottom side. The exposed metal pad will provide the low thermal impedance that supports the power consumption of the MC100EP220 high-speed bipolar integrated circuit and eases the power management task for the system design. A thermal land pattern on the printed circuit board and thermal vias are recommended in order to take advantage of the enhanced thermal capabilities of the MC100EP220. Direct soldering of the exposed pad to the thermal land will provide an efficient thermal path. In multilayer board designs, thermal vias thermally connect the exposed pad to internal copper planes. Number of vias, spacing, via diameters and land pattern design depend on the application and the amount of heat to be removed from the package. A nine thermal via array, arranged in a 3 x 3 array and using a 1.2 mm pitch in the center of the thermal land is the absolute minimum requirement for MC100EP220 applications on multi-layer boards. The recommended thermal land design comprises a 5 x 5 thermal via array as shown in Figure 3 "Recommended thermal land pattern", providing an efficient heat removal path.

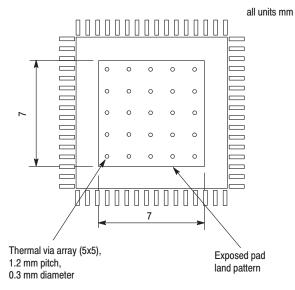


Figure 3. Recommended thermal land pattern

The via diameter is should be approx. 0.3 mm with 1 oz. copper via barrel plating. Solder wicking inside the via resulting in voids during the solder process must be avoided. If the copper plating does not plug the vias, stencil print solder paste onto the printed circuit pad. This will supply enough solder paste to fill those vias and not starve the solder joints. The attachment process for exposed pad package is equivalent to standard surface mount packages. Figure 4 "Recommended solder mask openings" shows a recommend solder mask opening with respect to the recommended 5 x 5 thermal via

array. Because a large solder mask opening may result in a poor release, the opening should be subdivided as shown in Figure 4 For the nominal package standoff 0.1 mm, a stencil thickness of 5 to 8 mils should be considered.

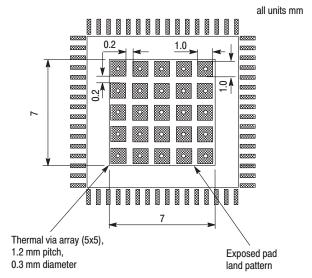


Figure 4. Recommended solder mask openings

For thermal system analysis and junction temperature calculation the thermal resistance parameters of the package is provided. For thermal system analysis and junction temperature calculation the thermal resistance parameters of the package is provided:

Table 7: Thermal Resistance^a

Convection- LFPM	R _{THJA} b °C/W	R _{THJA} ¢ °C/W	R _{THJC} d °C/W	R _{THJB} e °C/W		
Natural	57.1	24.9				
100	50.0	21.3				
200	46.9	20.0	15.8	9.7		
400	43.4	18.7				
800	38.6	16.9				

- a. Thermal data pattern with a 3 x 3 thermal via array on 2S2P boards (based on empirical results)
- b. Junction to ambient, single layer test board, per JESD51-6
- c. Junction to ambient, four conductor layer test board (2S2P), per JES51-6
- d. Junction to case, per MIL-SPEC 883E, method 1012.1
- e. Junction to board, four conductor layer test board (2S2P) per JESD 51-8

It is recommended that users employ thermal modeling analysis to assist in applying the general recommendations to their particular application. The exposed pad of the MC100EP220 package does not have an electrical low impedance path to the substrate of the integrated circuit and its terminals. The thermal land should be connected to GND through connection of internal board layers.