- 5- Ω Switch Connection Between Two Ports
 Isolation Under Power-Off Conditions
 - Package Options Include Plastic Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV), and Shrink Small-Outline (DL) Packages
 NOTE: For tape and reel order entry:
 The DGGR package is abbreviated to GR, and the DGVR package is abbreviated to VR.

description

The SN74CBTLV16210 provides 20 bits of high-speed bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The device is organized as dual 10-bit bus switches with separate output-enable ($\overline{\mathrm{OE}}$) inputs. It can be used as two 10-bit bus switches or as one 20-bit bus switch. When $\overline{\mathrm{OE}}$ is low, the associated 10-bit bus switch is on, and port A is connected to port B . When $\overline{\mathrm{OE}}$ is high, the switch is open, and the high-impedance state exists between the two ports.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74CBTLV16210 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

DGG, DGV, OR DL PACKAGE
(TOP VIEW)

NC - No internal connection

FUNCTION TABLE
(each 10-bit bus switch)

INPUT $\overline{\mathrm{OE}}$	FUNCTION
L	A port = B port
H	Disconnect

logic diagram (positive logic)

simplified schematic, each FET switch

(OE)
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	-0.5 V to 4.6 V
Input voltage range, $\mathrm{V}_{\text {I }}$ (see Note 1)	-0.5 V to 4.6 V
Continuous channel current	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$	-50 mA
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): DGG package	. $70^{\circ} \mathrm{C} / \mathrm{W}$
DGV package	. $58^{\circ} \mathrm{C} / \mathrm{W}$
DL package	... $63^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
Supply voltage		2.3	3.6	V
High-level control input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7		V
	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2		
Low-level control input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		0.7	V
	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.8	
Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP \dagger	MAX	UNIT
V_{IK}		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	リ $=-18 \mathrm{~mA}$				-1.2	V
I		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				± 1	$\mu \mathrm{A}$
Ioff		$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 3.6 V				10	$\mu \mathrm{A}$
ICC		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{I}=0$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND			10	$\mu \mathrm{A}$
$\Delta^{1} \mathrm{CC}^{\ddagger}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	One input at 3 V ,	Other inputs at V_{CC} or GND			300	$\mu \mathrm{A}$
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0				4.5		pF
$\mathrm{C}_{\mathrm{io} \text { (OFF) }}$		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$			6.5		pF
r_{on} §		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \\ & \text { TYP at } \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1}=0$	リ $=64 \mathrm{~mA}$		5	8	Ω
		$\mathrm{I}=24 \mathrm{~mA}$			5	8		
		V I $=1.7 \mathrm{~V}$,	$\mathrm{I}=15 \mathrm{~mA}$		27	40		
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0$	$\mathrm{I}_{1}=64 \mathrm{~mA}$		5	7	
		$\mathrm{I}=24 \mathrm{~mA}$			5	7		
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}=15 \mathrm{~mA}$		10	15		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the increase in supply current for each input that is at the specified voltage level rather than $\mathrm{V}_{C C}$ or GND.
\S Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$	UNIT
			MIN MAX	MIN MAX	
$t_{\text {pd }}$ d	A or B	B or A	0.15	0.25	ns
$t_{\text {en }}$	$\overline{\mathrm{OE}}$	A or B	$1 \quad 6.8$	$1 \quad 6$	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	A or B	17.3	17.4	ns

IT The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

PARAMETER MEASUREMENT INFORMATION
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

TEST	S1
t_{pd}	Open
$\mathrm{tPLZ}^{\prime} / \mathrm{tPZL}$	$2 \times \mathrm{V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{tPZH}$	GND

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and tphZ are the same as $t_{\text {dis }}$.
F. tPZL and tPZH are the same as ten.
G. \quad tPLH and tPHL are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION
 $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Input

TEST	S1
$\mathrm{t}_{\text {pd }}$	Open
$\mathrm{t}_{\text {PLZ }} / \mathrm{tPZL}$	6 V
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tpLZ and tPHZ are the same as $\mathrm{t}_{\text {dis }}$.
F. tPZL and tPZH are the same as ten.
G. $\mathrm{tPLH}^{\text {and }} \mathrm{tPHL}$ are the same as t_{pd}.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

\gg Semiconductor Home $>$ Products $>$ Digital Logic $>$ Bus Switches $>$ Standard Bus Switches $>$
SN74CBTLV16210, Low-Voltage 20-Bit FET Bus Switch
Device Status: Active
$>$ Description
$>$ Features
> Datasheets
> Pricing/Samples/Availability
> Application Notes
$>$ Related Documents
$>$ Training

Parameter Name	SN74CBTLV16210
Voltage Nodes (V)	$3.3,2.5$
Vcc range (V)	2.3 to 3.6
No. of Bits	20
ron(max) (ohms)	7
tpd(max) (ns)	0.25

Description

The SN74CBTLV16210 provides 20 bits of high-speed bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The device is organized as dual 10 -bit bus switches with separate output-enable (OE
) inputs. It can be used as two 10 -bit bus switches or as one 20 -bit bus switch. When OE\ is low, the associated 10 -bit bus switch is on, and port A is connected to port B . When $\mathrm{OE} \backslash$ is high, the switch is open, and the high-impedance state exists between the two ports.

To ensure the high-impedance state during power up or power down, OE\ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74CBTLV16210 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Features

- 5- \square Switch Connection Between Two Ports
- Isolation Under Power-Off Conditions
- Package Options Include Plastic Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV), and Shrink Small-Outline (DL) Packages

NOTE: For tape and reel order entry:
The DGGR package is abbreviated to GR, and the DGVR package is abbreviated to VR.

To view the following documents, Acrobat Reader 3.x is required.
To download a document to your hard drive, right-click on the link and choose 'Save'.

Datasheets

Full datasheet in Acrobat PDF: scds042f.pdf (86 KB)
Full datasheet in Zipped PostScript: scds042f.psz (83 KB)
Pricing/Samples/Availability

Orderable Device	Package	Pins	$\underline{T e m p}\left({ }^{\circ} \mathrm{C}\right)$	Status	$\begin{gathered} \text { Price/unit } \\ \text { USD (100-999) } \end{gathered}$	Pack Qty	Availability / Samples
SN74CBTLV16210DL	DL	48	-40 TO 85	ACTIVE	3.00	25	Check stock or order
SN74CBTLV16210DLR	DL	48	-40 TO 85	ACTIVE	2.51	1000	Check stock or order
SN74CBTLV16210G	DGG	48		PREVIEW			Check stock or order
SN74CBTLV16210GR	DGG	48	-40 TO 85	ACTIVE	2.51	2000	Check stock or order
SN74CBTLV16210VR	DGV	48	-40 TO 85	ACTIVE	2.84	2000	Check stock or order

Application Reports

View Application Reports for Digital Logic

- 5-V To 3.3-V Translation With The SN74CBTD3384 (SCDA003B - Updated: 03/01/1997)
- Low-Voltage Bus-Switch Technology And Applications (SCDA005 - Updated: 12/01/1997)
- SN74CBTS3384 Bus Switches Provide Fast Connection And Ensure Isolation (SCDA002A - Updated: 08/01/1996)
- TI Logic Solutions for Memory Interleaving With the Intel440BX Chipset (SCCA001 - Updated: 04/08/1999)
- Texas Instruments Crossbar Switches (SCDA001A - Updated: 06/01/1995)
- Texas Instruments Solution for Undershoot Protection for Bus Switches (SCDA007- Updated: 04/13/2000)

Related Documents

- Documentation Rules (SAP) And Ordering Information (SZZU001B, 4 KB - Updated: 05/06/1999)
- Logic Selection Guide Second Half 2000 (SDYU001N, 5035 KB - Updated: 04/17/2000)
- MicroStar Junior BGA Design Summary (SCET004, 284 KB - Updated: 07/28/2000)
- More Power In Less Space - Technical Article (SCAU001A, 850 KB - Updated: 03/01/1996)

Table Data Updated on: 8/31/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. Trademarks | Privacy Policy

