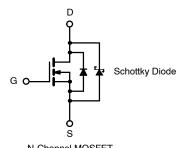


N-Channel 30-V (D-S) MOSFET with Schottky Diode

PRODUCT SUMMARY					
V _{DS} (V)	$r_{DS(on)}(\Omega)$				
30	0.0120 @ V _{GS} = 10 V	11			
	0.0175 @ V _{GS} = 4.5 V	9.5			


SCHOTTKY PRODUCT SUMMARY					
V _{DS} (V)	V _{SD} (v) Diode Forward Voltage	I _F (A)			
30	0.53 V @ 3 A	4			

SO-8 8 D D Top View

Ordering Information: Si4852DY Si4852DY-T1 (with Tape and Reel)

FEATURES

- LITTLE FOOT® Plus
- 100% R_g Tested

IN-CII	annei	MOSE	

Parameter		Symbol	10 secs	Steady State	Unit
Drain-Source Voltage (MOSFET)		V _{DS}	30		V
Reverse Voltage (Schottky)		V_{DA}	30		
Gate-Source Voltage		V _{GS}	±20		
Continuous Drain Current (T, = 150°C)	T _A = 25°C		11	8.7	
(MOSFET) ^a	T _A = 70°C	l _D	9.0	7.0	
Pulsed Drain Current (MOSFET)		I _{DM}	50		
Continuous Source Current (MOSFET Diode Conduction) ^a		Is	2.3	1.3	_ A
Average Foward Current (Schottky)		IF	4.0	2.5	
Pulsed Foward Current (Schottky)		I _{FM}	50		
M · D D: · // (MOOFFT)	T _A = 25°C		2.5	1.47	
Maximum Power Dissipation (MOSFET) ^a	T _A = 70°C		1.6	0.94	,,,
Maximum Power Dissipation (Schottky) ^a	T _A = 25°C	P _D	2.27	1.38	W
	T _A = 70°C	1	1.45	0.88	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55	to 150	°C

THERMAL RESISTANCE RATINGS								
		MOSFET		FET	Schottky			
Parameter		Symbol	Тур	Max	Тур	Max	Unit	
Maximum Junction-to-Ambient ^a	t ≤ 10 sec		40	50	45	55		
	Steady-State	R _{thJA}	72	85	75	90	°C/W	
Maximum Junction-to-Foot (Drain)	Steady-State	R _{thJF}	18	22	20	25]	

Notes

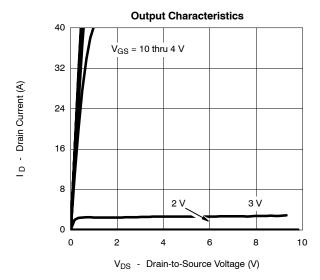
a. Surface Mounted on 1" x 1" FR4 Board.

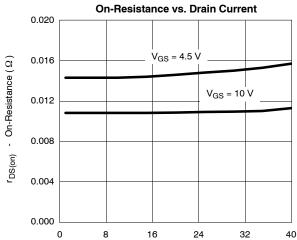
Si4852DY

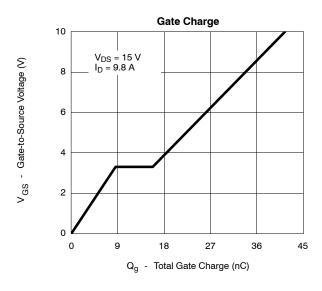
Vishay Siliconix

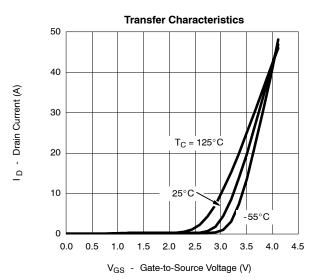
MOSFET SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED).							
Parameter	Symbol	Test Condition	Min	Тура	Max	Unit	
Static	<u> </u>		•	•	•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1			V	
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = \pm 20 V			±100	nA	
		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$		0.007	0.100	0.100	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 100^{\circ}\text{C}$		1.5	10	mA	
		$V_{DS} = 24 \ V, V_{GS} = 0 \ V, T_{J} = 125 ^{\circ} C$		6.5	20		
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	20			Α	
Drain-Source On-State Resistance ^b		V _{GS} = 10 V, I _D = 11 A		0.0100	0.0120	-	
	r _{DS(on)}	$V_{GS} = 4.5 \ V, I_D = 9.5 A$		0.0145	0.0175	Ω	
Forward Transconductance ^b	9 _{fs}	$V_{DS} = 15 \text{ V}, I_D = 11 \text{ A}$		28		S	
Schottky Diode Forward Voltage ^b	.,	$I_S = 3.0 \text{ A}, V_{GS} = 0 \text{ V}$		0.485	0.53	, , ,	
	V _{SD}	$I_S = 3.0 \text{ A}, V_{GS} = 0 \text{ V}, T_J = 125^{\circ}\text{C}$		0.416	0.47	V	
Dynamic ^a			·		•		
Total Gate Charge	Qg			24	35		
Gate-Source Charge	Q _{gs}	$V_{DS} = 15 \text{ V}, \ V_{GS} = 5 \text{ V}, \ I_{D} = 11 \text{ A}$		9		nC	
Gate-Drain Charge	Q _{gd}			7.5			
Gate Resistance	R _g		0.5		2.6	Ω	
Turn-On Delay Time	t _{d(on)}			17	30		
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_{I} = 15 \Omega$		10	20	ns	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 6 \Omega$		60	100		
Fall Time	t _f			18	30		
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 3.ο A, di/dt = 100 A/μs		40	70		

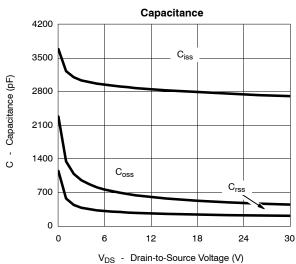
SCHOTTKY SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)							
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Forward Voltage Drop	,,	I _F = 3.0 A		0.485	0.53		
	V _F	I _F = 3.0 A, T _J = 125°C		0.416	0.47	V	
Maximum Reverse Leakage Current		V _r = 24 V		0.007	0.100		
	I _{rm}	V _r = 24 V, T _J = 100°C		1.5	10	mA	
		V _r = -24 V, T _J = 125°C		6.4	20		
Junction Capacitance	C _T	V _r = 10 V		115		pF	

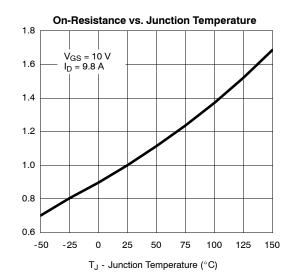

Notes a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.



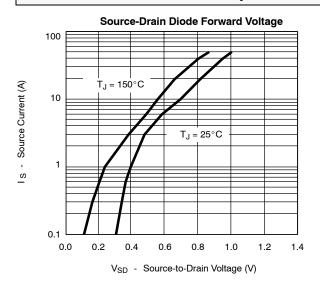

Vishay Siliconix

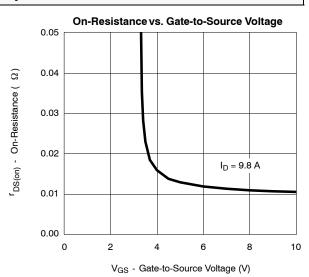

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

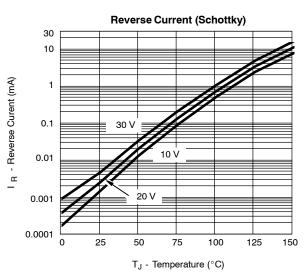


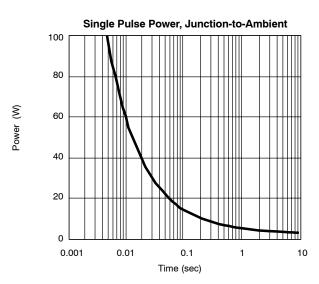


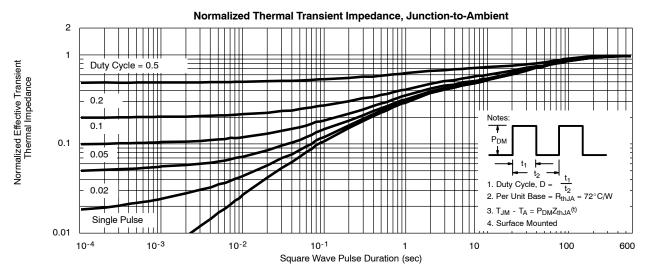
ID - Drain Current (A)

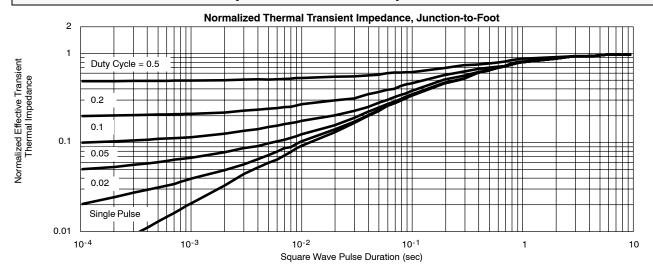



^rDS(on) - On-Resistance (Ω) (Normalized)


Vishay Siliconix




TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)



Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.