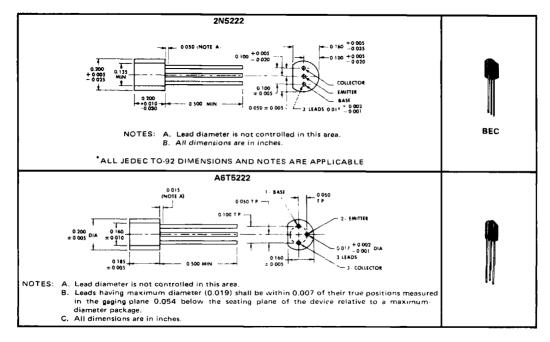
TYPES 2N5222, A6T5222 N-P-N SILICON TRANSISTORS


BULLETIN NO. DL-S 7311929, MARCH 1973

SILECT[†] TRANSISTORS‡

- For RF Amplifier, Mixer, and Video IF Applications in Radio and Television Receivers
- Rugged One-Piece Construction with In-Line Leads or Standard TO-18 100-mill Pin-Circle Configuration

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

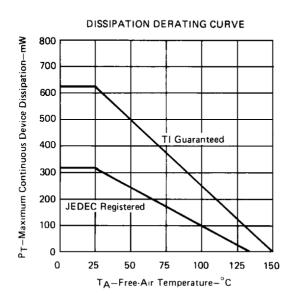
Collector-Base Voltage		 	15 V*
Emitter-Base Voltage			. 50 mA*
Continuous Device Dissipation at (or below) 25°C Free-air Temperature (See Not Storage Temperature Range	te 2)	 	310 mW* [-65°C to 150°C\$
Continuous Device Dissipation at (or below) 25°C Free-air Temperature (See Not Storage Temperature Range Lead Temperature 1/16 Inch from Case for 60 Seconds		 	\(\ -55°C to 135°C\) \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

NOTES: 1. This value applies when the base-emitter diode is open-circuited,

- Derate the 625-mW rating linearly to 150°C free-air temperature at the rate of 5 mW/°C. Derate the 310-mW (JEDEC registered) rating linearly to 135°C free-air temperature at the rate of 2.82 mW/°C.
- *The asterisk identifies JEDEC registered data for the 2N5222 only. This data sheet contains all applicable registered data in effect at the time of publication.
- Trademark of Texas Instruments.
- ‡U.S. Patent No. 3,439,238.
- § Texas Instruments guarantees these values in addition to the JEDEC registered values which are also shown.

USES CHIP N24

TYPES 2N5222, A6T5222 N-P-N SILICON TRANSISTORS


*electrical characteristics at 25°C free-air temperature

	PARAMETER	TEST CONDITIONS				MAX	UNIT
V(BR)CBO	Collector-Base Breakdown Voltage	I _C = 100 μA,	1E = 0		20		V
V(BR)CEO	Collector-Emitter Breakdown Voltage	I _C = 1 mA,	1 _B = 0,	See Note 3	15		V
V(BR)EBO	Emitter-Base Breakdown Voltage	i _E = 100 μA,	IC = 0		2		V
ІСВО	Collector Cutoff Current	V _{CB} = 10 V,	IE = 0			100	nΑ
^I EBO	Emitter Cutoff Current	VEB = 2 V,	IC = 0			100	пA
hFE	Static Forward Current Transfer Ratio	V _{CE} ≈ 10 V,	I _C = 4 mA,	See Note 3	20	1500	
V _{BE}	Base-Emitter Voltage	I _B = 0.4 mA,	Ic = 4 mA			1.2	V
VCE(sat)	Collector-Emitter Saturation Voltage	I _B = 0.4 mA,	IC = 4 mA		Γ	1	V
h _{fe}	Small-Signal Common-Emitter Forward Current Transfer Ratio	V _{CE} = 10 V,	1 _C = 4 mA,	f = 1 kHz	20	3000	
fT	Transition Frequency	V _{CE} = 10 V,	Ic ≈ 4 mA,	See Note 4	450		MHz
C _{cb}	Collector-Base Capacitance	V _{CB} = 10 V, See Note 5	1E = 0,	f = 1 MHz,		1.3	ρF

NOTES: 3. These parameters must be measured using pulse techniques. $t_W = 300 \ \mu s$, duty cycle $\leq 2\%$.

- To obtain f_T, the |h_{fe}| response with frequency is extrapolated at the rate of −6 dB per octave from f = 100 MHz to the frequency at which |h_{fe}| = 1.
- C_{cb} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The emitter is connected to the guard terminal of the bridge.

THERMAL INFORMATION

^{*}The asterisk identifies JEDEC registered data for the 2N5222 only.