

MOS INTEGRATED CIRCUIT **μPD442002-X**

2M-BIT CMOS STATIC RAM 128K-WORD BY 16-BIT EXTENDED TEMPERATURE OPERATION

Description

The μ PD442002-X is a high speed, low power, 2,097,152 bits (131,072 words by 16 bits) CMOS static RAM. The μ PD442002-X is packed in 48-pin TAPE FBGA.

Features

• 131,072 words by 16 bits organization

• Fast access time: 70, 85, 100 ns (MAX.)

• Byte data control : /LB (I/O1 to I/O8), /UB (I/O9 to I/O16)

• Low voltage operation : Vcc = 2.7 to 3.6 V (-BB70X)

Vcc = 2.2 to 3.6 V (-BC70X)

Vcc = 1.8 to 2.2 V (-DD85X, -DD10X)

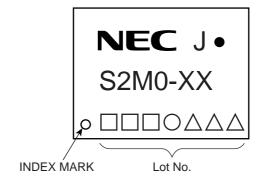
Low Vcc data retention: 1.0 V (MIN.)

• Operating ambient temperature : $T_A = -25$ to +85 °C

• Output Enable input for easy application

+	μPD442002	Access time	Operating supply	Operating ambient		Supply current	t		
		ns (MAX.)	voltage	temperature	At operating	At operating At standby			
			V	°C	mA (MAX.)	μA (MAX.)	μA (MAX.)		
	-BB70X	70	2.7 to 3.6	–25 to +85	30	4	2		
	-BC70X	70	2.2 to 3.6						
	-DD85X, -DD10X	85, 100	1.8 to 2.2		15	3			

The information in this document is subject to change without notice. Before using this document, please Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.


★ Ordering Information

Part number	Package	Access time	Operating	Operating
		ns (MAX.)	supply voltage	temperature
			V	°C
μPD442002F9-BB70X-BC2-A Note	48-pin TAPE FBGA (8×6)	70	2.7 to 3.6	–25 to +85
μPD442002F9-BC70X-BC2-A Note		70	2.2 to 3.6	
μPD442002F9-DD85X-BC2-A Note		85	1.8 to 2.2	
μPD442002F9-DD10X-BC2-A Note		100		

Note Lead-free product

★ Marking Image

Part number	Marking (XX)
μPD442002F9-BB70X-BC2-A	B2
μPD442002F9-BC70X-BC2-A	C2
μPD442002F9-DD85X-BC2-A	D3
μPD442002F9-DD10X-BC2-A	D4

Pin Configuration

/xxx indicates active low signal.

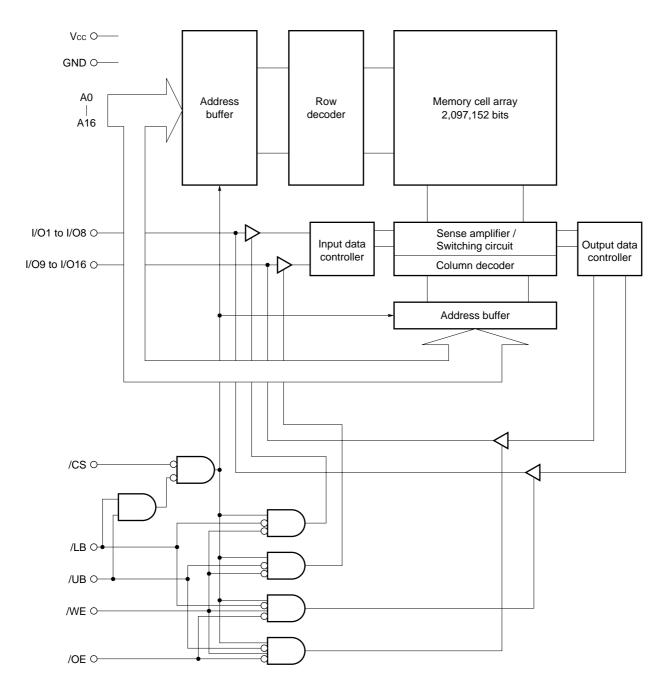
48-pin TAPE FBGA (8×6)

Top View Bottom View 00000 В 00000 С $\circ \circ \circ \circ \circ \circ$ D 00000 Е 00000 F 00000 00000 G Н 00000

	1	2	3	4	5	6
Α	/LB	/OE	A0	A1	A2	NC
В	I/O9	/UB	A3	A4	/CS	I/O1
С	I/O10	I/O11	A5	A6	I/O2	I/O3
D	GND	I/O12	NC	A7	I/O4	Vcc
Е	Vcc	I/O13	NC	A16	I/O5	GND
F	I/O15	I/O14	A14	A15	I/O6	1/07
G	I/O16	NC	A12	A13	/WE	I/O8
Н	NC	A8	A9	A10	A11	NC

	6	5	4	3	2	1
Α	NC	A2	A1	A0	/OE	/LB
В	I/O1	/CS	A4	А3	/UB	I/O9
С	I/O3	I/O2	A6	A5	I/O11	I/O10
D	Vcc	I/O4	A7	NC	I/O12	GND
Е	GND	I/O5	A16	NC	I/O13	Vcc
F	1/07	I/O6	A15	A14	I/O14	I/O15
G	I/O8	/WE	A13	A12	NC	I/O16
Н	NC	A11	A10	A9	A8	NC

A0 to A16 : Address inputs


I/O1 to I/O16 : Data inputs / outputs

/CS : Chip Select /WE : Write Enable /OE : Output Enable /LB, /UB : Byte data select Vcc: Power supply **GND** : Ground

NC : No Connection

Remark Refer to **Package Drawing** for the index mark.

Block Diagram

Truth Table

/CS	/OE	/WE	/LB	/UB	Mode	1/	0	Supply current
						I/O1 to I/O8	I/O9 to I/O16	
Н	×	×	×	×	Not selected	High-Z	High-Z	lsв
×	×	×	Н	Н	Not selected	High-Z	High-Z	
L	Н	Н	L	×	Output disable	High-Z	High-Z	ICCA
			×	L	Output disable	High-Z	High-Z	
	L	Н	L	L	Word read	D оит	D оит	
			L	Н	Lower byte read	D оит	High-Z	
			Н	L	Upper byte read	High-Z	D оит	
	×	L	L	L	Word write	Din	Din	
			L	Н	Lower byte write	Din	High-Z	
			Н	L	Upper byte write	High-Z	Din	

 $\textbf{Remark} \hspace{0.1in} \times \hspace{0.1in} : V_{IH} \hspace{0.1in} or \hspace{0.1in} V_{IL}$

Data Sheet M14670EJ7V0DS 5

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	Ra	ting	Unit
			-BB70X, -BC70X	-DD85X, -DD10X	
Supply voltage	Vcc		-0.5 ^{Note} to +4.0	-0.5 ^{Note} to +2.7	V
Input / Output voltage	VT		-0.5 Note to Vcc+0.4 (4.0 V MAX.)	-0.5 Note to Vcc+0.4 (2.7 V MAX.)	V
Operating ambient temperature	TA		-25 to +85	–25 to +85	°C
Storage temperature	T _{stg}		-55 to +125	-55 to +125	°C

Note -3.0 V (MIN.) (Pulse width: 30 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	-BB	70X	-BC	70X	-DD85X,	-DD85X, -DD10X	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Supply voltage	Vcc		2.7	3.6	2.2	3.6	1.8	2.2	٧
High level input voltage	VIH	2.7 V ≤ Vcc ≤ 3.6 V	2.4	Vcc+0.4	2.4	Vcc+0.4	_	_	٧
		2.2 V ≤ Vcc < 2.7 V	_	_	2.0	Vcc+0.3	-	-	
		1.8 V ≤ Vcc < 2.2 V	_	_	_	-	1.6	Vcc+0.2	
Low level input voltage	VIL		-0.3 Note	+0.5	-0.3 Note	+0.4	-0.2 Note	+0.2	V
Operating ambient	TA		-25	+85	-25	+85	-25	+85	°C
temperature									

Note -1.0 V (MIN.) (Pulse width: 20 ns)

Capacitance (T_A = 25°C, f = 1 MHz)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	V _{IN} = 0 V			8	pF
Input / Output capacitance	C _{I/O}	V _{I/O} = 0 V			10	pF

Remarks 1. VIN: Input voltage

Vi/o: Input / Output voltage

2. These parameters are not 100% tested.

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (1/2)

Parameter	Symbol	Test condition		-BB70X		Unit
			MIN.	TYP.	MAX.	
Input leakage current	lu	V _{IN} = 0 V to V _{CC}	-1.0		+1.0	μΑ
I/O leakage current	ILO	V _{I/O} = 0 V to V _{CC} , /CS = V _{IH} or	-1.0		+1.0	μΑ
		/WE = V _{IL} or /OE = V _{IH}				
Operating supply current	ICCA1	/CS = V _{IL} , I _{I/O} = 0 mA, Minimum cycle time		1	30	mA
	Icca2	/CS = V _{IL} , I _{I/O} = 0 mA, Cycle time = ∞		ı	4	
	Іссаз	$/CS \le 0.2 \text{ V}$, Cycle time = 1 μ s, $I_{I/O}$ = 0 mA,		-	4	
		$V_{\text{IL}} \leq 0.2 \; \text{V}, \; \text{V}_{\text{IH}} \geq \text{V}_{\text{CC}} - 0.2 \; \text{V}$				
Standby supply current	IsB	/CS = ViH or /LB = /UB = ViH		ı	0.6	mA
	I _{SB1}	/CS ≥ Vcc - 0.2 V		0.3	4	μΑ
	I _{SB2}	/LB = /UB ≥ Vcc − 0.2 V, /CS ≤ 0.2 V		0.3	4	
High level output voltage	Vон	Iон = -0.5 mA	2.4			V
Low level output voltage	Vol	IoL = 1.0 mA			0.4	V

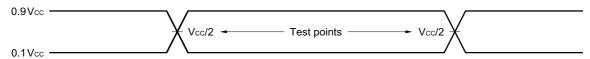
Remark VIN: Input voltage

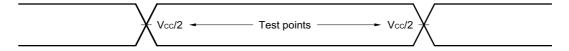
Vi/o : Input / Output voltage

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (2/2)

Parameter	Symbol	Test condition	on		-BC70X		-DD	85X, -D[D10X	Unit
				MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input leakage current	lu	V _{IN} = 0 V to V _{CC}		-1.0		+1.0	-1.0		+1.0	μΑ
I/O leakage current	llo	V _{I/O} = 0 V to V _{CC} , /CS =	V _{IH} or	-1.0		+1.0	-1.0		+1.0	μΑ
		/WE = V _{IL} or /OE = V _{IH}								
Operating supply current	ICCA1	/CS = V _{IL} , I _{I/O} = 0 mA,			_	30		_	_	mA
		Minimum cycle time	Vcc ≤ 2.7 V		_	25		_	_	
			Vcc ≤ 2.2 V		_	_		_	15	
	ICCA2	/CS = V _{IL} , I _{I/O} = 0 mA,			_	4		_	_	
		Cycle time = ∞	Vcc ≤ 2.7 V		_	2		_	_	
			Vcc ≤ 2.2 V		_	_		_	1	
	Іссаз	/CS ≤ 0.2 V, Cycle time	$= 1 \mu s,$		_	4		_	_	
		$I_{I/O} = 0 \text{ mA}, V_{IL} \le 0.2 \text{ V},$	Vcc ≤ 2.7 V		_	3		_	_	
		V _{IH} ≥ V _{CC} − 0.2 V	Vcc ≤ 2.2 V		_	_		_	3	
Standby supply current	IsB	/CS = V _{IH} or /LB = /UB	= V _{IH}		_	0.6		_	_	mA
			Vcc ≤ 2.7 V		_	0.6		_	_	
			Vcc ≤ 2.2 V		_	_		_	0.6	
	I _{SB1}	/CS ≥ Vcc - 0.2 V	_		0.3	4		_	_	μΑ
			Vcc ≤ 2.7 V		0.25	3.5		-	_	
			V cc $\leq 2.2 \text{ V}$		_	-		0.2	3	
	I _{SB2}	/LB = /UB ≥ Vcc - 0.2 V	' ,		0.3	4		_	_	
		/CS ≤ 0.2 V	Vcc ≤ 2.7 V		0.25	3.5		_	_	
			Vcc ≤ 2.2 V		_	_		0.2	3	
High level output voltage	Vон	Iон = -0.5 mA		2.4			-			V
			Vcc ≤ 2.7 V	1.8			-			
			Vcc ≤ 2.2 V	-			1.5			
Low level output voltage	Vol	I _{OL} = 1.0 mA	r			0.4			_	V
			Vcc ≤ 2.7 V			0.4			_	
			Vcc ≤ 2.2 V			_			0.4	

Remark VIN: Input voltage


Vi/o : Input / Output voltage


AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

AC Test Conditions

Input Waveform (Rise and Fall Time ≤ 5 ns)

Output Waveform

Output Load

[-BB70X]

1TTL + 50 pF

[-BC70X, -DD85X, -DD10X]

1TTL + 30 pF

★ Read Cycle (1/2)

Parameter	Symbol	Vcc ≥ 2.7 V		Unit	Condition
		-BB	370X		
		MIN.	MAX.		
Read cycle time	t RC	70		ns	
Address access time	t AA		70	ns	Note 1
/CS access time	tacs		70	ns	
/OE to output valid	t oe		35	ns	
/LB, /UB to output valid	t BA		70	ns	
Output hold from address change	t он	10		ns	
/CS to output in low impedance	t LZ	10		ns	Note 2
/OE to output in low impedance	tolz	5		ns	
/LB, /UB to output in low impedance	t BLZ	10		ns	
/CS to output in high impedance	t HZ		25	ns	
/OE to output in high impedance	tонz		25	ns	
/LB, /UB to output in high impedance	t BHZ		25	ns	

Notes 1. The output load is 1TTL + 50 pF.

2. The output load is 1TTL + 5 pF.

★ Read Cycle (2/2)

Parameter	Symbol	Vcc ≥ 2.2 V		Vcc ≥ 1.8 V				Unit	Condition
		-BC	70X	-DD85X		-DD10X			
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	t RC	70		85		100		ns	
Address access time	t AA		70		85		100	ns	Note 1
/CS access time	t acs		70		85		100	ns	
/OE to output valid	t oe		35		40		50	ns	
/LB, /UB to output valid	t BA		70		85		100	ns	
Output hold from address change	tон	10		10		10		ns	
/CS to output in low impedance	t LZ	10		10		10		ns	Note 2
/OE to output in low impedance	t olz	5		5		5		ns	
/LB, /UB to output in low impedance	t BLZ	10		10		10		ns	
/CS to output in high impedance	t HZ		25		30		35	ns	
/OE to output in high impedance	t онz		25		30		35	ns	
/LB, /UB to output in high impedance	t внz		25		30		35	ns	

Notes 1. The output load is 1TTL + 30 pF.

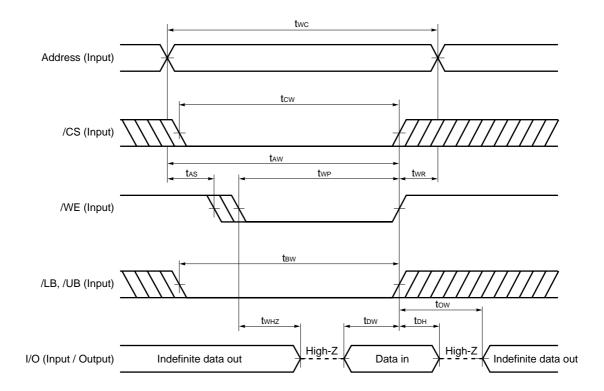
2. The output load is 1TTL + 5 pF.

Read Cycle Timing Chart

Remark In read cycle, /WE should be fixed to high level.

★ Write Cycle (1/2)

Parameter	Symbol	Vcc≥	2.7 V	Unit	Condition
		-BB	370X		
		MIN.	MAX.		
Write cycle time	twc	70		ns	
/CS to end of write	tcw	55		ns	
/LB, /UB to end of write	t _{BW}	55		ns	
Address valid to end of write	taw	55		ns	
Address setup time	tas	0		ns	
Write pulse width	twp	50		ns	
Write recovery time	twr	0		ns	
Data valid to end of write	tow	30		ns	
Data hold time	t DH	0		ns	
/WE to output in high impedance	twнz		25	ns	Note
Output active from end of write	tow	5		ns	

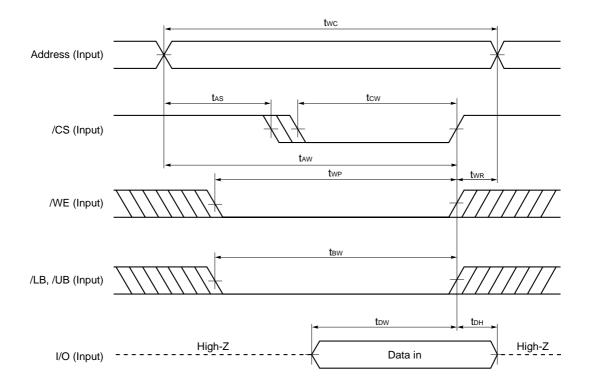

Note The output load is 1TTL + 5 pF.

★ Write Cycle (2/2)

Parameter	Symbol	Vcc ≥ 2.2 V		Vcc ≥ 1.8 V				Unit	Condition
		-BC	-BC70X		-DD85X		-DD10X		
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	70		85		100		ns	
/CS to end of write	tcw	55		70		80		ns	
/LB, /UB to end of write	tвw	55		70		80		ns	
Address valid to end of write	taw	55		70		80		ns	
Address setup time	t as	0		0		0		ns	
Write pulse width	t wp	50		55		60		ns	
Write recovery time	t wr	0		0		0		ns	
Data valid to end of write	tow	30		35		40		ns	
Data hold time	tон	0		0		0		ns	
/WE to output in high impedance	t wHz		25		30		35	ns	Note
Output active from end of write	tow	5		5		5		ns	

Note The output load is 1TTL + 5 pF.

Write Cycle Timing Chart 1 (/WE Controlled)


Cautions 1. During address transition, at least one of pins /CS, /WE should be inactivated.

2. Do not input data to the I/O pins while they are in the output state.

Remarks 1. Write operation is done during the overlap time of a low level /CS, a low level /WE and a low level /LB (or low level /UB).

- 2. If /CS changes to low level at the same time or after the change of /WE to low level, the I/O pins will remain high impedance state.
- 3. When /WE is at low level, the I/O pins are always high impedance. When /WE is at high level, read operation is executed. Therefore /OE should be at high level to make the I/O pins high impedance.

Write Cycle Timing Chart 2 (/CS Controlled)

- Cautions 1. During address transition, at least one of pins /CS, /WE should be inactivated.
 - 2. Do not input data to the I/O pins while they are in the output state.

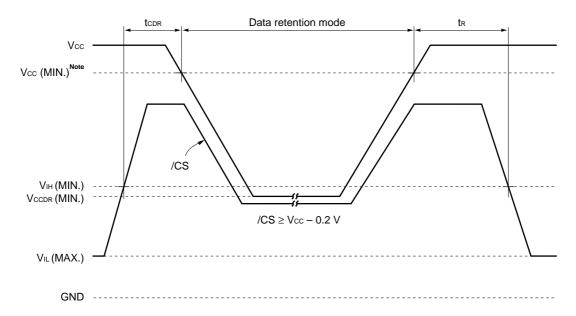
Remark Write operation is done during the overlap time of a low level /CS, a low level /WE and a low level /LB (or low level /UB).

Write Cycle Timing Chart 3 (/LB, /UB Controlled)

Cautions 1. During address transition, at least one of pins /CS, /WE should be inactivated.

2. Do not input data to the I/O pins while they are in the output state.

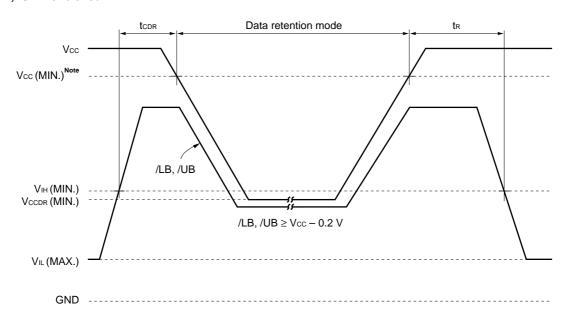
Remark Write operation is done during the overlap time of a low level /CS, a low level /WE and a low level /LB (or low level /UB).


Low Vcc Data Retention Characteristics ($T_A = -25 \text{ to } +85^{\circ}\text{C}$)

Parameter	Symbol	Test Condition		-BB70X		-BC70X			-DD8	Unit		
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Data retention	Vccdr1	/CS ≥ Vcc - 0.2 V	1.0		3.6	1.0		3.6	1.0		2.2	V
supply voltage	Vccdr2	/LB = /UB ≥ Vcc - 0.2 V,	1.0		3.6	1.0		3.6	1.0		2.2	
		/CS ≤ 0.2 V										
Data retention	ICCDR1	Vcc = 1.2 V, /CS ≥ Vcc – 0.2 V		0.15	2		0.15	2		0.15	2	μΑ
supply current	Iccdr2	Vcc = 1.2 V,		0.15	2		0.15	2		0.15	2	
		/LB = /UB ≥ Vcc - 0.2 V,										
		/CS ≤ 0.2 V										
Chip deselection	tcdr		0			0			0			ns
to data retention												
mode												
Operation	t≀R		trc Note			trc Note			trc Note			ns
recovery time												

 $\textbf{Note} \quad t_{\text{RC}} : \text{Read cycle time}$

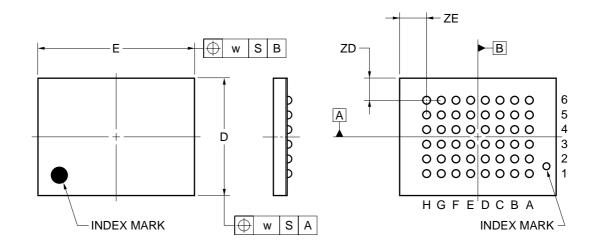
Data Retention Timing Chart

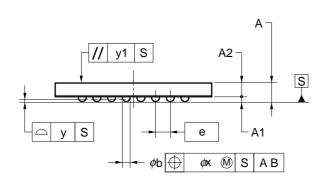

(1) /CS Controlled

Note 2.7 V (-BB70X), 2.2 V (-BC70X), 1.8 V (-DD85X, -DD10X)

Remark On the data retention mode by controlling /CS, the other pins (Address, I/O, /WE, /OE, /LB, /UB) can be in high impedance state.

(2) /LB, /UB Controlled




Note 2.7 V (-BB70X), 2.2 V (-BC70X), 1.8 V (-DD85X, -DD10X)

Remark On the data retention mode by controlling /LB and /UB, the input level of /CS must be \geq Vcc - 0.2 V or \leq 0.2 V. The other pins (Address, I/O, /WE, /OE) can be in high impedance state.

★ Package Drawing

48-PIN TAPE FBGA (8x6)

ITEM	MILLIMETERS
D	6.0±0.1
Е	8.0±0.1
W	0.2
е	0.75
Α	0.94±0.10
A1	0.24±0.05
A2	0.70
b	0.40±0.05
х	0.08
У	0.1
y1	0.2
ZD	1.125
ZE	1.375
	P48F9-75-BC

P48F9-75-BC2

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD442002-X.

★ Types of Surface Mount Device

 μ PD442002F9-BC2-A $^{
m Note}$: 48-pin TAPE FBGA (8x6)

Note Lead-free product

Revision History

Edition/	Pa	ge	Type of	Location	Description			
Date	Previous	This	revision		(Previous edition $ o$ This edition)			
	edition	edition						
7th edition/	Throughout	Throughout	Deletion	Class	-BB55X, -BB85X, -BC85X, -BC10X, -DD12X			
Dec. 2003	p.2, 21	p.2, 19	Modification	Package code	$F9\text{-BC1} \to F9\text{-BC2\text{-}A}$			
			Addition		"Note Lead-free product" has been added.			
	p.2	p.2	Modification	Marking image	Lead-free mark has been added.			
					Index mark has been modified.			
	p.20	p.18	Modification	Package Drawing	Package drawing has been changed			

NEC μ PD442002-X

[MEMO]

NEC μ PD442002-X

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of December, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country.
 Please check with an NEC Electronics sales representative for availability and additional
- · information.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may

- appear in this document.
 - NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is
- granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
 Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
- customers or third parties arising from the use of these circuits, software and information.
 While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as
- redundancy, fire-containment and anti-failure features.

NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment

and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).