
#### 3V 1M×16 CMOS DRAM (EDO)

#### **Features**

- Organization: 1,048,576 words  $\times$  16 bits
- High speed
  - 50/60 ns  $\overline{RAS}$  access time
- 20/25 ns hyper page cycle time
- 12/15 ns  $\overline{CAS}$  access time
- Low power consumption
  - Active: 500 mW max (-60)
  - Standby: 3.6 mW max, CMOS DQ
- Extended data out
- 1024 refresh cycles, 16 ms refresh interval
  - $\overline{RAS}$ -only or  $\overline{CAS}$ -before- $\overline{RAS}$  refresh or self-refresh

- Read-modify-write
- TTL-compatible, three-state DQ
- JEDEC standard package and pinout
  - 400 mil, 42-pin SOJ
  - 400 mil, 44/50-pin TSOP 2
- 3V power supply (AS4LC1M16E5)
- 5V tolerant I/Os; 5.5V maximum V<sub>IH</sub>
- Industrial and commercial temperature available

#### Pin arrangement



#### Pin designation

| Pin(s)          | Description                       |
|-----------------|-----------------------------------|
| A0 to A9        | Address inputs                    |
| RAS             | Row address strobe                |
| DQ1 to DQ16     | Input/output                      |
| ŌĒ              | Output enable                     |
| WE              | Write enable                      |
| <u>UCAS</u>     | Column address strobe, upper byte |
| <u>ICAS</u>     | Column address strobe, lower byte |
| V <sub>CC</sub> | Power                             |
| V <sub>SS</sub> | Ground                            |

#### **Selection guide**

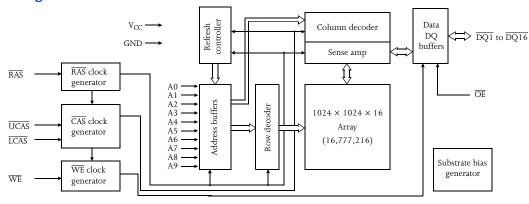
|                                                     | Symbol           | -50 | -60 | Unit |
|-----------------------------------------------------|------------------|-----|-----|------|
| Maximum RAS access time                             | t <sub>RAC</sub> | 50  | 60  | ns   |
| Maximum column address access time                  | t <sub>AA</sub>  | 25  | 30  | ns   |
| Maximum CAS access time                             | t <sub>CAC</sub> | 12  | 15  | ns   |
| Maximum output enable $(\overline{OE})$ access time | t <sub>OEA</sub> | 13  | 15  | ns   |
| Minimum read or write cycle time                    | t <sub>RC</sub>  | 80  | 100 | ns   |
| Minimum hyper page mode cycle time                  | t <sub>HPC</sub> | 20  | 25  | ns   |
| Maximum operating current                           | I <sub>CC1</sub> | 140 | 130 | mA   |
| Maximum CMOS standby current                        | I <sub>CC5</sub> | 1.0 | 1.0 | mA   |



#### **Functional description**

The AS4LC1M16E5 is a high performance 16-megabit CMOS Dynamic Random Access Memory (DRAM) organized as 1,048,576 words  $\times$  16 bits. The device is fabricated using advanced CMOS technology and innovative design techniques resulting in high speed, extremely low power and wide operating margins at component and system levels. The Alliance 16Mb DRAM family is optimized for use as main memory in personal and portable PCs, workstations, and multimedia and router switch applications.

The AS4LC1M16E5 features hyper page mode operation where read and write operations within a single row (or page) can be executed at very high speed by toggling column addresses within that row. Row and column addresses are alternately latched into input buffers using the falling edge of  $\overline{RAS}$  and  $\overline{xCAS}$  inputs, respectively. Also,  $\overline{RAS}$  is used to make the column address latch transparent, enabling application of column addresses prior to  $\overline{xCAS}$  assertion. The AS4LC1M16E5 provides dual  $\overline{UCAS}$  and  $\overline{LCAS}$  for independent byte control of read and write access.


Extended data out (EDO), also known as 'hyper-page mode,' enables high speed operation. In contrast to 'fast-page mode' devices, data remains active on outputs after  $\overline{\text{xCAS}}$  is de-asserted high, giving system logic more time to latch the data. Use  $\overline{\text{OE}}$  and  $\overline{\text{WE}}$  to control output impedance and prevent bus contention during read-modify-write and shared bus applications. Outputs also go to high impedance at the last occurrance of  $\overline{\text{RAS}}$  and  $\overline{\text{xCAS}}$  going high.

Refresh on the 1024 address combinations of A0 to A9 must be performed every 16 ms using:

- RAS-only refresh: RAS is asserted while xCAS is held high. Each of the 1024 rows must be strobed. Outputs remain high impedence.
- Hidden refresh: xCAS is held low while RAS is toggled. Outputs remain low impedence with previous valid data.
- $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$  refresh (CBR): At least one  $\overline{\text{xCAS}}$  is asserted prior to  $\overline{\text{RAS}}$ . Refresh address is generated internally. Outputs are high-impedence ( $\overline{\text{OE}}$  and  $\overline{\text{WE}}$  are don't care).
- Normal read or write cycles refresh the row being accessed.
- Self-refresh cycles

The AS4LC1M16E5 is available in the standard 42-pin plastic SOJ and 44/50-pin TSOP 2 packages, respectively. The AS4LC1M16E5 device operates with a single power supply of  $3V \pm 0.3V$  and provides TTL compatible inputs and outputs.

#### Logic block diagram



### Recommended operating conditions<sup>1</sup>

| 1 0                           |            |                   |            |         |     |      |  |
|-------------------------------|------------|-------------------|------------|---------|-----|------|--|
| Parameter                     |            | Symbol            | Min        | Nominal | Max | Unit |  |
| Supply voltage                |            | $V_{CC}$          | 3.0        | 3.3     | 3.6 | V    |  |
|                               |            | GND               | 0.0        | 0.0     | 0.0 | V    |  |
| Input voltage                 |            | $V_{\mathrm{IH}}$ | 2.0        | _       | 5.5 | V    |  |
|                               |            | V <sub>IL</sub>   | $-0.5^{2}$ | _       | 0.8 | V    |  |
| Ambient operating temperature | Commercial | $T_{A}$           | 0          | -       | 70  | °C   |  |
| Ambient operating temperature | Industrial | ¹A                | -40        | _       | 85  |      |  |

<sup>1</sup> Recommended operating conditions apply throughout this document unless otherwise specified.

<sup>2</sup>  $V_{\text{IL}}$  min -3.0V for pulse widths less than 5 ns.



# Absolute maximum ratings

| Parameter                     | Symbol            | Min  | Max      | Unit                    |
|-------------------------------|-------------------|------|----------|-------------------------|
| Input voltage                 | $V_{\mathrm{DQ}}$ | -1.0 | +5.5     | V                       |
| Power supply voltage          | $V_{CC}$          | -1.0 | +4.0     | V                       |
| Storage temperature (plastic) | $T_{STG}$         | -65  | +150     | °C                      |
| Soldering temperature × time  | $T_{SOLDER}$      | _    | 260 × 10 | $^{\mathrm{o}}$ C × sec |
| Power dissipation             | $P_{\mathrm{D}}$  | _    | 0.6      | W                       |
| Short circuit output current  | I <sub>out</sub>  | _    | 50       | mA                      |

#### **Truth table**

|                         |                |        |             |             |                          |               | Addr           | esses          |                                            |       |
|-------------------------|----------------|--------|-------------|-------------|--------------------------|---------------|----------------|----------------|--------------------------------------------|-------|
| Operation               |                | RAS    | <b>LCAS</b> | <b>UCAS</b> | $\overline{\mathbf{WE}}$ | <del>OE</del> | t <sub>R</sub> | t <sub>C</sub> | DQ0 to DQ15                                | Notes |
| Standby                 |                | Н      | H to X      | H to X      | X                        | X             | X              | X              | High-Z                                     |       |
| Word read               |                | L      | L           | L           | Н                        | L             | ROW            | COL            | Data out                                   |       |
| Lower byte read         |                | L      | L           | Н           | Н                        | L             | ROW            | COL            | Lower byte,<br>Upper byte, Data out        |       |
| Upper byte read         |                | L      | Н           | L           | Н                        | L             | ROW            | COL            | Lower byte,<br>Data out, Upper byte        |       |
| Word (early) write      |                | L      | L           | L           | L                        | X             | ROW            | COL            | Data in                                    |       |
| Lower byte (early) writ | te             | L      | L           | Н           | L                        | X             | ROW            | COL            | Lower byte, Data in,<br>Upper byte, High-Z |       |
| Upper byte(early) writ  | e(early) write |        | Н           | L           | L                        | X             | ROW            | COL            | Lower byte, High-Z,<br>Upper byte, Data in |       |
| Read write              |                | L      | L           | L           | H to L                   | L to H        | ROW            | COL            | Data out, Data in                          | 1,2   |
|                         | 1st cycle      | L      | H to L      | H to L      | Н                        | L             | ROW            | COL            | Data out                                   | 2     |
| EDO read                | 2nd cycle      | L      | H to L      | H to L      | Н                        | L             | n/a            | COL            | Data out                                   | 2     |
|                         | Any cycle      | L      | L to H      | L to H      | Н                        | L             | n/a            | n/a            | Data out                                   | 2     |
| EDO write               | 1st cycle      | L      | H to L      | H to L      | L                        | X             | ROW            | COL            | Data in                                    | 1     |
| EDO WIIIE               | 2nd cycle      | L      | H to L      | H to L      | L                        | X             | n/a            | COL            | Data in                                    | 1     |
| EDO read write          | 1st cycle      | L      | H to L      | H to L      | H to L                   | L to H        | ROW            | COL            | Data out, Data in                          | 1,2   |
| EDO ICAG WIIIC          | 2nd cycle      | L      | H to L      | H to L      | H to L                   | L to H        | n/a            | COL            | Data out, Data in                          | 1,2   |
| RAS only refresh        |                | L      | Н           | Н           | X                        | X             | ROW            | n/a            | High Z                                     |       |
| CBR refresh             |                | H to L | L           | L           | Н                        | X             | X              | X              | High Z                                     | 3     |
| Self refresh            |                | H to L | L           | L           | Н                        | X             | X              | X              | High Z                                     | 3     |



### **DC** electrical characteristics

|                                                       |                  |                                                                                                                                                               | -!  | 50  | -(  | 50  |      |       |
|-------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------|-------|
| Parameter                                             | Symbol           | Test conditions                                                                                                                                               | Min | Max | Min | Max | Unit | Notes |
| Input leakage current                                 | $I_{IL}$         | $0V \le V_{in} \le V_{CC} \text{ (max)}$<br>Pins not under test = $0V$                                                                                        | -2  | +2  | -2  | +2  | μА   |       |
| Output leakage current                                | $I_{OL}$         | $D_{OUT}$ disabled, $0V \le V_{out} \le V_{CC}$ (max)                                                                                                         | -2  | +2  | -2  | +2  | μА   |       |
| Operating power supply current                        | I <sub>CC1</sub> | $\overline{RAS}$ , $\overline{UCAS}$ , $\overline{LCAS}$ , Address cycling; $t_{RC}$ =min                                                                     | _   | 140 | _   | 130 | mA   | 4,5   |
| TTL standby power supply current                      | I <sub>CC2</sub> | $\overline{RAS} = \overline{UCAS} = \overline{LCAS} \ge V_{IH}$ , all other inputs at $V_{IH}$ or $V_{IL}$                                                    | _   | 2.0 | _   | 2.0 | mA   |       |
| Average power supply current, RAS refresh mode or CBR | I <sub>CC3</sub> | $\overline{RAS}$ cycling, $\overline{UCAS} = \overline{LCAS} \ge V_{IH}$ , $t_{RC} = \min$ of $\overline{RAS}$ low after $\overline{XCAS}$ low.               | _   | 130 | -   | 120 | mA   | 4     |
| EDO page mode average power supply current            | I <sub>CC4</sub> | $\overline{RAS} = V_{IL}$ , $\overline{UCAS}$ or $\overline{LCAS}$ , address cycling: $t_{HPC} = min$                                                         | _   | 100 | _   | 90  | mA   | 4, 5  |
| CMOS standby power supply current                     | I <sub>CC5</sub> | $\overline{RAS} = \overline{UCAS} = \overline{LCAS} = V_{CC} - 0.2V,$<br>F = 0                                                                                | _   | 1   | _   | 1   | mA   |       |
| Output voltage                                        | V <sub>OH</sub>  | $I_{OUT} = -2.0 \text{ mA}$                                                                                                                                   | 2.4 | -   | 2.4 | -   | V    |       |
| Output voltage                                        | V <sub>OL</sub>  | $I_{OUT} = 2.0 \text{ mA}$                                                                                                                                    | _   | 0.4 | -   | 0.4 | V    |       |
| CAS before RAS refresh current                        | I <sub>CC6</sub> | $\overline{RAS}$ , $\overline{UCAS}$ or $\overline{LCAS}$ cycling, $t_{RC} = \min$                                                                            | _   | 130 | _   | 120 | mA   |       |
| Self refresh current                                  | I <sub>CC7</sub> | $\overline{RAS} = \overline{UCAS} = \overline{LCAS} \le 0.2V,$ $\overline{WE} = \overline{OE} \ge V_{CC} - 0.2V,$ all other inputs at 0.2V or $V_{CC} - 0.2V$ | _   | 0.5 | -   | 0.5 | mA   |       |



# AC parameters common to all waveforms

|                  |                                  | -50 |     | -(  | 50  |      |       |
|------------------|----------------------------------|-----|-----|-----|-----|------|-------|
| Symbol           | Parameter                        | Min | Max | Min | Max | Unit | Notes |
| t <sub>RC</sub>  | Random read or write cycle time  | 80  | -   | 100 | _   | ns   |       |
| t <sub>RP</sub>  | RAS precharge time               | 30  | -   | 40  | _   | ns   |       |
| t <sub>RAS</sub> | RAS pulse width                  | 50  | 10K | 60  | 10K | ns   |       |
| t <sub>CAS</sub> | CAS pulse width                  | 8   | 10K | 10  | 10K | ns   |       |
| t <sub>RCD</sub> | RAS to CAS delay time            | 15  | 35  | 15  | 43  | ns   | 9     |
| t <sub>RAD</sub> | RAS to column address delay time | 9   | 25  | 10  | 30  | ns   | 10    |
| t <sub>RSH</sub> | CAS to RAS hold time             | 10  | -   | 10  | _   | ns   |       |
| t <sub>CSH</sub> | RAS to CAS hold time             | 40  | -   | 50  | _   | ns   |       |
| t <sub>CRP</sub> | CAS to RAS precharge time        | 5   | -   | 5   | _   | ns   |       |
| t <sub>ASR</sub> | Row address setup time           | 0   | -   | 0   | _   | ns   |       |
| t <sub>RAH</sub> | Row address hold time            | 8   | -   | 10  | _   | ns   |       |
| t <sub>T</sub>   | Transition time (rise and fall)  | 1   | 50  | 1   | 50  | ns   | 7,8   |
| t <sub>REF</sub> | Refresh period                   | _   | 16  | _   | 16  | ms   | 6     |
| t <sub>CP</sub>  | CAS precharge time               | 8   | -   | 10  | _   | ns   |       |
| t <sub>RAL</sub> | Column address to RAS lead time  | 25  | -   | 30  | _   | ns   |       |
| t <sub>ASC</sub> | Column address setup time        | 0   | -   | 0   | _   | ns   |       |
| t <sub>CAH</sub> | Column address hold time         | 8   | _   | 10  | _   | ns   |       |

### **Read cycle**

|                  |                               | -50 |     | -6  | 50  |      |       |
|------------------|-------------------------------|-----|-----|-----|-----|------|-------|
| Symbol           | Parameter                     | Min | Max | Min | Max | Unit | Notes |
| t <sub>RAC</sub> | Access time from RAS          | -   | 50  | -   | 60  | ns   | 9     |
| t <sub>CAC</sub> | Access time from CAS          | _   | 12  | -   | 15  | ns   | 9,16  |
| t <sub>AA</sub>  | Access time from address      | _   | 25  | -   | 30  | ns   | 10,16 |
| t <sub>RCS</sub> | Read command setup time       | 0   | _   | 0   | _   | ns   |       |
| t <sub>RCH</sub> | Read command hold time to CAS | 0   | -   | 0   | _   | ns   | 12    |
| t <sub>RRH</sub> | Read command hold time to RAS | 0   | _   | 0   | _   | ns   | 12    |



# Write cycle

|                  |                                | -50 |     | -60 |     |      |       |
|------------------|--------------------------------|-----|-----|-----|-----|------|-------|
| Symbol           | Parameter                      | Min | Max | Min | Max | Unit | Notes |
| t <sub>WCS</sub> | Write command setup time       | 0   | _   | 0   | _   | ns   | 14    |
| t <sub>WCH</sub> | Write command hold time        | 10  | _   | 10  | _   | ns   | 14    |
| t <sub>WP</sub>  | Write command pulse width      | 10  | _   | 10  | _   | ns   |       |
| t <sub>RWL</sub> | Write command to RAS lead time | 13  | _   | 15  | _   | ns   |       |
| t <sub>CWL</sub> | Write command to CAS lead time | 8   | _   | 10  | _   | ns   |       |
| $t_{ m DS}$      | Data-in setup time             | 0   | _   | 0   | _   | ns   | 15    |
| t <sub>DH</sub>  | Data-in hold time              | 8   | _   | 10  | _   | ns   | 15    |

## **Read-modify-write cycle**

|                  |                                 | -50 |     | -6  | 50  |      |       |
|------------------|---------------------------------|-----|-----|-----|-----|------|-------|
| Symbol           | Parameter                       | Min | Max | Min | Max | Unit | Notes |
| t <sub>RWC</sub> | Read-write cycle time           | 113 | _   | 135 | _   | ns   |       |
| t <sub>RWD</sub> | RAS to WE delay time            | 67  | _   | 77  | -   | ns   | 14    |
| t <sub>CWD</sub> | CAS to WE delay time            | 32  | _   | 35  | -   | ns   | 14    |
| t <sub>AWD</sub> | Column address to WE delay time | 42  | ı   | 47  | ı   | ns   | 14    |

## **Refresh cycle**

|                  |                                                                                                | -50 |     | -6  | 50  |      |       |
|------------------|------------------------------------------------------------------------------------------------|-----|-----|-----|-----|------|-------|
| Symbol           | Parameter                                                                                      | Min | Max | Min | Max | Unit | Notes |
| t <sub>CSR</sub> | CAS setup time (CAS-before-RAS)                                                                | 5   | _   | 5   | -   | ns   | 6     |
| t <sub>CHR</sub> | $\overline{\text{CAS}}$ hold time ( $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ ) | 8   | _   | 10  | _   | ns   | 6     |
| t <sub>RPC</sub> | RAS precharge to CAS hold time                                                                 | 0   | _   | 0   | _   | ns   |       |
| t <sub>CPT</sub> | CAS precharge time (CBR counter test)                                                          | 10  | -   | 10  | _   | ns   |       |



# Hyper page mode cycle

|                    |                                                          | -50 |      | -6  | 50   |      |       |
|--------------------|----------------------------------------------------------|-----|------|-----|------|------|-------|
| Symbol             | Parameter                                                | Min | Max  | Min | Max  | Unit | Notes |
| t <sub>CPWD</sub>  | CAS precharge to WE delay time                           | 45  | _    | 52  | _    | ns   |       |
| t <sub>CPA</sub>   | Access time from CAS precharge                           | _   | 28   | _   | 35   | ns   | 16    |
| t <sub>RASP</sub>  | RAS pulse width                                          | 50  | 100K | 60  | 100K | ns   |       |
| t <sub>DOH</sub>   | Previous data hold time from CAS                         | 5   | _    | 5   | _    | ns   |       |
| t <sub>REZ</sub>   | Output buffer turn off delay from RAS                    | 0   | 13   | 0   | 15   | ns   |       |
| t <sub>WEZ</sub>   | Output buffer turn off delay from $\overline{\text{WE}}$ | 0   | 13   | 0   | 15   | ns   |       |
| t <sub>OEZ</sub>   | Output buffer turn off delay from OE                     | 0   | 13   | 0   | 15   | ns   |       |
| t <sub>HPC</sub>   | Hyper page mode cycle time                               | 20  | -    | 25  | -    | ns   |       |
| t <sub>HPRWC</sub> | Hyper page mode RMW cycle                                | 47  |      | 56  |      | ns   |       |
| t <sub>RHCP</sub>  | RAS hold time from CAS                                   | 30  | _    | 35  | _    | ns   |       |

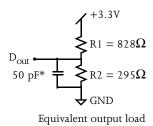
## **Output enable**

|                  |                                     | -50 |     | -60 |     |      |       |
|------------------|-------------------------------------|-----|-----|-----|-----|------|-------|
| Symbol           | Parameter                           | Min | Max | Min | Max | Unit | Notes |
| t <sub>CLZ</sub> | CAS to output in Low Z              | 0   | _   | 0   | _   | ns   | 11    |
| t <sub>ROH</sub> | RAS hold time referenced to OE      |     | _   | 10  | -   | ns   |       |
| t <sub>OEA</sub> | OE access time                      | -   | 13  | _   | 15  | ns   |       |
| t <sub>OED</sub> | OE to data delay                    | 13  | _   | 15  | -   | ns   |       |
| t <sub>OEZ</sub> | Output buffer turnoff delay from OE | 0   | 13  | 0   | 15  | ns   | 11    |
| t <sub>OEH</sub> | OE command hold time                | 10  | _   | 10  | _   | ns   |       |
| t <sub>OLZ</sub> | OE to output in Low Z               | 0   | _   | 0   | _   | ns   |       |
| t <sub>OFF</sub> | Output buffer turn-off time         | 0   | 13  | 0   | 15  | ns   | 11,13 |

## Self refresh cycle

|                   |                                          | -50 |     | -60 |     |      |       |
|-------------------|------------------------------------------|-----|-----|-----|-----|------|-------|
| <b>Std Symbol</b> | Parameter                                | Min | Max | Min | Max | Unit | Notes |
| t <sub>RASS</sub> | RAS pulse width<br>(CBR self refresh)    | 100 | _   | 100 | _   | μs   |       |
| t <sub>RPS</sub>  | RAS precharge time<br>(CBR self refresh) | 90  | _   | 105 | _   | ns   |       |
| t <sub>CHS</sub>  | CAS hold time<br>(CBR self refresh)      | 8   | _   | 10  | -   | ns   |       |

1




#### **AC** test conditions

- Access times are measured with output reference levels of  $V_{\mbox{OH}}$  = 2.0V and  $V_{\mbox{OL}}$  = 0.8V,

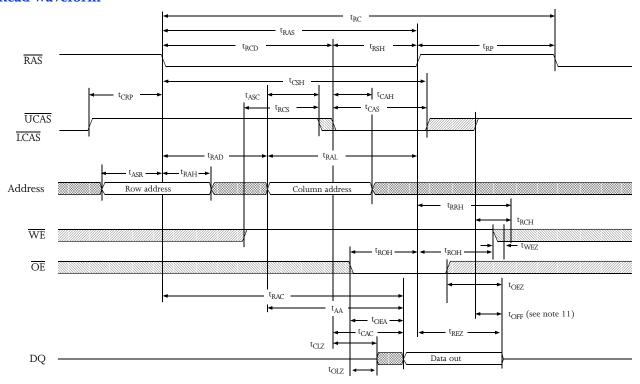
 $V_{\mbox{\footnotesize IH}} = 2.0 \mbox{\footnotesize V}$  and  $V_{\mbox{\footnotesize IL}} = 0.8 \mbox{\footnotesize V}$ 

- Input rise and fall times: 2 ns



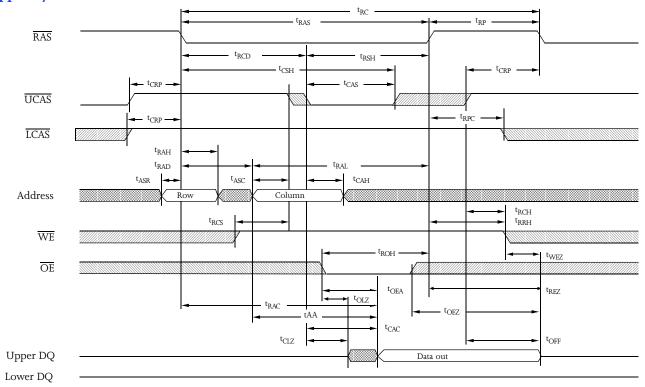
\*including scope and jig capacitance

#### **Notes**

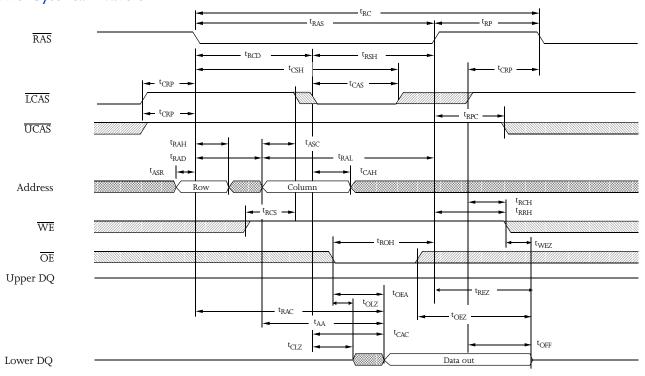

- 1 Write cycles may be byte write cycles (either LCAS or UCAS active).
- 2 Read cycles may be byte read cycles (either LCAS or UCAS active).
- 3 One  $\overline{\text{CAS}}$  must be active (either  $\overline{\text{LCAS}}$  or  $\overline{\text{UCAS}}$ ).
- 4  $\;\;$   $I_{CC1},\,I_{CC3},\,I_{CC4},$  and  $I_{CC6}$  are dependent on frequency.
- 5  $I_{\text{CC1}}$  and  $I_{\text{CC4}}$  depend on output loading. Specified values are obtained with the output open.
- An initial pause of 200 μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. In the case of an internal refresh counter, a minimum of 8 CAS before RAS initialization cycles instead of 8 RAS cycles are required. 8 initialization cycles are required after extended periods of bias without clocks (greater than 8 ms).
- 7 AC Characteristics assume  $t_T = 2$  ns. All AC parameters are measured with a load as described in AC test conditions below.
- 8  $V_{IH}$  (min) and  $V_{IL}$  (max) are reference levels for measuring timing of input signals. Transition times are measured between  $V_{IH}$  and  $V_{IL}$
- 9 Operation within the t<sub>RCD</sub> (max) limit insures that t<sub>RAC</sub> (max) can be met. t<sub>RCD</sub> (max) is specified as a reference point only. If t<sub>RCD</sub> is greater than the specified t<sub>RCD</sub> (max) limit, then access time is controlled exclusively by t<sub>CAC</sub>.
- 10 Operation within the  $t_{RAD}$  (max) limit insures that  $t_{RAC}$  (max) can be met.  $t_{RAD}$  (max) is specified as a reference point only. If  $t_{RAD}$  is greater than the specified  $t_{RAD}$  (max) limit, then access time is controlled exclusively by  $t_{AA}$ .
- 11 Assumes three state test load (5 pF and a 380  $\Omega$  Thevenin equivalent).
- 12 Either t<sub>RCH</sub> or t<sub>RRH</sub> must be satisfied for a read cycle.
- 13  $t_{OFF}$  (max) defines the time at which the output achieves the open circuit condition; it is not referenced to output voltage levels.  $t_{OFF}$  is referenced from rising edge of  $\overline{RAS}$  or  $\overline{CAS}$ , whichever occurs last.
- 14  $t_{WCS}$ ,  $t_{WCH}$ ,  $t_{RWD}$   $t_{CWD}$  and  $t_{AWD}$  are not restrictive operating parameters. They are included in the datasheet as electrical characteristics only. If  $t_{WS} \ge t_{WS}$  (min) and  $t_{WH} \ge t_{WH}$  (min), the cycle is an early write cycle and data out pins will remain open circuit, high impedance, throughout the cycle. If  $t_{RWD} \ge t_{RWD}$  (min),  $t_{CWD} \ge t_{CWD}$  (min) and  $t_{AWD} \ge t_{AWD}$  (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is satisfied, the condition of the data out at access time is indeterminate.
- 15 These parameters are referenced to  $\overline{\text{CAS}}$  leading edge in early write cycles and to  $\overline{\text{WE}}$  leading edge in read-write cycles.
- 16 Access time is determined by the longest of  $t_{\mbox{\footnotesize{CAA}}}$  or  $t_{\mbox{\footnotesize{CPA}}}$  or  $t_{\mbox{\footnotesize{CPA}}}$
- 17  $t_{ASC} \ge t_{CP}$  to achieve  $t_{PC}$  (min) and  $t_{CPA}$  (max) values.
- 18 These parameters are sampled and not 100% tested.

P. 9 of 24



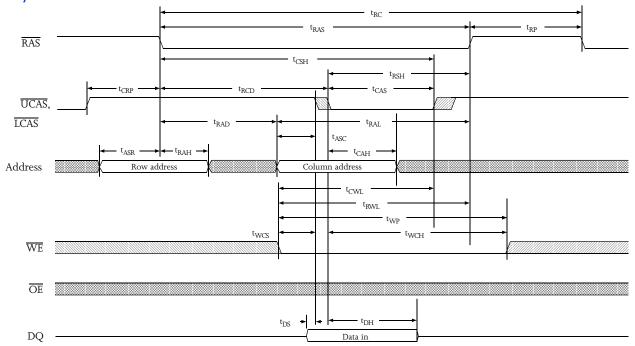

### Key to switching waveforms

#### **Read waveform**

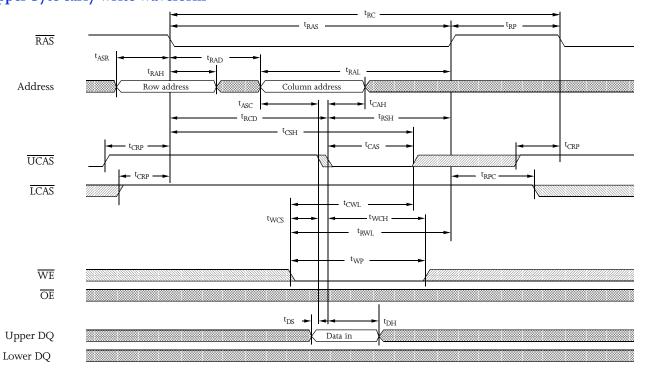





### Upper byte read waveform

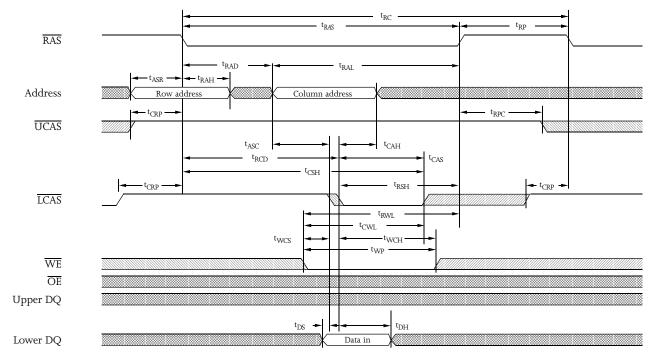



#### Lower byte read waveform

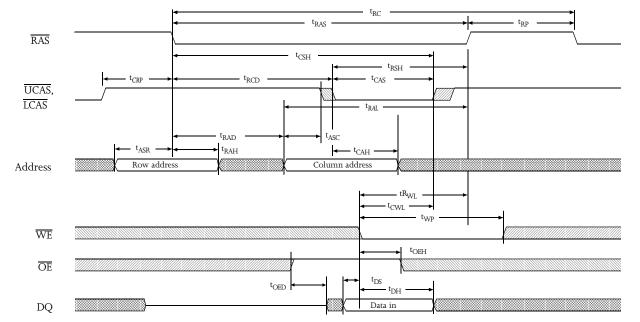





## **Early write waveform**



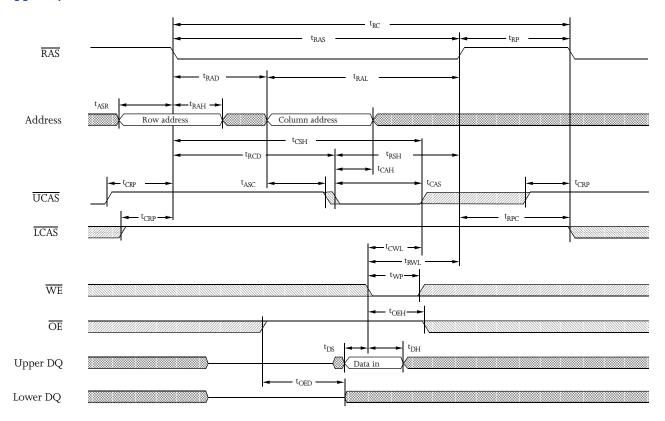

### Upper byte early write waveform





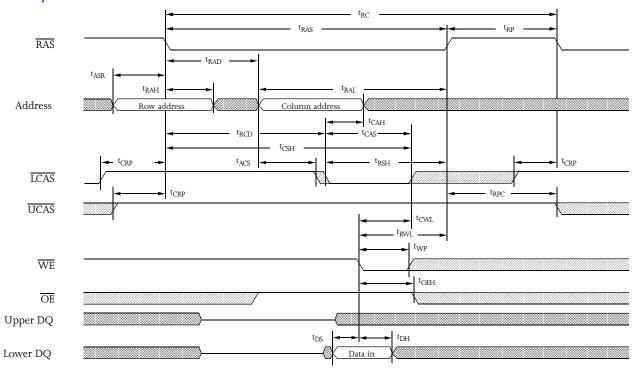

## Lower byte early write waveform




#### Write waveform OE controlled



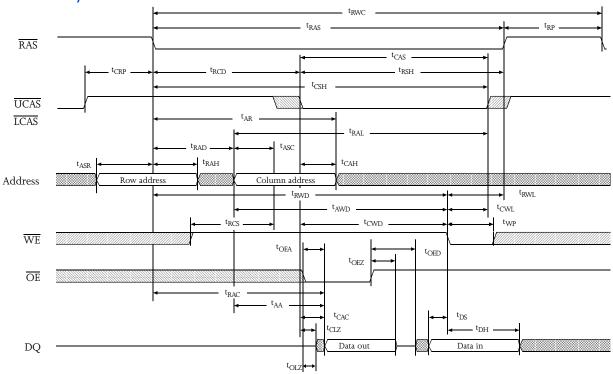



### Upper byte write waveform

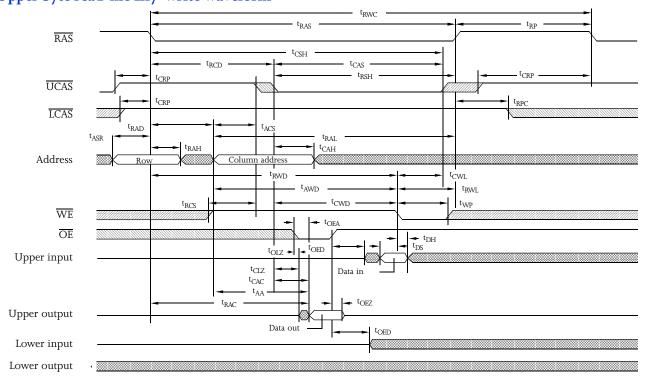
 $\overline{\text{OE}}$  controlled



### Lower byte write waveform

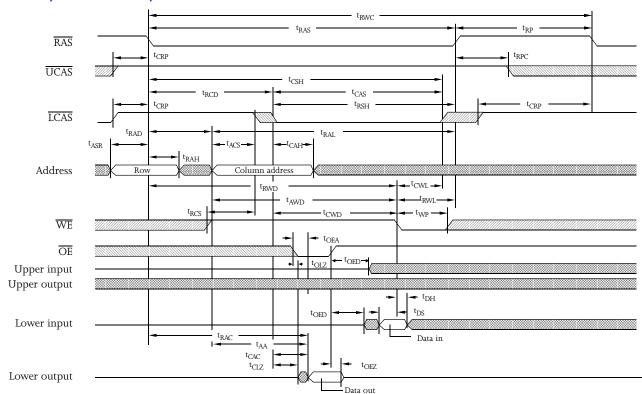

 $\overline{\text{OE}}$  controlled



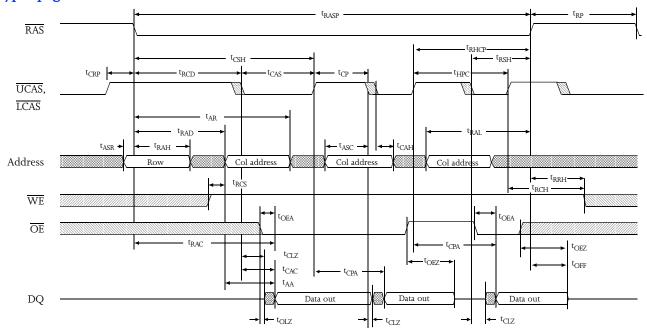

P. 14 of 24



### Read-modify-write waveform

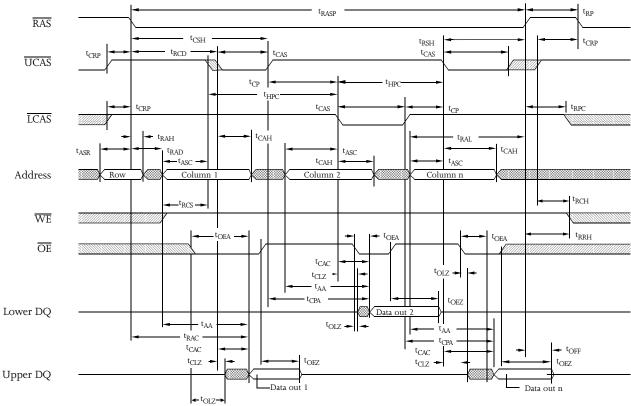



### Upper byte read-modify-write waveform

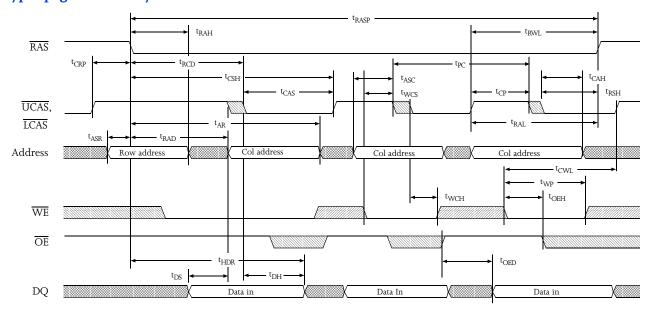





### Lower byte read-modify-write waveform

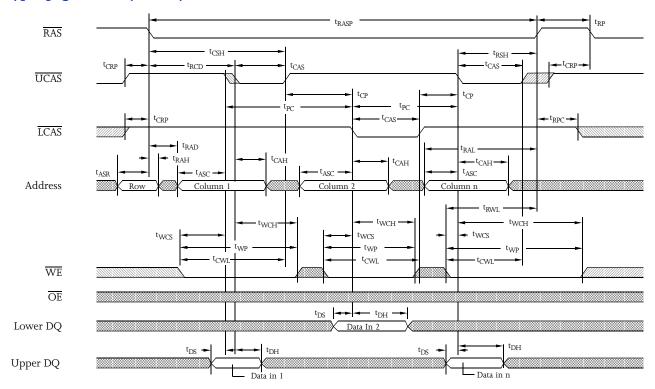



#### Hyper page mode read waveform

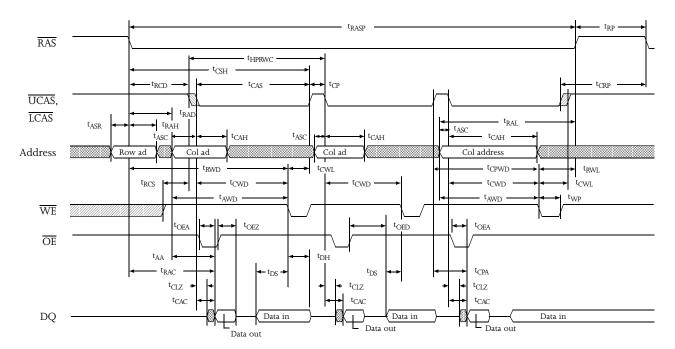





## Hyper page mode byte write waveform



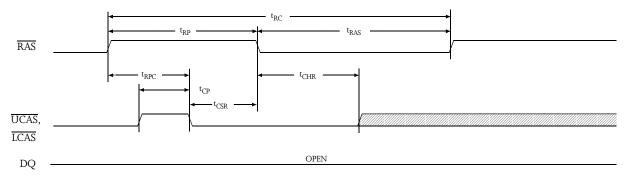

### Hyper page mode early write waveform



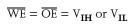


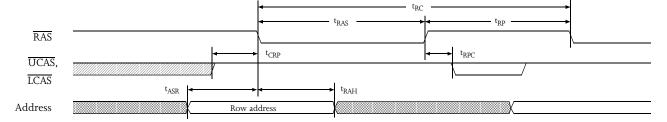

### Hyper page mode byte early write waveform




#### Hyper page mode read-modify-write waveform

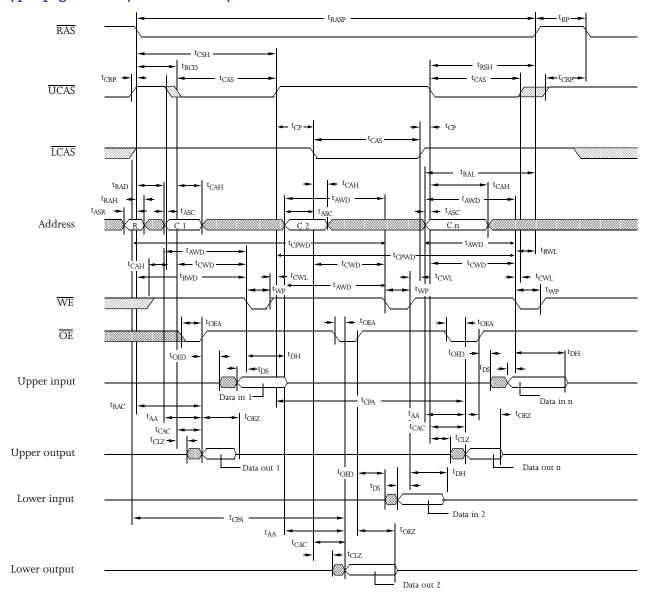






#### **CAS** before **RAS** refresh waveform

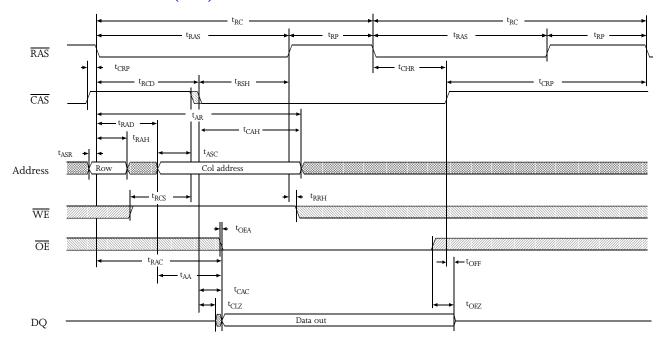
 $\overline{\text{WE}} = V_{\mathbf{IH}}$ 



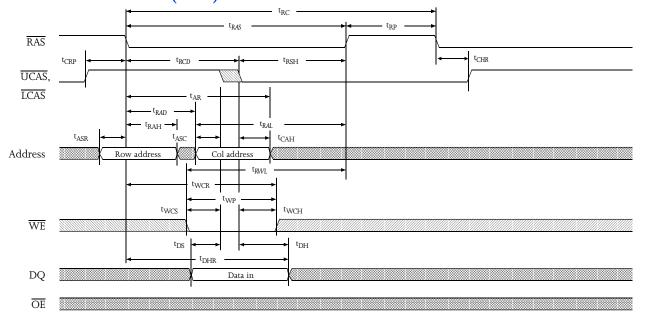

## RAS only refresh waveform





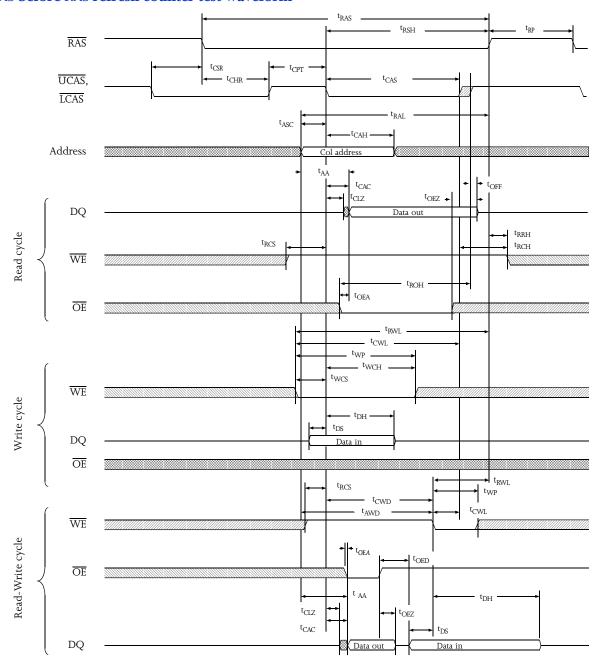



### Hyper page mode byte read-modify-write waveform



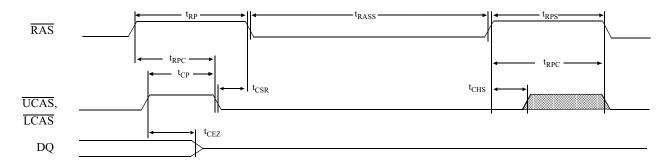



### Hidden refresh waveform (read)



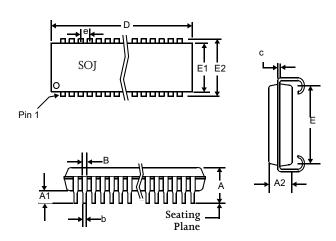

### Hidden refresh waveform (write)



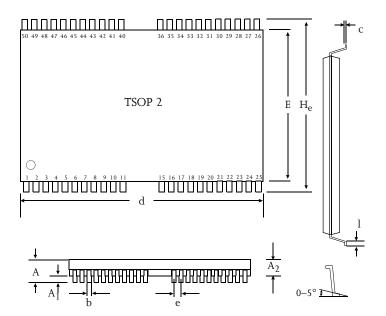



### **CAS** before **RAS** refresh counter test waveform






# $\overline{\text{CAS}}\text{-before-}\overline{\text{RAS}}$ self refresh cycle






## **Package dimensions**



|    | 42-pin SOJ |       |  |
|----|------------|-------|--|
|    | Min        | Max   |  |
| A  | 0.128      | 0.148 |  |
| A1 | 0.025      | -     |  |
| A2 | 0.105      | 0.115 |  |
| В  | 0.026      | 0.032 |  |
| Ъ  | 0.015      | 0.020 |  |
| С  | 0.007      | 0.013 |  |
| D  | 1.070      | 1.080 |  |
| Е  | 0.370 NOM  |       |  |
| E1 | 0.395      | 0.405 |  |
| E2 | 0.435      | 0.445 |  |
| e  | 0.050 NOM  |       |  |



|                | 50-pin TSOP 2  |       |  |
|----------------|----------------|-------|--|
|                | Min            | Max   |  |
|                | (mm)           | (mm)  |  |
| A              |                | 1.2   |  |
| $A_1$          | 0.05           |       |  |
| A <sub>2</sub> | 0.95           | 1.05  |  |
| b              | 0.30           | 0.45  |  |
| С              | 0.12           | 0.21  |  |
| d              | 20.85          | 21.05 |  |
| Е              | 10.03          | 10.29 |  |
| H <sub>e</sub> | 11.56          | 11.96 |  |
| e              | 0.80 (typical) |       |  |
| l              | 0.40           | 0.60  |  |



### Capacitance 13

f = 1 MHz,  $T_a = Room$  temperature

| Parameter         | Symbol           | Signals                 | Test conditions                 | Max | Unit |
|-------------------|------------------|-------------------------|---------------------------------|-----|------|
| Input capacitance | $C_{IN1}$        | A0 to A9                | $V_{in} = 0V$                   | 5   | pF   |
| input capacitance | C <sub>IN2</sub> | RAS, UCAS, LCAS, WE, OE | $V_{in} = 0V$                   | 7   | pF   |
| DQ capacitance    | $C_{DQ}$         | DQ0 to DQ15             | $V_{\rm in} = V_{\rm out} = 0V$ | 7   | pF   |

#### AS4LC1M16E5 ordering information

| Package \ RAS access time    | 50 ns                                | 60 ns                                |  |
|------------------------------|--------------------------------------|--------------------------------------|--|
| Plastic SOJ, 400 mil, 42-pin | AS4LC1M16E5-50JC<br>AS4LC1M16E5-50JI | AS4LC1M16E5-60JC<br>AS4LC1M16E5-60JI |  |
| TSOP 2, 400 mil, 44/50-pin   | AS4LC1M16E5-50TC<br>AS4LC1M16E5-50TI | AS4LC1M16E5-60TC<br>AS4LC1M16E5-60TI |  |

#### AS4LC1M16E5 part numbering system

| AS4        | LC                             | 1M16E5        | –XX | X        | X                                                                             |
|------------|--------------------------------|---------------|-----|----------|-------------------------------------------------------------------------------|
| DRAM prefi | C = 5V  CMOS $LC = 3.3V  CMOS$ | Device number |     | <u> </u> | Temperature range<br>C=Commercial, 0°C to 70°C<br>I=Industrial, -40°C to 85°C |