ANALOG 1.8 nV/√Hz, 36 V Precision Single and Dual Amplifier

PreliminaryTechnical Data

FEATURES

Very low voltage noise: 1.8 nV/√Hz Low input bias current: 100 nA maximum Offset voltage: 100 µV maximum High gain: 120 dB Wide bandwidth: 12 MHz ±5 V to ±15 V operation

APPLICATIONS

Precision instrumentation Filter blocks Microphone preamplifier Industrial control Thermocouples and RTDs Reference buffers

GENERAL DESCRIPTION

The ADA4004-1 and ADA4004-2 are single and dual precision bipolar op amps that featuring a 1.8 nV/ \sqrt{Hz} precision, 40 μ V offset, 0.7 μ V/°C drift, 12 MHz bandwidth, and low 1.7 mA/amplifier supply current.

The ADA4004 is designed on the high performance *i*Polar[™] process, enabling improvements such as reduced noise and power consumption, increased speed and stability, and a smaller footprint size. Novel design techniques enable the ADA4004 to achieve 1.8 nV/√Hz voltage noise density and a low 6 Hz 1/f noise corner frequency while consuming just 1.7 mA/amplifier. The small package saves board space, reduces cost, and improves layout flexibility.

Applications for these amplifiers include high precision controls, PLL filters, high performance precision filters, medical and analytical instrumentation, precision power supply controls, ATE, and data acquisition systems.

The high performance ADA4004 is offered in the very small 5-lead SOT and 8-lead SOIC for the single (ADA4004-1) and the 8-lead MSOP and 8-lead SOIC for the dual (ADA4004-2), lead-free surface-mount packages. Operation is fully specified from ± 5 V to ± 15 V from -40° C to $\pm 125^{\circ}$ C.

ADA4004-1 and ADA4004-2

PIN CONFIGURATIONS

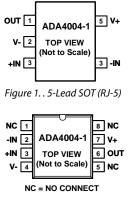


Figure 2. 8-Lead SOIC (R-8)

Figure 3. 8-Lead MSOP (RM-8) and 8-Lead SOIC (R-8)

Rev. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

 $\rm V_{\scriptscriptstyle S}=\pm5.0$ V, $\rm V_{\scriptscriptstyle CM}$ = 0 V, $\rm T_{\scriptscriptstyle A}$ = +25°C, unless otherwise specified.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			40	140	μV
		$-40^\circ C \leq T_A \leq +125^\circ C$			300	μV
Input Bias Current	I _B			40	85	nA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			165	nA
Input Offset Current	los			40	85	nA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			100	nA
Input Voltage Range			-3.5		+3.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -3.0 \text{ V to } +3.0 \text{ V}$	105	111		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	95	110		dB
Open-Loop Gain	Avo	$R_L = 2 k\Omega$, $V_0 = -2.5 V$ to $+2.5 V$	250	400		V/mV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	170			V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		0.7	1	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$ to ground	3.7	3.9		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	3.4	3.6		V
Output Voltage Low	Vol	$R_L = 2 k\Omega$ to ground		-3.6	-3.55	V
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$		-3.6	-3.5	V
Short Circuit Limit	lsc			25		mA
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$				mA
Output Current	lo	$V_{OUT} = \pm 3.6 V$		±10		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 5.0 V \text{ to } \pm 15.0 V$	110	118		dB
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$	110			dB
Supply Current/Amplifier	Isy				1.7	mA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			2.0	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$ to ground		2.7		V/µs
Gain Bandwidth Product	GBP			12		MHz
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 Hz to 10 Hz		0.1		μV p-р
Voltage Noise Density	en	f = 1 kHz		1.8		nV/√Hz
Current Noise Density	in	f = 10 Hz		3.5		pA/√Hz
Current Noise Density	İn	f = 200 Hz		1.2		pA/√Hz

 $\rm V_{s}$ = ±15 V, $\rm V_{CM}$ = 0 V, $\rm T_{A}$ = +25°C, unless otherwise specified.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			40	125	μV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			270	μV
Input Bias Current	IB			40	90	nA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			165	nA
Input Offset Current	los				60	nA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			100	nA
Input Voltage Range			-12.5		+12.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -12.5 V \text{ to } +12.5 V$	110	113		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	100	104		dB
Open-Loop Gain	Avo	$R_L = 2 \text{ k}\Omega$, $V_0 = -12.5 \text{ V}$ to +12.5 V	500	1200		V/mV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	250	500		V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		0.7	1	μV
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$ to ground	13.4	13.6		v
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	13.1	13.3		v
Output Voltage Low	V _{OL}	$R_L = 2 k\Omega$ to ground		-13.3	-13.2	v
		$-40^{\circ}C \leq T_{A} \leq +125^{\circ}C$		-13.25	-13.18	V
Short Circuit Limit	Isc			25		mA
Output Current	lo	$V_{OUT} = \pm 13.6 V$		±10		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 5.0 V \text{ to } \pm 15.0 V$	110	118		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	110			dB
Supply Current/Amplifier	Isy				1.775	mA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			2.10	mA
DYNAMIC PERFORMANCE						ł
Slew Rate	SR	$R_L = 2 \ k\Omega$ to ground		2.7		V/µs
Gain Bandwidth Product	GBP	_		12		MHz
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 Hz to 10 Hz		0.15		µV р-р
Voltage Noise Density	en	f = 1 kHz		1.8		nV/√Hz
Current Noise Density	in	f = 10 Hz		3.5		pA/√Hz
Current Noise Density	İn	f = 200 Hz		1.2		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating		
Supply Voltage	±18 V/+36 V		
Input Voltage	±V supply		
Differential Input Voltage	±V supply		
Output Short-Circuit Duration to GND	Indefinite		
Storage Temperature Range	–65°C to +150°C		
Operating Temperature Range	-40°C to +125°C		
Junction Temperature Range	–65°C to +150°C		
Lead Temperature (Soldering 60 sec)	300°C		

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

© 2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR06548–0–2/07(PrB)

www.analog.com

Rev. PrB | Page 4 of 4