

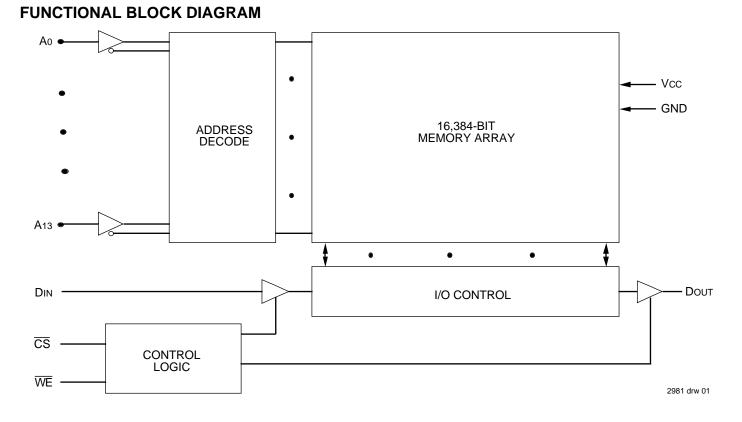
CMOS STATIC RAM 16K (16K x 1-BIT)

IDT6167SA IDT6167LA

FEATURES:

- High-speed (equal access and cycle time)
 Military: 15/20/25/35/45/55/70/85/100ns (max.)
- Commercial: 15/20/25/35ns (max.)
- Low power consumption
- Battery backup operation 2V data retention voltage (IDT6167LA only)
- Available in 20-pin CERDIP and Plastic DIP, and 20-pin SOJ
- Produced with advanced CMOS high-performance technology
- CMOS process virtually eliminates alpha particle softerror rates
- · Separate data input and output
- Military product compliant to MIL-STD-883, Class B

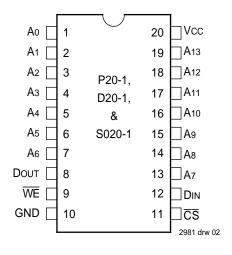
DESCRIPTION:


The IDT6167 is a 16,384-bit high-speed static RAM organized as $16K \times 1$. The part is fabricated using IDT's high-performance, high reliability CMOS technology.

Access times as fast as 15ns are available. The circuit also offers a reduced power standby mode. When \overline{CS} goes HIGH, the circuit will automatically go to, and remain in, a standby mode as long as \overline{CS} remains HIGH. This capability provides significant system-level power and cooling savings. The low-power (LA) version also offers a battery backup data retention capability where the circuit typically consumes only 1 μ W operating off a 2V battery.

All inputs and the output of the IDT6167 are TTL-compatible and operate from a single 5V supply, thus simplifying system designs.

The IDT6167 is packaged in a space-saving 20-pin, 300 mil Plastic DIP or CERDIP, Plastic 20-pin SOJ, providing high board-level packing densities.


Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATIONS

DIP/SOJ TOP VIEW

PIN DESCRIPTIONS

A0-A13	Address Inputs
CS	Chip Select
WE	Write Enable
Vcc	Power
DIN	DATAIN
Dout	DATAout
GND	Ground
	2001 +1 01

2981 tbl 01

TRUTH TABLE (1)

Mode	CS	WE	Output	Power			
Standby	Н	Х	High-Z	Standby			
Read	L	Н	DATAOUT	Active			
Write	L	L	High-Z	Active			
NOTE: 2981 tbl 0							

1. H = VIH, L = VIL, X = Don't Care.

2981 tbl 02

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Military	–55°C to +125°C	0V	$5V \pm 10\%$
Commercial 0°C to +70°C		0V	$5V\pm10\%$
			0004 (k) 00

2981 tbl 06

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
Vterm	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
ΤΑ	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	–55 to +125	-65 to +135	°C
Tstg	Storage Temperature	–55 to +125	-65 to +150	О°
Рт	Power Dissipation	1.0	1.0	W
Ιουτ	DC Output Current	50	50	mA

NOTE:

2981 tbl 03

2981 tbl 04

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	7	pF
Соит	Output Capacitance	Vout = 0V	7	pF

NOTE:

1. This parameter is determined by device characterization, but is not production tested.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Viн	Input High Voltage	2.2	_	6.0	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

NOTE:

1. VIL (min.) = −3.0V for pulse width less than 20ns, once per cycle.

2

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(VCC = 5.0V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

			6167SA	/LA15	6167SA	VLA20	6167SA/LA25		
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current $\overline{CS} \leq V_{IL}$, Outputs Open,	SA	90	90	90	90	90	90	mA
	$Vcc = Max., f = 0^{(3)}$	LA	55	60	55	60	55	60	
ICC2	ICC2 Dynamic Operating Current $\overline{CS} \le V_{IL}$, Outputs Open, $V_{CC} = Max$., f = fMAX ⁽³⁾	SA	120	130	100	110	100	100	mA
		LA	100	110	80	85	70	75	
lsв	Standby Power Supply Current (TTL Level)	SA	50	50	35	35	35	35	mA
		LA	35	35	30	30	25	25	
ISB1	$\label{eq:sb1} \begin{array}{l} \text{Full Standby Power Supply Current} \\ (CMOS \ Level) \\ \hline CS \geq \ VHC, \ VCC = Max. \\ \hline VIN \geq \ VHC \ or \ VIN \leq \ VLC, \ f = 0^{(3)} \end{array}$	SA	5	10	5	10	5	10	mA
		LA	0.9	2	0.05	2	0.05	0.9	

DC ELECTRICAL CHARACTERISTICS⁽¹⁾ (CONTINUED) (Vcc = $5.0V \pm 10\%$, VLc = 0.2V, VHc = Vcc - 0.2V)

			6167SA	VLA35	5 6167SA/LA45 ⁽²⁾ 6		6167SA/	'LA55 ⁽²⁾	6167SA	'LA70 ⁽²⁾	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	$\overline{CS} \le VIL$, Outputs Open, Vcc = Max., f = 0 ⁽³⁾	SA	90	90	—	90	_	90	—	90	mA
		LA	55	60	_	60	_	60	_	60	
ICC2		SA	100	100	—	100	—	100	—	100	mA
		LA	65	70	_	65		60	_	60	
ISB	Standby Power Supply Current	SA	35	35		35		35		35	mA
	(TTL Level) CS ≥ VIH, Outputs Open, Vcc = Max., f = fMAX ⁽³⁾	LA	20	20		20	_	20		15	
ISB1	Full Standby Power Supply Current	SA	5	10	—	10	—	10	—	10	mA
	$\label{eq:cmost_loss} \begin{array}{l} (\underline{CMOS} \ Level) \\ \overline{CS} \geq VHC, \ VCC = Max. \\ VIN \geq VHC \ or \ VIN \leq VLC, \ f = 0^{(3)} \end{array}$	LA	0.05	0.9	_	0.9	_	0.9	_	0.9	

NOTES:

1. All values are maximum guaranteed values.

2. -55°C to +125°C temperature range only. Also available; 85ns and 100ns Military devices.

3. fMAX = 1/tRC, only address inputs cycling at fMAX. f = 0 means no Address inputs change.

DC ELECTRICAL CHARACTERISTICS

 $VCC = 5.0V \pm 10\%$

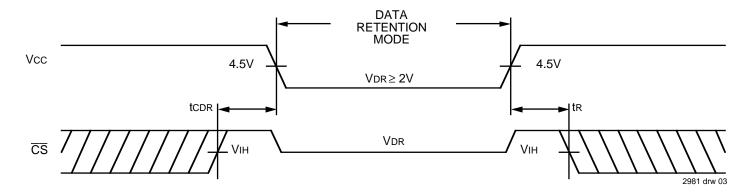
				IDT6 [,]	167SA	IDT61		
Symbol	Parameter	Test Condition		Min.	Max.	Min.	Max.	Unit
_	Input Leakage Current	Vcc = Max.,	MIL	_	10		5	μΑ
		VIN = GND to Vcc	COM'L	—	5	_	2	
Ilo	Output Leakage Current	Vcc = Max., \overline{CS} = VIH,	MIL	_	10		5	μΑ
		VOUT = GND to VCC	COM'L	—	5	—	2	
Vol	Output Low Voltage	IOL = 8mA, VCC = Min.		—	0.4		0.4	V
Vон	Output High Voltage	IOH = -4mA, Vcc = Min.		2.4	—	2.4	—	V

2981 tbl 08

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES

(LA Version Only) VLC = 0.2V, VHC = VCC - 0.2V

						p. ⁽¹⁾ cc @		ax. c @	
Symbol	Parameter	Test Condition		Min.	2.0v	3.0V	2.0V	3.0V	Unit
Vdr	Vcc for Data Retention	—		2.0	—	—	_	—	V
ICCDR	Data Retention Current		MIL.		0.5	1.0	200	300	μΑ
			COM'L.		0.5	1.0	20	30	
tCDR	Chip Deselect to Data Retention Time	CS≥VHC VIN≥VHC C	$\overline{CS} \ge VHC$ $VIN \ge VHC \text{ or } \le VLC$		—	—	—	—	ns
tR ⁽³⁾	Operation Recovery Time			tRC ⁽²⁾	—	—	—	—	ns
LI ⁽³⁾	Input Leakage Current	_	_		—	—	2	2	μΑ


NOTES:

1. TA = +25°C.

2. tRC = Read Cycle Time.

3. This parameter is guaranteed by device characterization, but is not production tested.

LOW Vcc DATA RETENTION WAVEFORM

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	2981 tbl 10

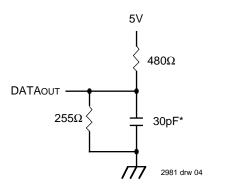


Figure 1. AC Test Load

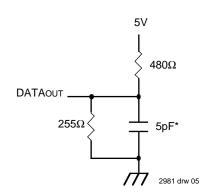
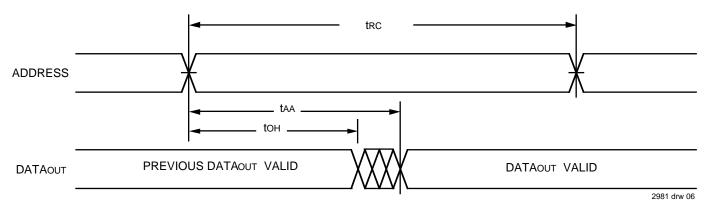
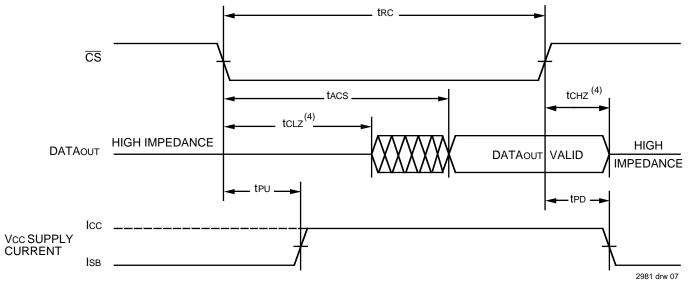


Figure 2. AC Test Load (for tclz, tchz, twhz and tow)

*Includes scope and jig.


AC ELECTRICAL CHARACTERISTICS (Vcc = $5.0V \pm 10\%$, All Temperature Ranges)

		6167SA15 6167LA15		6167S/ 6167L/	A20/25 A20/25			⁾ 6167SA55 ⁽¹⁾ /70 ⁽¹⁾) 6167LA55 ⁽¹⁾ /70 ⁽¹⁾		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle									
tRC	Read Cycle Time	15	—	20/25	—	35/45	—	55/70	_	ns
taa	Address Access Time	—	15	_	20/25	—	35/45	_	55/70	ns
tACS	Chip Select Access Time	-	15		20/25	—	35/45		55/70	ns
tCLZ ⁽²⁾	Chip Deselect to Output in Low-Z	3	—	5/5	—	5/5	—	5/5	_	ns
tCHZ ⁽²⁾	Chip Select to Output in High-Z	—	10	_	10/10	—	15/30	_	40/40	ns
toн	Output Hold from Address Change	3	_	5/5	_	5/5	—	5/5		ns
tpu ⁽²⁾	Chip Select to Power-Up Time	0	_	0/0	_	0/0	—	0/0		ns
tPD ⁽²⁾	Chip Deselect to Power-Down Time	_	15	_	20/25	_	35/45	_	55/70	ns
Write Cy	cle									
twc	Write Cycle Time	15	_	20/20	—	30/45		55/70	_	ns
tcw	Chip Select to End-of-Write	15	_	15/20	_	30/40	_	45/55	_	ns
taw	Address Valid to End-of-Write	15	_	15/20	—	30/40	_	45/55	_	ns
tAS	Address Set-up Time	0	_	0/0	_	0/0	_	0/0	_	ns
tWP	Write Pulse Width	13	_	15/20	—	30/30	_	35/40	_	ns
twr	Write Recovery Time	0	_	0/0	—	0/0	_	0/0		ns
tDW	Data Valid to End-of-Write	10	_	12/15	—	17/20		25/30		ns
tDH	Data Hold Time	0	—	0/0	—	0/0	—	0/0		ns
twnz ⁽²⁾	Write Enable to Output in High-Z	_	7	_	8/8	_	15/30	_	40/40	ns
tow ⁽²⁾	Output Active from End-of-Write	0	—	0/0	—	0/0	—	0/0	_	ns

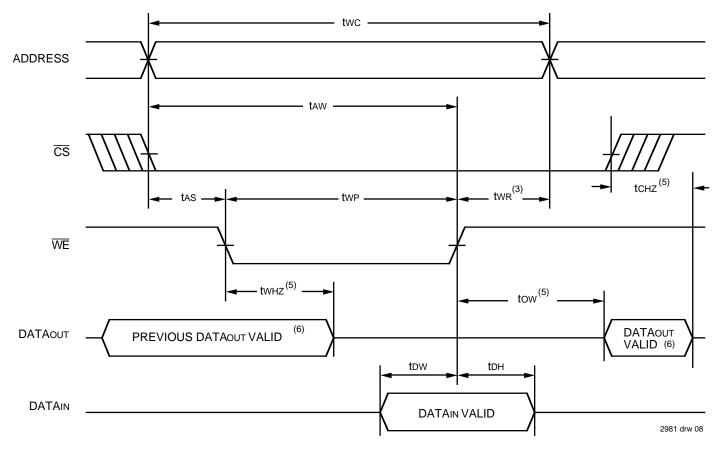

NOTES:

-55°C to +125°C temperature range only. Also available: 85ns and 100ns Military devices.
 This parameter is guaranteed with AC Load (Figure 2) by device characterization, but is not production tested.

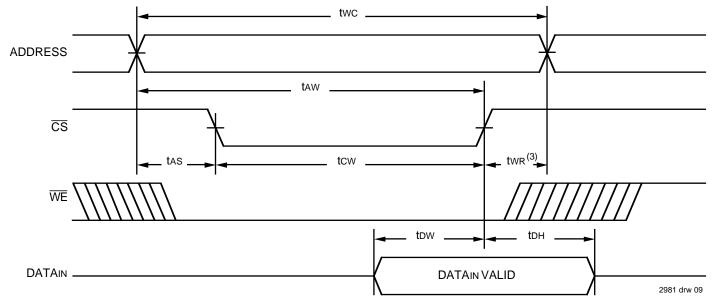
TIMING WAVEFORM OF READ CYCLE NO. $1^{(1, 2)}$

TIMING WAVEFORM OF READ CYCLE NO. $2^{(1, 3)}$

NOTES:

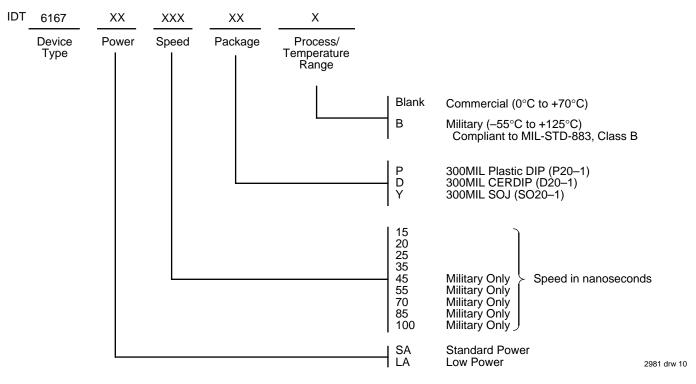

1. $\overline{\text{WE}}$ is HIGH for Read cycle.

2. Device is continuously selected, CS is LOW.


3. Address valid prior to or coincedent with \overline{CS} transition LOW.

4. Transition is measured ± 200 mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO. 1, (WE CONTROLLED TIMING)^(1, 2, 4)


TIMING WAVEFORM OF WRITE CYCLE NO. 2, (CS CONTROLLED TIMING)^(1, 2, 4)

NOTES:

- 1. $\overline{\text{WE}}$ or $\overline{\text{CS}}$ must be inactive during all address transitions.
- 2. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 3. twe is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 4. If the CS low transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state.
- 6. During this period, the I/O pins are in the output state and the input signals must not be applied.

ORDERING INFORMATION

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.