
SCAS572F - APRIL 1996 - REVISED JUNE 1998

- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Output Ports Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Power Off Disables Outputs, Permitting Live Insertion
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages

DB, DW, OR PW PACKAGE (TOP VIEW)

description

This octal buffer/line driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVC2244A is organized as two 4-bit line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The outputs, which are designed to sink up to 12 mA, include equivalent 26- Ω resistors to reduce overshoot and undershoot.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

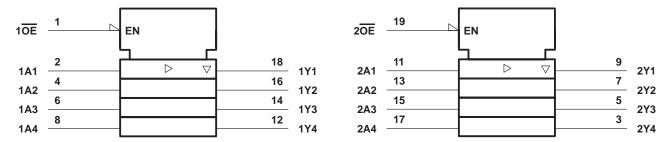
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVC2244A is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each buffer)

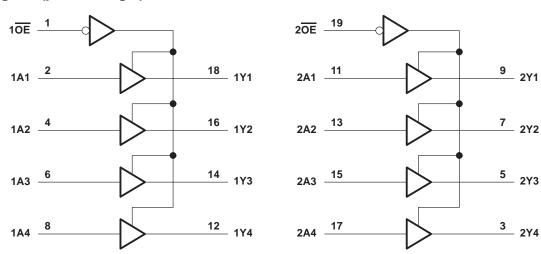
INP	JTS	OUTPUT
OE	Α	Υ
L	Н	Н
L	L	L
Н	Χ	Z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC is a trademark of Texas Instruments Incorporated

TEXAS INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


SCAS572F - APRIL 1996 - REVISED JUNE 1998

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	–0.5 V to 6.5 V
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DB package	
DW package	97°C/W
PW package	128°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The value of V_{CC} is provided in the recommended operating conditions table.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT		
Voc	Supply voltage	Operating	1.65	3.6	V		
VCC	Supply voltage	Data retention only	1.5		V		
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}				
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		٧		
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2				
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}			
V _I L	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V		
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8			
VI	Input voltage		0	5.5	V		
Va	Output voltage	High or low state	0	VCC	V		
۷O	Output voltage	3 state	0	5.5	V		
		V _{CC} = 1.65 V		-2			
lou	High-level output current	V _{CC} = 2.3 V		-4	m^		
ЮН		V _{CC} = 2.7 V		-8	- mA		
		VCC = 3 V		-12			
		V _{CC} = 1.65 V		2			
lai	Low-level output current	V _{CC} = 2.3 V		4	mA		
IOL	Low-level output current	$V_{CC} = 2.7 \text{ V}$		8	IIIA		
		V _{CC} = 3 V		12	1		
Δt/Δν	Input transition rise or fall rate		0	10	ns/V		
TA	Operating free-air temperature		-40	85	°C		

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

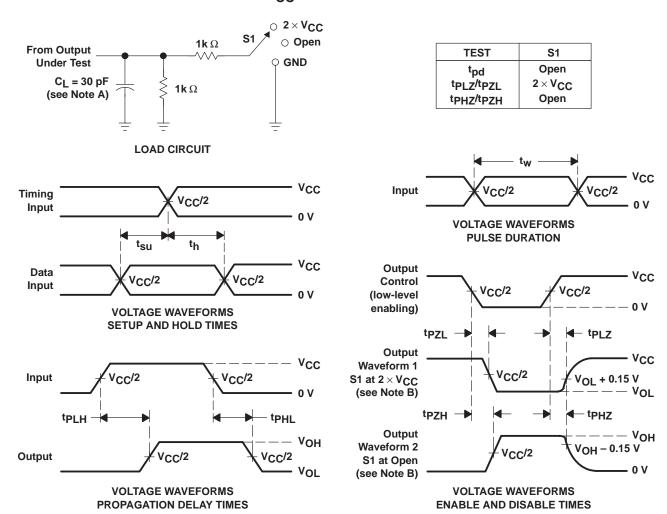
PARAMETER	TEST C	VCC	MIN	TYP [†]	MAX	UNIT	
Voн	I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0	.2		
	I _{OH} = -2 mA		1.65 V	1.2			
	1 4 4		2.3 V	1.7			
	I _{OH} = -4 mA		2.7 V	2.2			V
	I _{OH} = -6 mA		3 V	2.4			
	I _{OH} = -8 mA		2.7 V	2			
	I _{OH} = -12 mA		3 V	2			
	I _{OL} = 100 μA	1.65 V to 3.6 V			0.2		
	I _{OL} = 2 mA		1.65 V			0.45	
	1 m 1	2.3 V			0.7		
V _{OL}	I _{OL} = 4 mA	2.7 V			0.4	V	
	I _{OL} = 6 mA		3 V			0.55	
	I _{OL} = 8 mA		2.7 V			0.6	
	I _{OL} = 12 mA		3 V			0.8	
lį	V _I = 0 to 5.5 V		3.6 V			±5	μΑ
l _{off}	V _I or V _O = 5.5 V		0			±10	μΑ
I _{OZ}	V _O = 0 to 5.5 V		3.6 V			±10	μΑ
1	V _I = V _{CC} or GND	1- 0	2.6.1/			10	A
lcc	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\ddagger}$	IO = 0	3.6 V			10	μΑ
ΔlCC	One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500	μΑ
Ci	V _I = V _{CC} or GND		3.3 V		4		pF
Co	$V_O = V_{CC}$ or GND		3.3 V		5.5		pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This applies in the disabled state only.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1		V _{CC} =	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
	(INFOT)	(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Υ	§	§	§	§		6.4	1.5	5.5	ns
t _{en}	ŌĒ	Υ	§	§	§	§		8.1	1	7.1	ns
t _{dis}	ŌĒ	Υ	§	§	§	§		7.3	1.5	6.8	ns

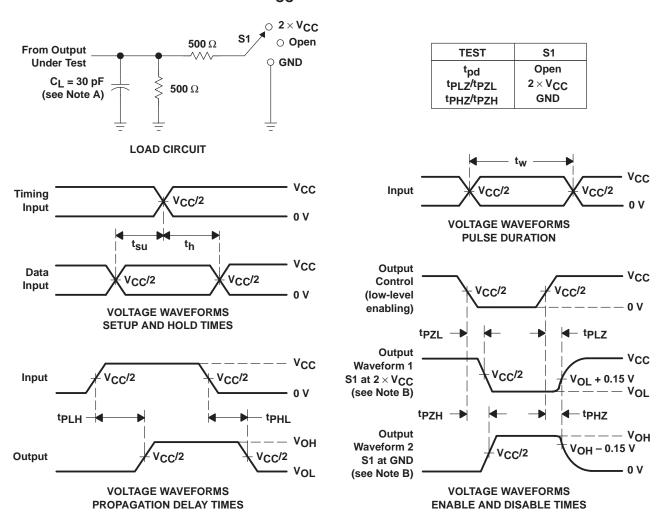
[§] This information was not available at the time of publication.


operating characteristics, T_A = 25°C

PARAMETER				TEST CONDITIONS	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT	
L				CONDITIONS	TYP	TYP	TYP]	
Γ	Power dissipation capacitance		Outputs enabled	f = 10 MHz	§	§	46	n.E	
C _{pd}		per buffer/driver	Outputs disabled	1 = 10 WIHZ	§	§	2	pF	

[§] This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$

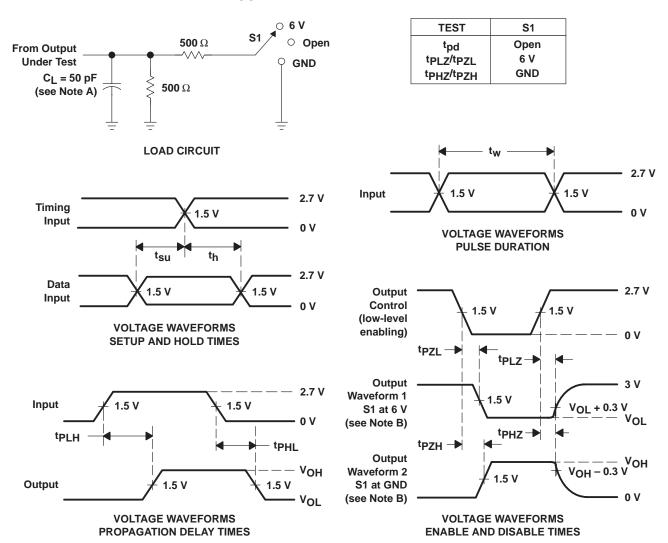


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \,\Omega$, $t_f \leq 2.5 \,\text{ns}$, $t_f \leq 2.5 \,\text{ns}$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated

* Texas Instruments	THE WORLI	D LEADER I	N DSP AND	ANALOG
Products Go	Developmen	t Tools 🔽	Applicat	tions
Search GO	☐ Advanced Search ☐ Tech Support	☐ TI Home ☐ Comments	□ TI&ME □ Site Map	□ Employment

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION | DATASHEETS |
PRICING/AVAILABILITY | SAMPLES |
APPLICATION NOTES | RELATED DOCUMENTS

PRODUCT SUPPORT: TRAINING

SN74LVC2244A, Octal Buffer/Driver With 3-State Outputs

DEVICE STATUS: ACTIVE

SN74LVC2244A			
3.3, 2.7, 2.5, 1.8			
2.0 to 3.6			
TTL/CMOS			
LVTTL			
-12/12			
7.5			
0.01			

FEATURES Back to Top

- EPICTM (Enhanced-Performance Implanted CMOS) Submicron Process
- Output Ports Have Equivalent 26-
 Ω Series Resistors, So No External Resistors Are Required
- \bullet Typical V $_{\rm OLP}$ (Output Ground Bounce) < 0.8 V at V $_{\rm CC}$ = 3.3 V, T $_{\rm A}$ = 25 °C
- Typical V_{OHV}^{OHV} (Output V_{OH}^{OHV} Undershoot) > 2 V at V_{CC}^{OHV} = 3.3 V, T_{A}^{OHV} = 25 °C
- Power Off Disables Outputs, Permitting Live Insertion
- Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V $\rm V_{\rm CC})$
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages

EPIC is a trademark of Texas Instruments Incorporated.

DESCRIPTION <u>Back to Top</u>

This octal buffer/line driver is designed for 1.65-V to 3.6-V $\rm V_{\rm CC}$ operation.

The SN74LVC2244A is organized as two 4-bit line drivers with separate output-enable (OE\) inputs. When OE\ is low, the device passes data from the A inputs to the Y outputs. When OE\ is high, the outputs are in the high-impedance state.

The outputs, which are designed to sink up to 12 mA, include equivalent 26- Ω resistors to reduce overshoot and undershoot.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

To ensure the high-impedance state during power up or power down, OE\ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVC2244A is characterized for operation from -40°C to 85°C.

TECHNICAL DOCUMENTS

▲Back to Top

To view the following documents, Acrobat Reader 3.x is required.

To download a document to your hard drive, right-click on the link and choose 'Save'.

DATASHEET Back to Top

Full datasheet in Acrobat PDF: scas572f.pdf (127 KB) (Updated: 06/23/1998)

Full datasheet in Zipped PostScript: scas572f.psz (117 KB)

APPLICATION NOTES

Back to Top

View Application Reports for Digital Logic

- <u>Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive</u> Outputs (SCBA012A - Updated: 08/01/1997)
- CMOS Power Consumption and CPD Calculation (SCAA035B Updated: 06/01/1997)
- Implications of Slow or Floating CMOS Inputs (SCBA004C Updated: 02/01/1998)
- <u>Input and Output Characteristics of Digital Integrated Circuits</u> (SDYA010 Updated: 10/01/1996)
- LVC Characterization Information (SCBA011 Updated: 12/01/1996)
- Live Insertion (SDYA012 Updated: 10/01/1996)
- Low-Voltage Logic (LVC) Designer's Guide (SCBA010 Updated: 09/01/1996)
- Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices (SCEA005 Updated: 12/01/1997)
- <u>Timing Differences Of 10-pF Versus 50pF Loading</u> (SCEA004 Updated: 11/01/1996)
- <u>Understanding Advanced Bus-Interface Products Design Guide</u> (SCAA029, 253 KB Updated: 05/01/1996)

RELATED DOCUMENTS

Back to Top

- <u>Documentation Rules (SAP) And Ordering Information</u> (SZZU001B, 4 KB Updated: 05/06/1999)
- Logic Selection Guide Second Half 2000 (SDYU001N, 5035 KB Updated: 04/17/2000)

- MicroStar Junior BGA Design Summary (SCET004, 167 KB Updated: 07/28/2000)
- More Power In Less Space Technical Article (SCAU001A, 850 KB Updated: 03/01/1996)

SAMPLES Back to Top

ORDERABLE DEVICE	<u>PACKAGE</u>	<u>PINS</u>	TEMP (°C)	<u>STATUS</u>	<u>SAMPLES</u>
SN74LVC2244ADW	<u>DW</u>	20	-40 TO 85	ACTIVE	Request Samples
SN74LVC2244APWLE	<u>PW</u>	20	-40 TO 85	OBSOLETE	
SN74LVC2244APWR	<u>PW</u>	20	-40 TO 85	ACTIVE	Request Samples

PRICING/AVAILAB	ILITY			<u> ■Back to Top</u>			
ORDERABLE DEVICE	PACKAGE	<u>PINS</u>	<u>TEMP</u> (°C)	<u>STATUS</u>	BUDGETARY PRICE US\$/UNIT QTY=1000+	PACK QTY	PRICING/AVAILABILITY
SN74LVC2244ADBLE	<u>DB</u>	20	-40 TO 85	OBSOLETE			
SN74LVC2244ADBR	<u>DB</u>	20	-40 TO 85	ACTIVE	0.67	2000	Check stock or order
SN74LVC2244ADGVR	<u>DGV</u>	20	-40 TO 85	ACTIVE	0.84	2000	Check stock or order
SN74LVC2244ADW	<u>DW</u>	20	-40 TO 85	ACTIVE	0.67	25	Check stock or order
SN74LVC2244ADWR	<u>DW</u>	20	-40 TO 85	ACTIVE	0.74	2000	Check stock or order
SN74LVC2244APWLE	<u>PW</u>	20	-40 TO 85	OBSOLETE			
SN74LVC2244APWR	<u>PW</u>	20	-40 TO 85	ACTIVE	0.67	2000	Check stock or order

Table Data Updated on: 11/17/2000

© Copyright 2000 Texas Instruments Incorporated. All rights reserved. <u>Trademarks | Privacy Policy | Important Notice</u>