

Quad, Low-Power Monolithic Op Amp

APPLICATIONS:

- composite video distribution amps
- HDTV amplifiers
- RGB-video amplifiers
- CCD signal processing
- active filters
- instrumentation diff amps
- general purpose high density requirements

DESCRIPTION:

The CLC414 is a low-power, quad, monolithic operational amplifier designed for intermediate-gain applications where power and cost per channel are of primary concern. Benefiting from Comlinear's current feedback architecture, the CLC414 offers a gain range of ± 1 to ± 10 while providing stable, oscillation-free operation without external compensation, even at unity gain.

Operating from ±5V supplies, the CLC414 consumes only 25mW of power per channel, yet maintains a 90MHz small-signal bandwidth and a 1000V/µs slew rate. The CLC414 also provides wide channel isolation with its 70dB crosstalk (input referred at 5MHz). Applications requiring a high- density solution to high-speed amplification such as active filters and instrumentation diff amps will benefit from the CLC414's four integrated, wideband op amps in one 14-pin package.

Commercial remote-sensing applications and battery-powered radio transceivers requiring high-performance, low-power amplifiers will find the CLC414 to be an attractive, cost- effective solution. In composite video switching and distribution applications, the CLC414 offers differential gain and phase performance of 0.1%, 0.12' at 3.58MHz.

The lower power CLC414 and the wideband CLC415 are quad versions of the CLC406. Both of these quads afford the designer lower power consumption and lower cost per channel with the additional benefit of requiring less board space per amplifier.

Constructed using an advanced, complementary bipolar process and Comlinear's proven current feedback architectures, the CLC414 is available in several versions to meet a variety of requirements.

CLC414AJP	-40°C to +85°C	14-pin plastic DIP
CLC414AJE	-40°C to +85°C	14-pin plastic SOIC
CLC414AID	-40°C to +85°C	14-pin hermetic side-brazed ceramic DIP
CLC414A8D	-55°C to +125°C	14-pin hermetic side-brazed ceramic DIP, ML-STD-883, Level B
CLC414ALC	-55°C to +125°C	dice
CLC414AMC	-55°C to +125°C	dice qualified to Method 5008, MIL- STD-883, Level B

Contact factory for other packages. DESC SMD number 5962-91693

FEATURES (typical):

- · 90MHz small-signal bandwidth
- 2.5mA quiescent current per amplifier
- 70dB channel isolation @ 5MHz
- 0.1%/0.12° differential gain/phase
- 16ns settling to 0.1%
- 1000V/µs slew rate
- 3.3ns rise and fall time (2V_{op})
- 70mA output current

Ambient Temperature	PARAMETERS CONDITIONS		TYP	TYP MAX & MIN RATINGS			UNITS	SYMBOL
FREQUENCY DOMAIN RESPONSE 1-3dB bandwidth							01110	OTMIDOL
FREQUENCY DOMAIN RESPONSE								
1-3dB bandwidth				- 50 0	1200	1725 0		
gain flatness¹ Voul <2V pp youl <2V youl <2V pp youl <2V youl <2V youl youl youl youl youl youl youl youl			00	-60		. 45		CCDW
peaking	Odd bariaman	V <5V						
† peaking	gain flatness ¹	Vout <2V-	00	700	~~	/33	1011 12	LODVV
† peaking	† peaking	DC to 15MHz	0	<0.15	<0.15	<0.15	dB	GEPI
Initial plane deviation DC to 30MHZ differential gain (A _v =+2) 150Ω load, 3.58MHz 4.43MHz 0.12 4.0.15 4.0.20 4.0.25 4.0.30 4.0.30 4.0.20 4.0.30 4.0.30 4.0.20	† peaking							
differential gain (A _v =+2) 150Ω load, 3.58MHz 4.43MHz 4.43MHz 0.12 0.10 <0.15			0.3	<1.0	<1.0			
4.43MHz							i •	LPD
differential phase (A _v =+2) 150Ω load, 3.58MHz	differential gain (A _{v=+2)}							
4.43MHz 0.15 ⟨0.20 ⟨0.25 ⟨0.60 ⟨	di#f====#!= =	4.43MHz					%	
crosstalk input referred input referred 5MHz (all hostile) input referred 5MHz (chan. to chan.) 60 <58 <58 <56 dB XT TIME DOMAIN RESPONSE rise and fall time 2V step 3.3 <5.0 <5.0 <6.5 ns TRS ns 5V step to 0.02% 2V step to 0.02% 4.0 <7.0	dinerential phase (A _v =+2)							
TIME DOMAIN RESPONSE rise and fall time 2V step 3.3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 5.0 4.0 5.	crosstalk input referred						15	
TIME DOMAIN RESPONSE rise and fall time 2V step 3.3 <5.0								
rise and fall time			/0	<u> </u>	<03	<01	UD	LCXI
Settling time to 0.1% 2V step 16 24 24 230 ns TRL		= '	22	-5.0	-50			TDC
Settling time to 0.1% 2V step	noc and fail time							
to 0.02% 2V step	settling time to 0.1%						II.	
overshoot slew rate	to 0.02%							
Slew rate 1000 >600 >600 >480 V/μs SR	overshoot	2V step	5	<10				
†2nd harmonic distortion 2V _{pp} , 5MHz	slew rate	·	1000	>600	>600	>480	V/μs	
1-3rd harmonic distortion 2V _{pp} , 5MHz equivalent noise input non-inverting voltage >1 MHz 4.2 <5.0 <5.0 <5.5 nV/√Hz VN inverting current >1 MHz 9.8 <11.8 <11.8 <13.0 pA√ Hz ICN NCN total noise floor >1 MHz 1.3 <1.6 <1.6 <1.6 <1.8 call <1.5 <1.5 <1.5 call CM Hz INV INV STATIC, DC PERFORMANCE *input offset voltage 2 <10.5 ×44 ×44 ×48 ×44 ×48 ×44 ×48 ×44 ×44 ×48 ×44 ×	DISTORTION AND NOISE							
1-3rd harmonic distortion 2V _{pp} , 5MHz equivalent noise input non-inverting voltage >1 MHz 4.2 <5.0 <5.0 <5.5 nV/√Hz VN inverting current >1 MHz 9.8 <11.8 <11.8 <13.0 pA√ Hz ICN NCN total noise floor >1 MHz 1.3 <1.6 <1.6 <1.6 <1.8 call <1.5 <1.5 <1.5 call CM Hz INV INV STATIC, DC PERFORMANCE *input offset voltage 2 <10.5 ×44 ×44 ×48 ×44 ×48 ×44 ×48 ×44 ×44 ×48 ×44 ×		2V _{pp} , 5MHz	-47	<-41	<-41	<-37	dBc	HD2
Non-inverting voltage 1 MHz 1.2 1.8		2V _{pp} , 5MHz	-55	<-47	<-47	<-45	dBc	HD3
inverting current >1MHz 9.8 <11.8 <13.0 pA√Hz ICN non-inverting current >1MHz 1.3 <1.6 <1.6 <1.6 <1.8 pA√Hz NCN total noise floor >1MHz 5.1 <1.5 <1.53 <-1.53 <-1.52 dBm₁Hz NV INV STATIC, DC PERFORMANCE *input offset voltage average temperature coefficient 1 20 <75 <30 nA√C DIBN average temperature coefficient 2 <20 <75 <30 nA√C DIBN average temperature coefficient 2 <20 <46 <10 μA IBI average temperature coefficient 2 <20 <46 <10 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <46 <40 μA IBI average temperature coefficient 2 <20 <40 <45 nA⁺C DIBI average temperature coefficient 2 <40 ×46 ×46 ×46 ×44 dB PSRR average temperature coefficient 2 <40 ×40 ×40 ×40 ×40 ×40 ×40 ×40 ×40 ×40 ×						Į	l	
non-inverting current >1MHz 1.3 <1.6 <1.6 <1.8 pA√Hz MCN								
total noise floor >1MHz		· ·			1		pA⁄√ <u>H</u> z	
total integrated noise >1MHz to 75MHz 37 <44 <44 <48 μV INV STATIC, DC PERFORMANCE *input offset voltage average temperature coefficient 30 <80 — <80 μV/°C DVIO *input bias current non-inverting 1 <10 <5 <5 μΑ IBN average temperature coefficient 20 <75 — <30 nA′°C DIBN *input bias current inverting 2 <20 <6 <10 μΑ IBI average temperature coefficient 20 <140 — <75 nA′°C DIBN *input bias current inverting 2 <40 <6 <10 μΑ IBI average temperature coefficient 50 ×46 ×46 ×44 dB PSRR • common mode rejection ratio 50 ×45 ×45 ×43 dB CMRR *supply current, all channels no load 10 <11.5 <11.5 <11.5 mA ICC							pA/√Hz	
STATIC, DC PERFORMANCE 2 <10.5 <6 <14 mV VIO *input offset voltage average temperature coefficient 30 <80								
*input offset voltage average temperature coefficient 30			3/	<44	<44	<48	μV	INV
average temperature coefficient *input bias current non-inverting average temperature coefficient 20 <75 — <30 nA*C DIBN average temperature coefficient 22 <20 <6 <10 µA IBI average temperature coefficient 23 <40 ← <5 × 5 µA IBN DIBN *input bias current inverting 24 <20 ← 6 ← <10 µA IBI average temperature coefficient 25 × 46 × 46 × 44 dB PSRR *cummon mode rejection ratio 50 × 45 × 45 × 43 dB CMRR *supply current, all channels no load *input bias current 50 × 46 × 46 × 44 dB PSRR CMRR *supply current, all channels no load *input bias current 50 × 45 × 45 × 43 dB CMRR *supply current, all channels no load	STATIC, DC PERFORMANCE			40.5		ا ۵۰ ا		1,40
*input bias current non-inverting average temperature coefficient 20 <75					<b< td=""><td></td><td></td><td></td></b<>			
average temperature coefficient *input bias current inverting average temperature coefficient 20 <75 — <30 nA*C DIBN #INPUT bias current inverting 2 <20 <6 <10 µA IBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 20 <140 — <75 nA*C DIBI #INPUT bias current inverting 21 — <75 nA*C DIBI #INPUT bias current inverting 22 <20 <6 <10 µA IBI #INPUT bias current inverting 24 <20 <140 — <75 nA*C DIBI #INPUT bias current inverting 25 - 45 >45 >43 dB CMRR #INPUT bias current inverting 45 - 45 >45 >45 >45 dB CMRR #INPUT bias current inverting 46								
*input bias current inverting 2 <20 <6 <10 µA B average temperature coefficient 20 <140 <75 nA*C DIBI thrower supply rejection ratio 50 >46 >46 >44 dB PSRR ← common mode rejection ratio 50 >45 >45 >43 dB CMRR *supply current, all channels no load 10 <11.5 <11.5 <11.5 mA ICC								
average temperature coefficient 20 <140 <75 nA'C DIBI power supply rejection ratio 50 >46 >46 >46 dB PSRR common mode rejection ratio 50 >45 >45 >43 dB CMRR supply current, all channels no load 10 <11.5 <11.5 <11.5 mA ICC					 			
†power supply rejection ratio 50 >46 >46 >44 dB PSRR	average temperature coefficient							
*supply current, all channels no load 10 <11.5 <11.5 mA ICC				>46	>46			
							dB	
MISCELLANEOUS PERFORMANCE			10	<11.5	<11.5	<11.5	mA	ICC
non-inverting input resistance 2000 >500 >1000 ×1000 kΩ RIN						>1000		RIN
non-inverting input capacitance 1.0 <2.0 <2.0 pF CIN								
ouput impedance DC 0.2 $<$ 0.6 $<$ 0.3 $<$ 0.2 Ω RO								
output voltage range $R_L=100\Omega$ ± 2.8 ± 2.5 ± 2.6 ± 2.7 V VO common mode input range ± 2.2 ± 1.4 ± 2.0 ± 2.0 V CMIR		H _L =100Ω						
							1 *	
output current 70 30 50 50 mA 10	capar carron	ļ	ıı /U	I 30	1 30	1 50	111/4	1 10

がある。 Additional Additional Additional Additional Additional V _{CC} 生 7V			recommended gain range: ±1 to ±10			
lout output is short circuit protected to ground,			Notes:			
however, maximum reliability is obtained if		*	AI,AJ	100% tested at +25°C, sample at +85°C.		
I _{out} does not exceed	70mA	t	AJ	Sample tested at +25°C.		
common mode input voltage	$\pm V_{cc}$	Ť	Al	100% tested at +25°C.		
differential input voltage	±10V	*	A8	100% tested +25°C, -55°C, +125°C.		
maximum junction temperature	+175°C	†	A8	100% tested +25°C, sample at -55°C, +125°C.		
operating temperature range		*	AL, AM	100% wafer probed at +25°C to +25°C min/max		
Al/ĀJ:	-40°C to +85°C			specifications.		
A8/AL/AM:	-55°C to +125°C	•	SMD	Sample tested at +25°C, -55°C, +125°C.		
storage temperature range	-65°C to +150°C			, ,		
lead temperature (soldering 10 sec) +300°C		note	e 1:	Gain flatness tests performed from 0.1MHz		

Feedback Resistor

The CLC414 achieves its exceptional AC performance while requiring very low quiescent power by using the current feedback topology and an internal slew rate enhancement circuit. The loop gain and frequency response for a current feedback op amp is predominantly set by the feedback resistor value. The CLC414 is optimized for a gain of +6 to use a 500 Ω feedback resistor (use a 1kΩ R_f for maximally flat response at a gain of +2). Using lower values can lead to excessive ringing in the pulse response while a higher value will limit the bandwidth. Application Note OA-13 provides a more detailed discussion of choosing a feedback resistor. The equations found in this application note are to be considered a starting point for the determination of R_i at any gain. The value of input impedance for the CLC414 is approximately 250 Ω . These equations do not account for parasitic capacitance at the inverting input nor across R_f. The plot found below entitled "Recommended R_f vs. Gain" offers values of R_f which will optimize the frequency response of the CLC414 over its ± 1 to ± 10 gain range. Unlike voltage feedback, current feedback op amps require a non-zero R, for unity gain followers.

Figure 3: recommended R, vs. gain

Unused Amplifiers

It is recommended that any unused amplifiers in the quad package be connected as unity gain followers $(R_{\rm f}\!=\!500\Omega)$ with the non-inverting input tied to ground through a 50Ω resistor.

Slew Rate and Harmonic Distortion

Please see the application information for the CLC406.

Differential Gain and Phase

Differential gain and phase performance specifications are common to composite video distribution applications. These specifications refer to the change in small signal gain and phase of the color subcarrier frequency (4.43MHz for PAL composite video) as the amplifier output is swept over a range of DC voltages. Application Note OA-08 provides an additional discussion of differential gain and phase measurements.

Non-inverting Source Impedance

For best operation, the DC source impedance looking out of the non-inverting input should be less than $3k\Omega$ but greater than 20Ω . Parasitic self oscillations may occur in

the input transistors if the DC source impedance is out of this range. This impedance also acts as the gain for the non-inverting input bias and noise currents and therefore can become troublesome for high values of DC source impedance. The inverting configuration of Figure 2 shows a 25Ω resistor to ground on the non-inverting input which insures stability but does not provide bias current cancellation. The input bias currents are unrelated for a current feedback amplifier which eliminates the need for source impedance matching to achieve bias current cancellation.

DC Accuracy and Noise Calculation

Please refer to the application information for the CLC406.

Crosstalk

In any multi-channel integrated circuit there is an undesirable tendency for the signal in one channel to couple with and reproduce itself in the output of another channel. This effect is referred to as crosstalk. Crosstalk is expressed as channel separation or channel isolation which indicates the magnitude of this undesirable effect. This effect is measured by driving one or more channels and observing the output of the other undriven channel(s). The CLC414 plot page offers two different graphs detailing the effect of crosstalk over frequency. One plot entitled "All-Hostile Crosstalk Isolation" graphs all-hostile inputreferred crosstalk. All-hostile crosstalk refers to the condition where three channels are driven simultaneously while observing the output of the undriven fourth channel. Input-referred implies that crosstalk is directly affected by gain and therefore a higher gain increases the crosstalk effect by a factor equal to that gain setting. The plot entitled "Most Susceptible Channel-to-Channel Pulse Coupling" describes the effect of crosstalk when one channel is driven with a $2V_{pp}$ pulse while the output of the most effected channel is observed.

Printed Circuit Lavout

As with any high speed component, a careful attention to the board layout is necessary for optimum performance. Of particular importance is the careful control of parasitic capacitances on the output pin. As the output impedance plot shows, the closed loop output for the CLC414 eventually becomes inductive as the loop gain rolls off with increasing frequency. Direct capacitive loading on the output pin can quickly lead to peaking in the frequency response, overshoot in the pulse response, ringing or even sustained oscillations. The "Settling Time vs. Capacitive Load" plot should be used as a starting point for the selection of a series output resistor when a capacitive load must be driven. A quad amplifier will require careful attention to signal routing in order to minimize the effects of crosstalk. Signal coupling through the power supplies can be reduced with bypass capacitors placed close to the device supply pins.

Evaluation Board

Evaluation PC boards (part number 730024 for throughhole and 730031 for SOIC) for the CLC414 are available.