Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Absolute Maximum Ratings(Note 1)
Storage Temperature ($\mathrm{T}_{\text {STG }}$)
Maximum Junction Temperature (T_{J})
V_{EE} Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$\mathrm{~V}_{\mathrm{EE}}$ to +0.5 V
-50 mA
$\geq 2000 \mathrm{~V}$

Recommended Operating

 ConditionsCase Temperature (T_{C})
Commercial
Industrial
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$
Note 1: The "Absolute Maximum Ratings" are those values beyond which
the safety of the device cannot be guaranteed. The device should not be
operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum rating.
The "Recommended Operating Conditions" table will define the conditions
for actual device operation.
Note 2: ESD testing conforms to MIL-STD-883, Method 3015 .

Commercial Version

DC Electrical Characteristics (Note 3)
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	Loading with 50Ω to -2.0 V
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage	-1830	-1705	-1620	mV	or $\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Toggle Frequency	425		425		425		MHz	Figures 1, 2
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to Output	1.40	3.00	1.40	3.00	1.50	3.10	ns	Figures 1, 2 (Note 4)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 2
t_{S}	Setup Time	$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.40 \\ & 1.10 \end{aligned}$		ns	Figures 1, 3
t_{H}	$\begin{gathered} \text { Hold Time } \\ D_{n} \end{gathered}$	0.10		0.10		0.10		ns	Figures 1, 4
$\overline{\mathrm{tPW}(\mathrm{H})}$	$\begin{aligned} & \text { Pulse Width HIGH } \\ & \text { CP } \end{aligned}$	2.00		2.00		2.00		ns	Figures 1, 2

[^0]| PLCC AC Electrical Characteristics | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=\mathbf{0}^{\circ} \mathrm{C}$ | | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ | | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ | | Units | Conditions |
| | | Min | Max | Min | Max | Min | Max | | |
| $f_{\text {MaX }}$ | Toggle Frequency | 425 | | 425 | | 425 | | MHz | Figures 1, 2 |
| $\begin{aligned} & \hline \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay CP to Output | 1.40 | 2.80 | 1.40 | 2.80 | 1.50 | 2.90 | ns | Figures 1, 2
 (Note 5) |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$ | Transition Time 20% to $80 \%, 80 \%$ to 20% | 0.45 | 1.90 | 0.45 | 1.90 | 0.45 | 1.90 | ns | Figures 1, 2 |
| t_{s} | Setup Time $\frac{D_{n}}{\overline{C E N}}$ (Disable Time) $\overline{C E N}$ (Release Time) | $\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$ | | $\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$ | | $\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \\ & \hline \end{aligned}$ | | ns | Figures 1, 3 |
| ${ }_{\text {t }}$ | Hold Time D_{n} | 0 | | 0 | | 0 | | ns | Figures 1, 4 |
| ${ }_{\text {tew }}(\mathrm{H})$ | Pulse Width HIGH CP | 2.00 | | 2.00 | | 2.00 | | ns | Figures 1, 2 |
| $\mathrm{t}_{\text {OSHL }}$ | Maximum Skew Common Edge Output-to-Output Variation Data to Output Path | | 200 | | 200 | | 200 | ps | PLCC Only
 (Note 6) |
| tosth | Maximum Skew Common Edge Output-to-Output Variation Data to Output Path | | 200 | | 200 | | 200 | ps | $\begin{array}{\|l\|} \hline \text { PLCC Only } \\ \text { (Note 6) } \end{array}$ |
| $\mathrm{t}_{\text {OST }}$ | $\begin{aligned} & \text { Maximum Skew Opposite Edge } \\ & \text { Output-to-Output Variation } \\ & \text { Data to Output Path } \end{aligned}$ | | 260 | | 260 | | 260 | ps | PLCC Only
 (Note 6) |
| tps | Maximum Skew Pin (Signal) Transition Variation Data to Output Path | | 280 | | 280 | | 280 | ps | PLCC Only (Note 6) |
| Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.
 Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$), or LOW-to-HIGH (tosLh), or in opposite directions both HL and LH ($\mathrm{t}_{\mathrm{OST}}$). Parameters $\mathrm{t}_{\mathrm{OSt}}$ and t_{PS} guaranteed by design. | | | | | | | | | |

Industrial Version								
PLCC DC Electrical Characteristics								
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 7)								
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for all Inputs	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for all Inputs	
IIL	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
IIH	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
l_{EE}	Power Supply Current	$\begin{aligned} & -119 \\ & -122 \end{aligned}$	$\begin{aligned} & -61 \\ & -61 \end{aligned}$	$\begin{aligned} & -119 \\ & -122 \end{aligned}$	$\begin{aligned} & -61 \\ & -61 \end{aligned}$	mA	Inputs OPEN$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 7: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Toggle Frequency	425		425		425		MHz	Figures 1, 2
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 2 (Note 8)
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.40	2.50	0.45	1.90	0.45	1.90	ns	Figures 1, 2
ts	$\begin{aligned} & \text { Setup Time } \\ & \begin{array}{l} D_{n} \\ \overline{\mathrm{CEN}} \text { (Disable Time) } \\ \overline{\mathrm{CEN}} \text { (Release Time) } \end{array} \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.90 \\ & 1.40 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 0.30 \\ & 1.00 \end{aligned}$		ns	Figures 1, 3
t_{H}	Hold Time D_{n}	0.30		0		0		ns	Figures 1, 4
$\mathrm{t}_{\text {PW }}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2

[^1]
Test Circuitry

Note:

- $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
- $L 1$ and $L 2=$ equal length 50Ω impedance lines
- $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
- Decoupling $0.1 \mu \mathrm{~F}$ from $G N D$ to V_{CC} and V_{EE}
- All unused outputs are loaded with 50Ω to GND
- $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC, Toggle Frequency Test Circuit
Switching Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
Package Number N24E
 Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: Note 4: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching

[^1]: Note 8: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching

