

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

74F821 10-Bit D-Type Flip-Flop

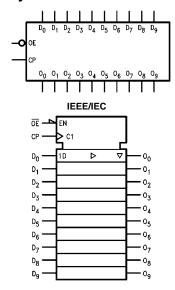
74F821 10-Bit D-Type Flip-Flop

General Description

Features

The 74F821 is a 10-bit D-type flip-flop with 3-STATE true outputs arranged in a broadside pinout.

e 3-STATE Outputs


Ordering Code:

FAIRCHILD

SEMICONDUCTOR

Order Number	Package Number	Package Description					
74F821SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
74F821SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					
Devices also available	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

Logic Symbols

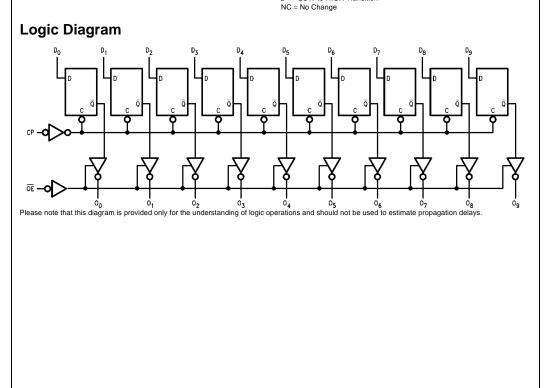
Connection Diagram

_		0		
ŌĒ —	1		24	-v _{cc}
D ₀ -	2		23	- o ₀
D ₁ -	3		22	-0 ₁
D ₂ —	4		21	-0 ₂
D3 —	5		20	-0 ₃
D4-	6		19	_04
D ₅ —	7		18	-0 ₅
D ₆ -	8		17	-0 ₆
D ₇ —	9		16	-0 ₇
D ₈ -	10		15	-0 ₈
D ₉ -	11		14	-0 ₉
GND —	12		13	- CP

74F821

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
Fill Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
D ₀ –D ₉	Data Inputs	1.0/1.0	20 µA/-0.6 mA		
D ₀ –D ₉ OE	Output Enable	1.0/1.0	20 µA/–0.6 mA		
	3-STATE Input				
CP	Clock Input	1.0/1.0	20 µA/–0.6 mA		
O ₀ –O ₉	3-STATE Outputs	150/40 (33.3)	-3.0 mA/24 mA (20 mA		


Functional Description

The 74F821 consists of ten D-type edge-triggered flipflops. This device has 3-STATE true outputs for bus systems organized in a broadside pinning. The buffered Clock (CP) and buffered Output Enable (OE) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition. With the $\overline{\text{OE}}$ LOW the content of the flip-flips are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Function Table

I	Inputs		Internal	Output	Function
OE	СР	D	Q	0	Function
Н	Н	Х	NC	Z	Hold
н	L	Х	NC	Z	Hold
Н	~	L	Н	Z	Load
н	~	Н	L	Z	Load
L	~	L	Н	L	Data Available
L	~	Н	L	Н	Data Available
L	Н	Х	NC	NC	No Change in Data
L	L	Х	NC	NC	No Change in Data
L = LOV	V Voltag	je Leve	el		•

H = HIGH Voltage Level

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max)

-65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

–0.5V to V_{CC}

-0.5V to +5.5V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

 $0^{\circ}C$ to $+70^{\circ}C$

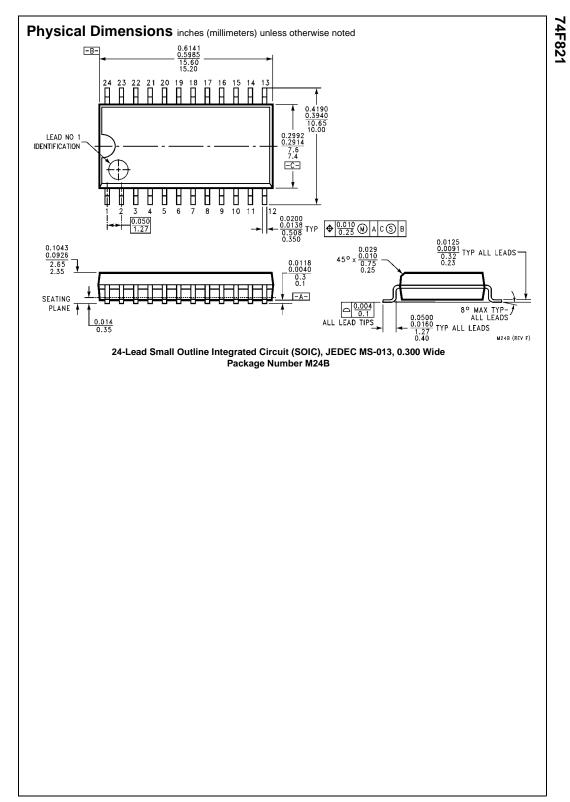
+4.5V to +5.5V

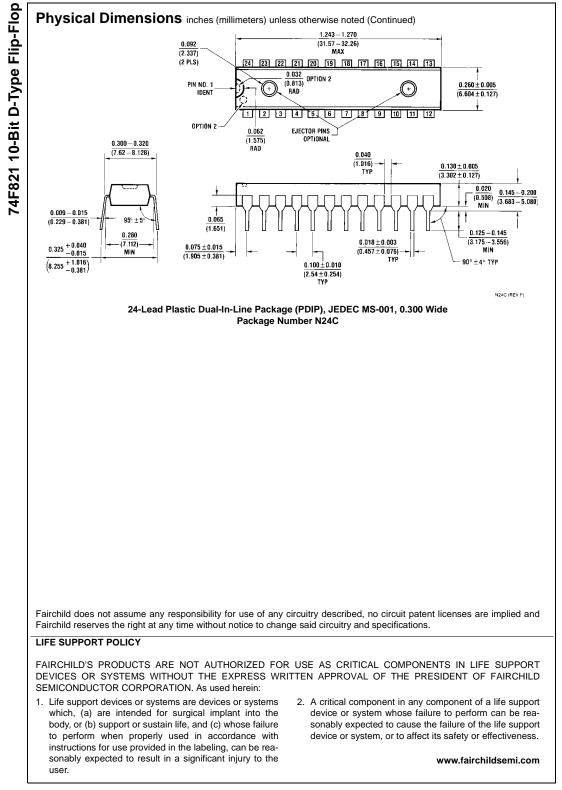
74F821

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

in LOW State (Max)	twice the rated I_{OL} (mA)


Symbol	Paramete	r	Min	Тур	Max	Units	V _{cc}	Conditions		
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal		
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal		
V _{CD}	Input Clamp Diode Voltag	e			-1.2	V	Min	I _{IN} = -18 mA		
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA		
	Voltage	10% V _{CC}	2.4			v	Min	$I_{OH} = -3 \text{ mA}$		
		5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$		
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$		
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA		
Ι _{ΙΗ}	Input HIGH Current				5.0	μΑ	Max	V _{IN} = 2.7V		
I _{BVI}	Input HIGH Current				7.0		Maria	N 70V		
	Breakdown Test				7.0	μA	Max	V _{IN} = 7.0V		
ICEX	Output HIGH				50	μA	Мач	Мох	Max	$V_{OUT} = V_{CC}$
	Leakage Current				50	μΑ	IVIAX	V _{OUT} = V _{CC}		
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA,		
	Test		4.75			v	0.0	All Other Pins Grounded		
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$		
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded		
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$		
I _{OZH}	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V$		
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$		
I _{OS}	Output Short-Circuit Curre	ent	-60		-150	mA	Max	$V_{OUT} = 0V$		
I _{CCZ}	Power Supply Current			78	100	mA	Max	V _O = HIGH Z		


DC Electrical Characteristics

Sumbol	Demonster	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$		T _A = 0°C to +70°C V _{CC} = +5.0V		Unite
Symbol	Parameter		$C_L = 50 \text{ pF}$		C _L = 50 pF		$C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Мах	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	150		60		70		MHz
t _{PLH}	Propagation Delay	2.0	6.4	9.5	2.0	10.5	2.0	10.5	
t _{PHL}	CP to O _n	2.0	6.2	9.5	2.0	10.5	2.0	10.5	ns
t _{PZH}	Output Enable Time	2.0	5.8	10.5	2.0	13.0	2.0	11.5	
t _{PZL}	OE to On	2.0	6.3	10.5	2.0	13.0	2.0	11.5	
t _{PHZ}	Output Disable Time	1.5	3.4	7.0	1.0	7.5	1.5	7.5	ns
t _{PLZ}	OE to On	1.5	3.5	7.0	1.0	7.5	1.5	7.5	

AC Operating Requirements

		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0^\circ C \text{ to } +70^\circ C$ $V_{CC} = +5.0V$		Units
Symbol	Parameter							
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	2.5		4.0		3.0		
t _S (L)	D _n to CP	2.5		4.0		3.0		
t _H (H)	Hold Time, HIGH or LOW	2.5		2.5		2.5		ns
t _H (L)	D _n to CP	2.5		2.5		2.5		
t _W (H)	CP Pulse Width	5.0		6.0		6.0		
t _W (L)	HIGH or LOW	5.0		6.0		6.0		ns

