

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

July 1988 Revised August 2000

100353

Low Power 8-Bit Register

General Description

The 100353 contains eight D-type edge triggered, master/slave flip-flops with individual inputs (D_n) , true outputs (Q_n) , a clock input (CP), and a common clock enable pin (CEN). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the $\overline{\text{CEN}}$ input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.

The 100353 output drivers are designed to drive 50Ω termination to -2.0V. All inputs have $50~k\Omega$ pull-down resistors.

Features

- Low power operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
100353PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100353QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100353QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (-40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Pin Descriptions

Pin Names	Description
D ₀ –D ₇	Data Inputs
CEN	Clock Enable Input
СР	Clock Input (Active Rising Edge)
Q ₀ –Q ₇	Data Outputs
NC	No Connect

Connection Diagrams

Truth Table

	Inputs						
D _n	CEN	СР	Q_n				
L	L	~	L				
Н	L	~	Н				
Х	Х	L	NC				
Х	Х	Н	NC				
Х	Н	Х	NC				

- H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Don't Care
 NC = No Change
 = LOW-to-HIGH Transition

Logic Diagram

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Case Temperature (T_C)

 $\begin{array}{lll} \mbox{Commercial} & 0 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Industrial} & -40 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Supply Voltage (V_{EE})} & -5.7 \mbox{V to } -4.2 \mbox{V} \\ \end{array}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2V \text{ to } -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = 0^{\circ}\text{C to } +85^{\circ}\text{C}$

Symbol	Parameter	Min	Тур	Max	Units		Conditions			
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} = V _{IH} (Max)	Loading with			
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL} (Min)	50Ω to −2.0V			
V _{OHC}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH}$ (Min)	Loading with			
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL} (Max)	50Ω to $-2.0V$			
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for all Inputs				
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for all Inputs				
I _{IL}	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL}$ (Min)	$V_{IN} = V_{IL}$ (Min)			
I _{IH}	Input HIGH Current			240	μΑ	V _{IN} = V _{IH} (Max)				
I _{EE}	Power Supply Current					Inputs OPEN				
		-119		-61	mA	$V_{EE} = -4.2V \text{ to } -4.8V$				
		-122		-61		$V_{EE} = -4.2V \text{ to } -5.7V$				

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	$T_C = 0^{\circ}C$		$T_C = +25^{\circ}C$		T _C = +85°C		Conditions
C y		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{MAX}	Toggle Frequency	425		425		425		MHz	Figures 1, 2
t _{PLH} t _{PHL}	Propagation Delay CP to Output	1.40	3.00	1.40	3.00	1.50	3.10	ns	Figures 1, 2 (Note 4)
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.45	2.00	0.45	2.00	0.45	2.00	ns	Figures 1, 2
t _S	Setup Time Dn CEN (Disable Time) CEN (Release Time)	1.10 0.40 1.10		1.10 0.40 1.10		1.10 0.40 1.10		ns	Figures 1, 3
t _H	Hold Time D _n	0.10		0.10		0.10		ns	Figures 1, 4
t _{PW} (H)	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2

Note 4: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	= 0°C	T _C =	+25°C	T _C = +85°C		Units	Conditions
Syllibol		Min	Max	Min	Max	Min	Max	Onits	Conditions
MAX	Toggle Frequency	425		425		425		MHz	Figures 1, 2
t _{PLH}	Propagation Delay	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 2
PHL	CP to Output	1.40	2.00	1.40	2.00	1.50	2.90	115	(Note 5)
TLH	Transition Time	0.45	1.90	0.45	1.90	0.45	1.90		Figures 1, 2
THL	20% to 80%, 80% to 20%	0.45	1.90	0.45	1.90	0.45	1.90	ns	Figures 1, 2
S	Setup Time								
	D _n	1.00		1.00		1.00			
	CEN (Disable Time)	0.30		0.30		0.30		ns	Figures 1, 3
	CEN (Release Time)	1.00		1.00		1.00			
Н	Hold Time D _n	0		0		0		ns	Figures 1, 4
_{PW} (H)	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2
OSHL	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		200		200		200	ps	(Note 6)
	Data to Output Path								
OSLH	Maximum Skew Common Edge								PLCC Only
	Output-to-Output Variation		200		200		200	ps	(Note 6)
	Data to Output Path								
OST	Maximum Skew Opposite Edge								PLCC Only
	Output-to-Output Variation		260		260		260	ps	(Note 6)
	Data to Output Path								
PS	Maximum Skew								PLCC Only
	Pin (Signal) Transition Variation		280		280		280	ps	(Note 6)
	Data to Output Path								

Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (toshL), or LOW-to-HIGH (tosL), or in opposite directions both HL and LH (tost). Parameters tost and tost guaranteed by design.

Industrial Version

PLCC DC Electrical Characteristics

 $\rm V_{EE} = -4.2V$ to $-5.7V,~V_{CC} = V_{CCA} = GND,~T_{C} = -40^{\circ}C$ to $+85^{\circ}C$ (Note 7)

Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = 0^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Symbol		Min	Max	Min	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL} (Min)	50Ω to −2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH} (Min) Loading with		
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL} (Max)	50Ω to −2.0V	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Sig	nal for all Inputs	
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for all Inputs		
I _{IL}	Input LOW Current	0.50		0.50		μΑ	V _{IN} = V _{IL} (Min)		
I _{IH}	Input HIGH Current		240		240	μΑ	V _{IN} = V _{IH} (Max)		
I _{EE}	Power Supply Current						Inputs OPEN		
		-119	-61	-119	-61	mA	$V_{EE} = -4.2V \text{ to } -4.8V$		
		-122	-61	-122	-61		$V_{EE} = -4.2V \text{ to } -5.7V$		

Note 7: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	$T_C = -40^{\circ}C$		T _C = +25°C		$T_C = +85^{\circ}C$		Units	Conditions
- Cyllibol		Min	Max	Min	Max	Min	Max	Onito	Conditions
f _{MAX}	Toggle Frequency	425		425		425		MHz	Figures 1, 2
t _{PLH}	Propagation Delay CP to Output	1.40	2.80	1.40	2.80	1.50	2.90	ns	Figures 1, 2 (Note 8)
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.40	2.50	0.45	1.90	0.45	1.90	ns	Figures 1, 2
t _S	Setup Time Dn CEN (Disable Time) CEN (Release Time)	0.60 0.90 1.40		1.00 0.30 1.00		1.00 0.30 1.00		ns	Figures 1, 3
t _H	Hold Time D _n	0.30		0		0		ns	Figures 1, 4
t _{PW} (H)	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2

Note 8: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry

Note:

- V_{CC} , $V_{CCA} = +2V$, $V_{EE} = -2.5V$
- L1 and L2 = equal length 50Ω impedance lines
- $R_T = 50\Omega$ terminator internal to scope
- Decoupling 0.1 μF from GND to V_{CC} and V_{EE}
- All unused outputs are loaded with 50Ω to GND
- C_L = Fixture and stray capacitance ≤ 3 pF

FIGURE 1. AC, Toggle Frequency Test Circuit

Switching Waveforms

FIGURE 2. Propagation Delay (Clock) and Transition Times

FIGURE 3. Setup and Pulse Width Times

Note:

 t_S is the minimum time before the transition of the clock that information must be present at the data input.

 $t_{\mbox{\scriptsize H}}$ is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 4. Data Setup and Hold Time

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com