

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FAIRCHILD

SEMICONDUCTOR

DM74LS259 8-Bit Addressable Latches

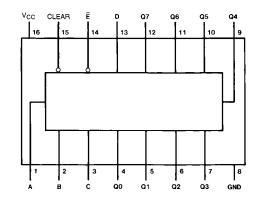
General Description

These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1-of-8 decoder or demultiplexer with active-high outputs.

Four distinct modes of operation are selectable by controlling the clear and enable inputs as enumerated in the function table. In the addressable-latch mode, data at the datain terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held HIGH (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs LOW. In the clear mode, all outputs are LOW and unaffected by the address and data inputs.

Features

- 8-Bit parallel-out storage register performs serial-to-parallel conversion with storage
- Asynchronous parallel clear
- Active high decoder
- Enable/disable input simplifies expansion
- Direct replacement for Fairchild DM9334
- Expandable for N-bit applications
- Four distinct functional modes
- Typical propagation delay times: Enable-to-output 18 ns Data-to-output 16 ns Address-to-output 21 ns Clear-to-output 17 ns
- Fan-out I_{OL} (sink current) 8 mA I_{OH} (source current) -0.4 mA
- Typical I_{CC} 22 mA


Ordering Code:

Order Number	Package Number	Package Description		
DM74LS259M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow		
DM74LS259WM	M16B	16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide		
DM74LS259N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide		
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.				

© 2000 Fairchild Semiconductor Corporation DS006418

Connection Diagram

Function Table

Inputs		Output of	Each	Function		
		Addressed	Other			
Clear	Е	Latch	Output			
Н	L	D	Q _{i0}	Addressable Latch		
Н	н	Q _{i0}	Q _{i0}	Memory		
L	L	D	L	8-Line Demultiplexer		
L	н	L	L	Clear		

Latch Selection Table

	Select Inputs	;	Latch
С	В	Α	Addressed
L	L	L	0
L	L	н	1
L	н	L	2
L	н	Н	3
Н	L	L	4
н	L	н	5
н	Н	L	6
н	Н	н	7

H = HIGH Level
L = LOW Level
D = the Level of the Data Input
Q_{i0} = the Level of Q_i (i = 0, 1,...7, as Appropriate) before the Indicated Steady-State Input Conditions Were Established.

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65°C to +150°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74LS259

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units		
V _{CC}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	HIGH Level Input Voltage		2			V	
V _{IL}	LOW Level Input Voltage				0.8	V	
I _{ОН}	HIGH Level Output Current				-0.4	mA	
I _{OL}	LOW Level Output Current				8	mA	
t _W	Pulse Width	Enable	15			ns	
	(Note 5)	Clear	15			115	
t _{SU}	Setup Time	Data	15↑			ns	
	(Note 2)(Note 3)(Note 4)(Note 5)	Select	15↓				
t _H	Hold Time	old Time Data 2.5 [↑]			ns		
	(Note 2)(Note 3)(Note 5)	Select	2.5↑			115	
T _A	Free Air Operating Temperature		0		70	°C	

Note 2: The symbols (\downarrow , \uparrow) indicate the edge of the clock pulse used for reference: \uparrow for rising edge, \downarrow for falling edge.

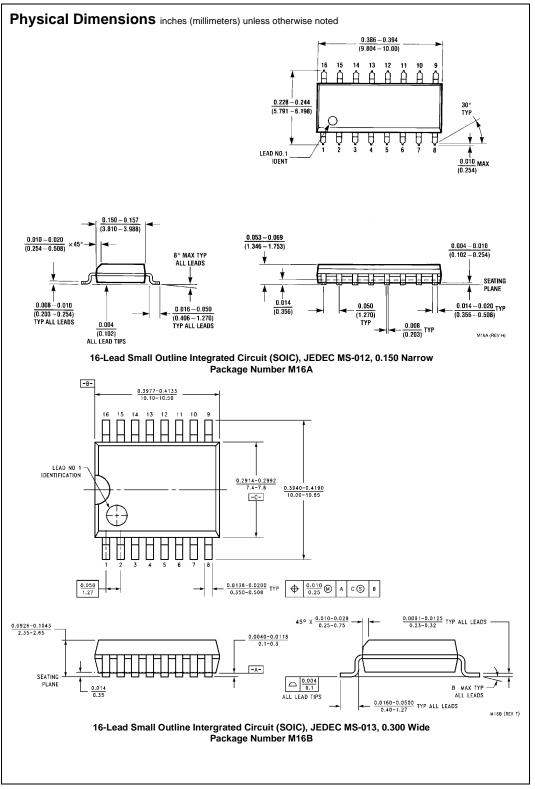
Note 3: Setup and hold times are with reference to the enable input.

Note 4: The select-to-enable setup time is the time before the HIGH-to-LOW enable transition that the select must be stable so that the correct latch is selected and the others not affected.

Note 5: $T_A=25^\circ C$ and $V_{CC}=5V.$

Electrical Characteristics

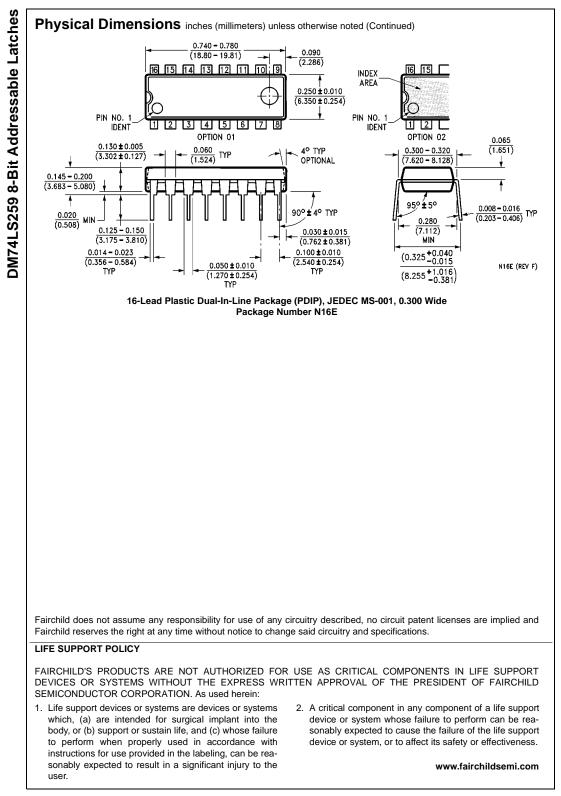
over recommended operating free air temperature range (unless otherwise noted)


Symbol	Parameter	Conditions	Min	Typ (Note 6)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 mA$			-1.5	V	
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max	2.7	3.4		V	
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$	2.7	3.4		v	
V _{OL}	LOW Level	Level V _{CC} = Min, I _{OL} = Max		0.35	0.5	V	
Output Voltage	Output Voltage	$V_{IL} = Max, V_{IH} = Min$					
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$		0.25	0.4		
l _l	Input Current @ Max	$V_{CC} = Max, V_I = 7V$			0.1	mA	
	Input Voltage	$V_I = 10V$			0.1	IIIA	
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ	
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$	-0.4	-0.4	mA		
	Enable	$V_{CC} = Max, V_I = 0.4V$		-0		IIIA	
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 7)	-20		-100	mA	
I _{CC}	Supply Current	V _{CC} = Max (Note 8)		22	36	mA	

Note 6: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 8: I_{CC} is measured with all inputs at 4.5V, and all outputs OPEN.


at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$							
		From (Input)	C _L =	C _L = 50 pF			
Symbol	Parameter	To (Output)	$R_L = 2 k\Omega$		Units		
			Min	Max	[
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output		38	ns		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output		32	ns		
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Data to Output		35	ns		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Data to Output		30	ns		
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output		41	ns		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output		38	ns		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Output		36	ns		

DM74LS259

www.fairchildsemi.com

5

www.fairchildsemi.com