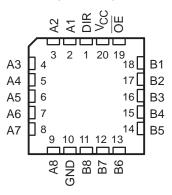

SCBS081H - JANUARY 1991 - REVISED MAY 1997

- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_A = 25°C
- High-Impedance State During Power Up and Power Down
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OI})
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Thin Very Small-Outline (DGV) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Plastic (N) and Ceramic (J) DIPs


description

These octal bus transceivers are designed for asynchronous communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated.

SN54ABT245A . . . J OR W PACKAGE SN74ABT245B . . . DB, DGV, DW, N, OR PW PACKAGE (TOP VIEW)

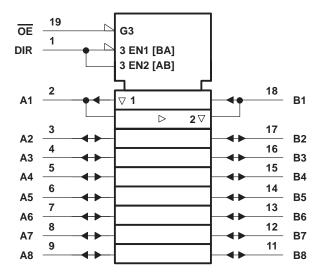
SN54ABT245B . . . FK PACKAGE (TOP VIEW)

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

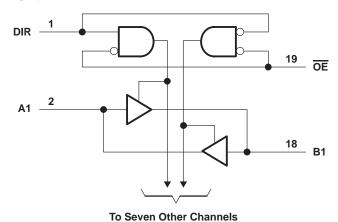
The SN54ABT245A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ABT245B is characterized for operation from –40°C to 85°C.

FUNCTION TABLE

INP	UTS	OPERATION			
OE	DIR	OPERATION			
L	L	B data to A bus			
L	Н	A data to B bus			
Н	Χ	Isolation			


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC-IIB is a trademark of Texas Instruments Incorporated.


SCBS081H - JANUARY 1991 - REVISED MAY 1997

logic symbol†

 $[\]ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCBS081H - JANUARY 1991 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see I	Note 1)	-0.5 V to 7 V
Voltage applied to any output in the high or pow	ver-off state, VO	. $-0.5\ V$ to $5.5\ V$
Current into any output in the low state, IO: SN	I54ABT245A	96 mA
SN	I74ABT245B	128 mA
Input clamp current, I _{IK} (V _I < 0)		–18 mA
Output clamp current, I _{OK} (V _O < 0)		–50 mA
Package thermal impedance, θ_{JA} (see Note 2):	: DB package	115°C/W
	DGV package	146°C/W
	DW package	97°C/W
	N package	67°C/W
	PW package	128°C/W
Storage temperature range, T _{sta}		-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

		SN54AB	T245A	SN74AB	UNIT	
		MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	VCC	0	VCC	V
IOH	High-level output current		-24		-32	mA
loL	Low-level output current		48		64	mA
Δt/Δν	Input transition rise or fall rate		5		5	ns/V
Δt/ΔV _{CC}	Power-up ramp rate			200		μs/V
T _A	Operating free-air temperature	- 55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

SN54ABT245A, SN74ABT245B **OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS**

SCBS081H - JANUARY 1991 - REVISED MAY 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DAI	DAMETER	TEST CONDITIONS		T,	_A = 25°C	;	SN54AB	T245A	SN74ABT245B		LINUT	
PAI	RAMETER	I IEST CON	DITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT	
VIK		$V_{CC} = 4.5 \text{ V}, \qquad I_{I} = -18 \text{ mA}$				-1.2		-1.2		-1.2	V	
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5		2.5			
\/a		$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3		3		V	
VOH		V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2			2] '	
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$	2*					2			
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V	
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	V	
V _{hys}					100						mV	
	Control inputs	$V_{CC} = 0 \text{ to } 5.5 \text{ V, V}_{I}$	= V _{CC} or GND			±1		±1		±1		
lį	A or B ports	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}$ $V_{I} = V_{CC} \text{ or GND}$,			±20		±100		±20	μΑ	
lozpu [‡]	:	$V_{CC} = 0 \text{ to } 2.1 \text{ V},$ $V_{O} = 0.5 \text{ V to } 2.7 \text{ V}, \overline{OE} = X$				±50		±50		±50	μΑ	
lozpd‡	:	V _{CC} = 2.1 V to 0, V _O = 0.5 V to 2.7 V, OE = X				±50		±50		±50	μА	
I _{OZH} §		$V_{CC} = 2.1 \text{ V} \text{ to } 5.5 \text{ V},$ $V_{O} = 2.7 \text{ V}, \overline{OE} \ge 2 \text{ V}$				10		10		10	μА	
lozL§		$V_{CC} = 2.1 \text{ V} \text{ to } 5.5 \text{ V}$ $V_{O} = 0.5 \text{ V}, \overline{OE} \ge 2 \text{ V}$,			-10		-10		-10	μА	
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100				±100	μΑ	
ICEX		V _{CC} = 5.5 V, V _O = 5.5 V	Outputs high			50		50		50	μΑ	
IO¶		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-140	-180	- 50	-180	-50	-180	mA	
		V _{CC} = 5.5 V,	Outputs high		5	250		250		250	μΑ	
Icc	A or B ports	$I_{O} = 0$,	Outputs low		22	30		30		30	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		1	250		250		250	μΑ	
	Data inputs	V _{CC} = 5.5 V, One input at 3.4 V,	Outputs enabled			1.5		1.5		1.5	mA	
∆lcc#	Data inputs	Other inputs at V _{CC} or GND	Outputs disabled			50		50		50	μА	
	Control inputs	V_{CC} = 5.5 V, One input at 3.4 V, Other inputs at V_{CC} or GND				1.5		1.5		1.5	mA	
C _i	Control inputs	V _I = 2.5 V or 0.5 V			4						pF	
C _{io}	A or B ports	$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$			8						pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

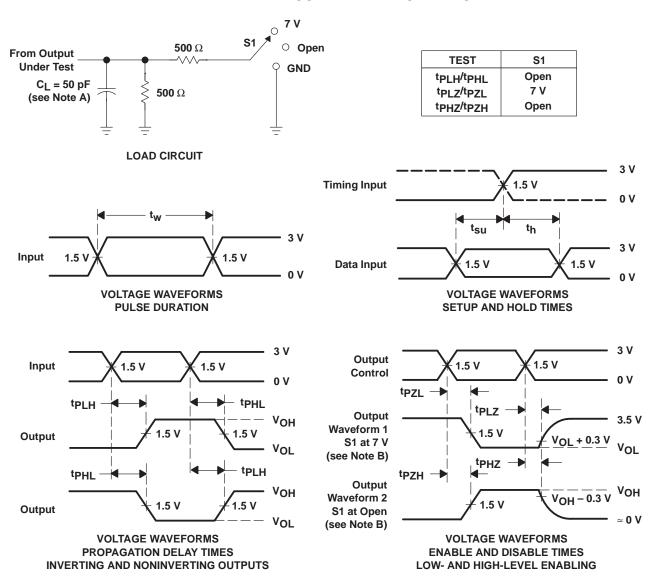
[†] All typical values are at V_{CC} = 5 V. ‡ This parameter is characterized, but not production tested.

[§] The parameters IOZH and IOZL include the input leakage current.

Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#]This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54ABT245A, SN74ABT245B OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS


SCBS081H - JANUARY 1991 - REVISED MAY 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM TO (INPUT) (OUTPUT)		V _{CC} = 5 V, T _A = 25°C		SN54ABT245A		SN74ABT245B		UNIT	
	(INFOT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	A or B	B or A	1	2	3.2	0.8	3.8	1	3.6	ns
t _{PHL}	AUB	BUIA	1	2.6	3.5	1	4.2	1	3.9	115
^t PZH	ŌĒ	A or B	2	3.5	4.5	1.2	6.2	2	5.6	5.6 6.2 ns
tPZL	OE	AOIB	1.9	4	5.3	1.3	6.8	1.9	6.2	
t _{PHZ}	OE	A or P	2.2	4.4	5.4	2.2	6.1	2.2	5.9	ns
^t PLZ	OL	A or B	1.5	3	4	1.0	4.9	1.5	4.5	115
t _{sk(o)} †					0.5				0.5	ns

[†] Skew between any two outputs of the same package switching in the same direction. This parameter is warranted but not production tested.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

* Texas Instruments	THE WORLI	D LEADER I	N DSP AND	ANALOG
Products Go	Developmen	t Tools 💌	Applicat	ions 🔻
Search	☐ Advanced Search ☐ Tech Support	☐ TI Home ☐ Comments	□ TI&ME □ Site Map	□ Employment □ Tl Global

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS |
PRICING/AVAILABILITY | SAMPLES |
APPLICATION NOTES | RELATED DOCUMENTS

PRODUCT SUPPORT: TRAINING

SN74ABT245B, Octal Bus Transceivers with 3-State Outputs

DEVICE STATUS: ACTIVE

PARAMETER NAME	SN74ABT245B
Voltage Nodes (V)	5
Vcc range (V)	4.5 to 5.5
Input Level	TTL
Output Level	TTL
Output Drive (mA)	-32/64
No. of Outputs	8
Logic	True
Static Current	15.12
tpd(max) (ns)	3.9

FEATURES Back to Top

- State-of-the-Art **EPIC-**II **B**TM BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce) < 1 V at V_{CC} = 5 V, T_{A} = 25 °C
- High-Impedance State During Power Up and Power Down
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OL})
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Thin Very Small-Outline (DGV) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Plastic (N) and Ceramic (J) DIPs

EPIC-IIB is a trademark of Texas Instruments Incorporated.

DESCRIPTION <u>Back to Top</u>

These octal bus transceivers are designed for asynchronous communication between data

buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE\) input can be used to disable the device so the buses are effectively isolated.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, OE\ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT245A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT245B is characterized for operation from -40°C to 85°C.

TECHNICAL DOCUMENTS

Back to Top

To view the following documents, <u>Acrobat Reader 3.x</u> is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET Back to Top

Full datasheet in Acrobat PDF: scbs081h.pdf (107 KB) (Updated: 05/01/1997) Full datasheet in Zipped PostScript: scbs081h.psz (101 KB)

APPLICATION NOTES

Back to Top

View Application Reports for Digital Logic

- Advanced BiCMOS Technology (ABT) Logic Characterization Information (SCBA008B Updated: 06/01/1997)
- Advanced BiCMOS Technology (ABT) Logic Enables Optimal System Design (SCBA001A Updated: 03/01/1997)
- Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (SCBA012A - Updated: 08/01/1997)
- Designing With Logic (SDYA009C Updated: 06/01/1997)
- Family of Curves Demonstrating Output Skews for Advanced BiCMOS Devices (SCBA006A
 Updated: 12/01/1996)
- Implications of Slow or Floating CMOS Inputs (SCBA004C Updated: 02/01/1998)
- <u>Input and Output Characteristics of Digital Integrated Circuits</u> (SDYA010 Updated: 10/01/1996)
- LVT-to-LVTH Conversion (SCEA010 Updated: 12/08/1998)
- Live Insertion (SDYA012 Updated: 10/01/1996)
- Logic Solutions For IEEE Std 1284 (SCEA013 Updated: 06/01/1999)
- <u>Understanding Advanced Bus-Interface Products Design Guide</u> (SCAA029, 253 KB Updated: 05/01/1996)

RELATED DOCUMENTS

Back to Top

- <u>Documentation Rules (SAP) And Ordering Information</u> (SZZU001B, 4 KB Updated: 05/06/1999)
- Logic Selection Guide Second Half 2000 (SDYU001N, 5035 KB Updated: 04/17/2000)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000)
- More Power In Less Space Technical Article (SCAU001A, 850 KB Updated: 03/01/1996)

SAMPLES Back to Top

ORDERABLE DEVICE	<u>PACKAGE</u>	<u>PINS</u>	TEMP (°C)	<u>STATUS</u>	<u>SAMPLES</u>
SN74ABT245BDW	<u>DW</u>	20	-40 TO 85	ACTIVE	Request Samples
SN74ABT245BPWLE	<u>PW</u>	20	-40 TO 85	OBSOLETE	
SN74ABT245BPWR	<u>PW</u>	20	-40 TO 85	ACTIVE	Request Samples

PRICING/AVAILABILITY Back to Top

PRICING/AVAILA				<u> </u>	ck to rop		
ORDERABLE DEVICE	PACKAGE	<u>PINS</u>	TEMP (°C)	<u>STATUS</u>	BUDGETARY PRICE US\$/UNIT QTY=1000+	PACK QTY	PRICING/AVAILABILITY
SN74ABT245BDBLE	<u>DB</u>	20	-40 TO 85	OBSOLETE			
SN74ABT245BDBR	<u>DB</u>	20	-40 TO 85	ACTIVE	0.57	2000	Check stock or order
SN74ABT245BDGVR	<u>DGV</u>	20	-40 TO 85	ACTIVE	0.57	2000	Check stock or order
SN74ABT245BDW	<u>DW</u>	20	-40 TO 85	ACTIVE	0.57	25	Check stock or order
SN74ABT245BDWR	<u>DW</u>	20	-40 TO 85	ACTIVE	0.57	2000	Check stock or order
SN74ABT245BN	<u>N</u>	20	-40 TO 85	ACTIVE	0.57	20	Check stock or order
SN74ABT245BPWLE	<u>PW</u>	20	-40 TO 85	OBSOLETE			
SN74ABT245BPWR	<u>PW</u>	20	-40 TO 85	ACTIVE	0.75	2000	Check stock or order

Table Data Updated on: 11/14/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. <u>Trademarks | Privacy Policy | Important Notice</u>