3.3V ASYNCHRONOUS SRAM ## SRAM ## 256K x 4 SRAM REVOLUTIONARY PINOUT, 3.3V OPERATION WITH SINGLE CHIP ENABLE ### **FEATURES** - All I/O pins are 5V tolerant - High speed: 12*, 15, 20 and 25ns - · Multiple center power and ground pins for greater noise immunity - Easy memory expansion with \(\overline{CE}\) and \(\overline{OE}\) options - Automatic CE power down - All inputs and outputs are TTL-compatible - High-performance, low-power, CMOS double-metal process - Single +3.3V ±0.3V power supply - Fast OE access times: 8, 10 and 12ns - Complies to JEDEC low-voltage TTL standards | OPTIONS | MARKING | |----------|----------| | OFFICING | WIANNING | | Timing | | |----------------------------|------| | 12ns access | -12* | | 15ns access | -15 | | 20ns access | -20 | | 25ns access | -25 | - Packages 32-pin SOJ (400 mil) DJ - 2V data retention (optional) L - Temperature Commercial (0°C to +70°C) None - Part Number Example: MT5LC256K4D4DJ-20 L ### GENERAL DESCRIPTION The MT5LC256K4D4 is organized as a 262,144 x 4 SRAM using a four-transistor memory cell with a high-speed, lowpower CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology. This device offers multiple center power and ground pins for improved performance. For flexibility in high-speed memory applications, Micron offers chip enable (CE) and output enable (OE) capability. This enhancement can place the outputs in High-Z for additional flexibility in system Writing to these devices is accomplished when write enable (WE) and CE inputs are both LOW. Reading is ### PIN ASSIGNMENT (Top View) 32-Pin SOJ (SD-5) | NC [| 1 | 32 | þ | A4 | |-------|----|----|---|------------| | A3 [| 2 | 31 | þ | A 5 | | A2 [| 3 | 30 | þ | A6 | | A1 [| 4 | 29 | þ | A 7 | | A0 [| 5 | 28 | þ | A8 | | ĈĒ [| 6 | 27 | þ | OE | | DQ1 [| 7 | 26 | þ | DQ4 | | Vcc [| 8 | 25 | þ | Vss | | Vss [| 9 | 24 | þ | Vcc | | DQ2 | 10 | 23 | þ | DQ3 | | WE [| 11 | 22 | þ | A 9 | | A17 🛚 | 12 | 21 | þ | A10 | | A16 [| 13 | 20 | þ | A11 | | A15 🛚 | 14 | 19 | þ | A12 | | A14 🗆 | 15 | 18 | þ | A13 | | NC [| 16 | 17 | þ | NC | accomplished when WE remains HIGH while output enable (\overline{OE}) and \overline{CE} are LOW. The device offers a reduced power standby mode when disabled. This allows system designers to achieve their low standby power requirements. All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information. ^{*}Consult the factory for availability. ### **FUNCTIONAL BLOCK DIAGRAM** ### **TRUTH TABLE** | MODE | OE | CE | WE | DQ | POWER | |--------------|-----|----|----|--------|---------| | STANDBY | Х | Η | X | HIGH-Z | STANDBY | | READ | لــ | L | H | ø | ACTIVE | | NOT SELECTED | Ŧ | L | H | HIGH-Z | ACTIVE | | WRITE | Х | L | L | D | ACTIVE | ## MT5LC256K4D4 REVOLUTIONARY PINOUT 256K x 4 SRAM ### **PIN DESCRIPTIONS** | SOJ AND TSOP
PIN NUMBERS | SYMBOL | TYPE | DESCRIPTION | |--|---------|------------------|--| | 5, 4, 3, 2, 32, 31, 30, 29, 28, 22, 21, 20, 19, 18, 15, 14, 13, 12 | A0-A17 | Input | Address Inputs: These inputs determine which cell is addressed. | | 11 | WE | Input | Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle. | | 6 | CE | Input | Chip Enable: This active LOW input is used to enable the device. When $\overline{\text{CE}}$ is HIGH, the chip is disabled and automatically goes into standby power mode. | | 27 | ŌĒ | Input | Output Enable: This active LOW input enables the output drivers. | | 7, 10, 23, 26 | DQ1-DQ4 | Input/
Output | SRAM Data I/O: Data inputs and tristate data outputs. | | 8, 24 | Vcc | Supply | Power Supply: 3.3V ±0.3V | | 9, 25 | Vss | Supply | Ground: GND | | 1, 16, 17 | NC | - | No Connect: These signals are not internally connected. | ### **ABSOLUTE MAXIMUM RATINGS*** | ADDOLC I L IMMINIMO IN ICI | 111100 | |--------------------------------------|-----------------| | Voltage on Vcc Supply Relative to Vs | ss0.5V to +4.6V | | VIN | 0.5V to +6.0V | | Storage Temperature (plastic) | 55°C to +150°C | | Power Dissipation | 1W | | Short Circuit Output Current | 50mA | *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ### **ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS** $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$ | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |------------------------------|---------------------------------------|--------|------|-----|-------|-------| | Input High (Logic 1) Voltage | "- | ViH | 2.0 | 5.5 | ٧ | 1, 2 | | Input Low (Logic 0) Voltage | | VIL | -0.3 | 0.8 | ٧ | 1, 2 | | Input Leakage Current | 0V ≤ Vin ≤ Vcc | ILı | -1 | 1 | μΑ | | | Output Leakage Current | Output(s) disabled
0V ≤ Vouт ≤ Vcc | ILo | -1 | 1 | μА | | | Output High Voltage | Iон = -4.0mA | Vон | 2.4 | | V | 1 | | Output Low Voltage | loL = 8.0mA | Vol | | 0.4 | v | 1 | | Supply Voltage | | Vcc | 3.0 | 3.6 | V | 1 | | | | | | | M. | <u>ax</u> | | | | |------------------------------|--|--------|-----|-----|-----|-----------|-----|------------|-------| | DESCRIPTION | CONDITIONS | SYMBOL | TYP | -12 | -15 | -20 | -25 | UNITS | NOTES | | Power Supply
Current: Ope | CE ≤ V _{IL} ; Vcc = MAX
f = MAX = 1/ ^t RC
outputs open | lcc | 165 | 280 | 230 | 180 | 160 | mA | 3, 15 | | Power Suppl
Current: Star | CE ≥ Viн; Vcc = MAX
f = MAX = 1/ ^t RC
outputs open | ISB1 | 35 | 60 | 50 | 40 | 35 | mA | 15 | | | CE ≥ Vcc -0.2V;
Vcc = MAX
ViN ≤ Vss +0.2V or
ViN ≥ Vcc -0.2V; f = 0 | ISB2 | 0.5 | 5 | 5 | 5 | 5 | m A | 15 | ### **CAPACITANCE** | DESCRIPTION | CONDITIONS | SYMBOL | MAX | UNITS | NOTES | |--------------------|--------------------------------|--------|-----|-------|-------| | Input Capacitance | $T_A = 25^{\circ}C; f = 1 MHz$ | Ci | 5 | pF | 4 | | Output Capacitance | Vcc =3.3V | Co | 5 | pF | 4 | ### **ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS** (Note 5, 13, 15) $(0^{\circ}C \le T_A \le 70^{\circ}C)$ | | -12 | | -1 | -15 | | -20 | | -25 | | | | |------------------------------------|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------| | DESCRIPTION | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES | | READ Cycle | | | • | • | | | | | • | | | | READ cycle time | tRC | 12 | | 15 | | 20 | | 25 | | ns | | | Address access time | †AA | | 12 | | 15 | | 20 | | 25 | ns | | | Chip Enable access time | †ACE | | 12 | | 15 | | 20 | | 25 | ns | | | Output hold from address change | tOH | 3 | | 4 | | 4 | | 4 | | ns | | | Chip Enable to output in Low-Z | ^t LZCE | 4 | | 5 | | 5 | | 5 | | ns | 7 | | Chip disable to output in High-Z | THZCE | | 6 | | 6 | | 8 | | 8 | ns | 6, 7 | | Chip Enable to power-up time | ¹PU | 0 | | 0 | | 0 | | 0 | | ns | | | Chip disable to power-down time | ¹PD | | 12 | | 15 | | 20 | | 25 | ns | | | Output Enable access time | †AOE | | 6 | | 8 | | 10 | | 12 | ns | | | Output Enable to output in Low-Z | ¹LZOE | 0 | | 0 | | 0 | | Ö | | ns | | | Output disable to output in High-Z | tHZOE | | 6 | | 6 | | 8 | | 8 | ns | 6 | | WRITE Cycle | | | | | | | | | | | | | WRITE cycle time | ¹WC | 12 | | 15 | | 20 | | 25 | | ns | | | Chip Enable to end of write | tCM. | 10 | | 12 | | 13 | | 15 | | ns | | | Address valid to end of write | ^t AW | 9 | | 10 | | 12 | | 14 | | ns | | | Address setup time | ^t AS | 0 | | 0 | | 0 | | 0 | | ns | | | Address hold from end of write | †AH | 0 | | 0 | | 0 | | 0 | | ns | | | WRITE pulse width | ^t WP1 | 9 | | 10 | | 12 | | 14 | | ns | | | WRITE pulse width | tWP2 | 10 | | 10 | | 12 | | 14 | | ns | | | Data setup time | ^t DS | 6 | | 8 | | 10 | | 10 | | ns | | | Data hold time | tDH | 0 | | 0 | | 0 | | 0 | | ns | | | Write disable to output in Low-Z | tLZWE | 3 | | 3 | | 3 | | 3 | | ns | 7 | | Write Enable to output in High-Z | tHZWE | | 6 | | 6 | | 8 | | 8 | ns | 6, 7 | # 3.3V ASYNCHRONOUS SRAM ### **AC TEST CONDITIONS** | Input pulse levels | Vss to 3.0V | |-------------------------------|---------------------| | Input rise and fall times | 3ns | | Input timing reference levels | 1.5V | | Output reference levels | 1.5V | | Output load | See Figures 1 and 2 | Fig. 1 OUTPUT LOAD EQUIVALENT Fig. 2 OUTPUT LOAD EQUIVALENT ### **NOTES** - 1. All voltages referenced to Vss (GND). - 2. Overshoot: V_{IH} ≤ +6.0V for t ≤ ^tRC/2 Undershoot: V_{IL} ≥ -2.0V for t ≤ ^tRC/2 Power-up: V_{IH} ≤ +6.0V and V_{CC} ≤ 3.1V for t ≤ 200msec. - Icc is dependent on output loading and cycle rates. The specified value applies with the outputs unloaded and f = 1/TRC (MIND) Hz. - 4. This parameter is sampled. - 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted. - tHZCE, tHZOE and tHZWE are specified with C_L = 5pF as in Fig. 2. Transition is measured ±200mV from steady state voltage. - At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE. - 8. WE is HIGH for READ cycle. - 9. Device is continuously selected. Chip enable and output enables are held in their active state. - 10. Address valid prior to, or coincident with, latest occurring chip enable. - 11. tRC = Read Cycle Time. - 12. Chip enable and write enable can initiate and terminate a WRITE cycle. - 13. The output will be in the High-Z state if output enable is high. - 14. Typical currents are measured at 25°C. - 15. Typical values are measured at 3.3V, 25°C and 15ns cycle time. ### **DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)** | DESCRIPTION | CONDITIONS | | SYMBOL | MIN | TYP | MAX | UNITS | NOTES | |---|--|----------|------------------|-----------------|-----|-----|-------|-------| | Vcc for Retention Data | | | Vor | 2 | | | V | | | Data Retention Current | CE ≥ (Vcc -0.2V)
Vin ≥ (Vcc -0.2V)
or ≤ 0.2V | Vcc = 2V | ICCDR | | 70 | 300 | μΑ | 14 | | Chip Deselect to Data
Retention Time | | | [†] CDR | 0 | _ | | ns | 4 | | Operation Recovery Time | | | ^t R | ^t RC | | | ns | 4, 11 | # 3.3V ASYNCHRONOUS SRAM ### **LOW Vcc DATA RETENTION WAVEFORM** ### READ CYCLE NO. 18,9 ### READ CYCLE NO. 27,8,10 ### WRITE CYCLE NO. 1 12 (Chip Enable Controlled) ## WRITE CYCLE NO. 2 12 (Write Enable Controlled) DON'T CARE ₩ UNDEFINED **NOTE:** Output enable (OE) is inactive (HIGH). 3.3V ASYNCHRONOUS SRAM ## WRITE CYCLE NO. 3 7, 12, 13 (Write Enable Controlled) NOTE: Output enable (OE) is active (LOW).