

Eight Output Differential Buffer for PCI Express (50-200MHz)

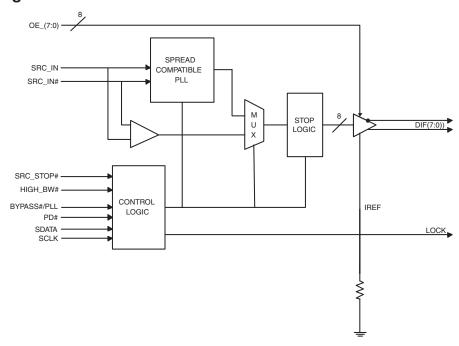
ICS9DB801C

Description

The 9DB801C is a DB800 Version 2.0 Yellow Cover part with PCI Express support. It can be used in PC or embedded systems to provide outputs that have low cycle-to-cycle jitter (50ps), low output-to-output skew (100ps), and are PCI Express gen 1 compliant. The 9DB801C supports a 1 to 8 output configuration, taking a spread or non spread differential HCSL input from a CK410(B) main clock such as 954101 and 932S401, or any other differential HCSL pair. 9DB801C can generate HCSL or LVDS outputs from 50 to 200MHz in PLL mode or 0 to 400Mhz in bypass mode. There are two de-jittering modes available selectable through the HIGH_BW# input pin, high bandwidth mode provides de-jittering for spread inputs and low bandwidth mode provides extra de-jittering for non-spread inputs. The SRC_STOP#, PD#, and individual OE# real-time input pins provide completely programmable power management control.

Output Features

- 8 0.7V current-mode differential output pairs
- Supports zero delay buffer mode and fanout mode
- Bandwidth programming available


Features/Benefits

- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread.
- Supports undriven differential outputs in PD# and SRC_STOP# modes for power management.
- Supports polarity inversion to the output enables, SRC_STOP and PD.

Key Specifications

- Outputs cycle-cycle jitter < 50ps
- Outputs skew: 50ps
- 50 200MHz operation
- Extended frequency range in bypass mode to 400 MHz
- PCI Express Gen I compliant
- Real time PLL lock detect output pin
- 48-pin SSOP/TSSOP package
- Available in RoHS compliant packaging

Funtional Block Diagram

Note: Polarities shown for OE INV = 0.

Pin Configuration

3							
SRC_DIV#	1	48	VDDA	SRC_DIV#	1	48	VDDA
VDD	2	47	GNDA	VDD	2	47	GNDA
GND	3	46	IREF	GND	3	46	IREF
SRC_IN	4	45	LOCK	SRC_IN	4	45	LOCK
SRC_IN#	5	44	OE_7	SRC_IN#	5	44	OE7#
OE_0	6	43	OE_4	OE0#	6	43	OE4#
OE_3	7	~ 42	DIF_7	OE3#			DIF_7
DIF_0	8	80 41	DIF_7#	DIF_0	8	41	DIF_7#
DIF_0#	9	41 40 39 38 37 36	OE_INV	DIF_0#	9	40	OE_INV
GND	10	39	VDD	GND	10	39	VDD
VDD	11 8	5 38	DIF_6	VDD	11 89	38	DIF_6
DIF_1	10 11 12 13 14 15	37	DIF_6#	DIF_1	10 11 12 13 14	37	DIF_6#
DIF_1#	13 16		OE_6	DIF_1#	13 6	36	OE6#
· OE_1	14 9	se 35	OE_5	OE1#	14 9		OE5#
OE_2	15	o 34	DIF_5	OE2#		34	DIF_5
DIF_2	16	34 33 32	DIF_5#	DIF_2	16	33	DIF_5#
DIF_2#	17	% 32	GND	DIF_2#	17		GND
GND	18	31	VDD	GND			VDD
VDD	19	30	DIF_4	VDD	19	30	DIF_4
DIF_3	20	29	DIF_4#	DIF_3	20		DIF_4#
DIF_3#	21	28	HIGH_BW#	DIF_3#	21	28	HIGH_BW#
BYPASS#/PLL	22	27	SRC_STOP#	BYPASS#/PLL	22		SRC_STOP
SCLK	23	26	PD#	SCLK			PD
SDATA	24	25	GND	SDATA	24	25	GND
!	OE_IN		ı		OE_INV =	: 1	
	_						

Polarity Inversion Pin List Table

	OE_INV			
Pins	0	1		
6	OE_0	OE0#		
7	OE_3	OE3#		
14	OE_1	OE1#		
15	OE_2	OE2#		
26	PD#	PD		
27	DIF_STOP#	DIF_STOP		
35	OE_5	OE5#		
36	OE_6	OE6#		
43	OE_4	OE4#		
44	OE_7	OE7#		

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	SRC_DIV#	INPUT	Active low Input for determining SRC output frequency SRC or SRC/2. 0 = SRC/2, 1= SRC
2	VDD	POWER	Power supply, nominal 3.3V
3	GND	POWER	Ground pin.
4	SRC_IN	INPUT	0.7 V Differential SRC TRUE input
5	SRC_IN#	INPUT	0.7 V Differential SRC COMPLEMENTARY input
6	OE_0	INPUT	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
7	OE_3	INPUT	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
8	DIF_0	OUTPUT	0.7V differential true clock outputs
9	.DIF 0#	OUTPUT	0.7V differential complement clock outputs
10	GND	POWER	Ground pin.
11	VDD	POWER	Power supply, nominal 3.3V
12	DIF_1	OUTPUT	0.7V differential true clock outputs
13	DIF_1#	OUTPUT	0.7V differential complement clock outputs
14	OE_1	INPUT	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
15	OE_2	INPUT	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
16	DIF 2	OUTPUT	0.7V differential true clock outputs
17	DIF_2#	OUTPUT	0.7V differential complement clock outputs
18	GND	POWER	Ground pin.
19	VDD	POWER	Power supply, nominal 3.3V
20	DIF_3	OUTPUT	0.7V differential true clock outputs
21	DIF_3#	OUTPUT	0.7V differential complement clock outputs
22	BYPASS#/PLL	INPUT	Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1= PLL mode
23	SCLK	INPUT	Clock pin of SMBus circuitry, 5V tolerant.
24	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
25	GND	POWER	Ground pin.
			Asynchronous active low input pin, with 120Kohm internal pull-
26	PD#	INPUT	up resistor, used to power down the device. The internal clocks
			are disabled and the VCO and the crystal are stopped.
27	SRC_STOP#	INPUT	Active low input to stop SRC outputs.
00	LUCII DW#	INDUT	3.3V input for selecting PLL Band Width
28	HIGH_BW#	INPUT	0 = High, 1= Low
29	DIF_4#	OUTPUT	0.7V differential complement clock outputs
30	DIF_4	OUTPUT	0.7V differential true clock outputs
31	VDD	POWER	Power supply, nominal 3.3V
32	GND	POWER	Ground pin.
33	DIF_5#	OUTPUT	0.7V differential complement clock outputs
34	DIF_5	OUTPUT	0.7V differential true clock outputs
0.5	٥٢ - ٦	INDLIT	Active high input for enabling outputs.
35	OE_5	INPUT	0 = tri-state outputs, 1= enable outputs
00	OF 6	INDLIT	Active high input for enabling outputs.
36	OE_6	INPUT	0 = tri-state outputs, 1= enable outputs
37	DIF_6#	OUTPUT	0.7V differential complement clock outputs
38	DIF_6	OUTPUT	0.7V differential true clock outputs
39	VDD	POWER	Power supply, nominal 3.3V
40	OF INIV	INPUT	This latched input selects the polarity of the OE pins.
40	OE_INV	INPUT	0 = OE pins active high, 1 = OE pins active low (OE#)
41	DIF_7#	OUTPUT	0.7V differential complement clock outputs
42	DIF_7	OUTPUT	0.7V differential true clock outputs
40	OE 4	INPUT	Active high input for enabling outputs.
43	OE_4	INPUT	0 = tri-state outputs, 1= enable outputs
44	OE_7	INPUT	Active high input for enabling outputs.
44	OE_/	INPUT	0 = tri-state outputs, 1= enable outputs
45	LOCK	OUTPUT	3.3V output indicating PLL Lock Status. This pin goes high
43	LOCK	OUTPUT	when lock is achieved.
			This pin establishes the reference current for the differential
46	IREF INPUT		current-mode output pairs. This pin requires a fixed precision
40	INEF	INFOT	resistor tied to ground in order to establish the appropriate
			current. 475 ohms is the standard value.
47	GNDA	POWER	Ground pin for the PLL core.
48	VDDA	POWER	3.3V power for the PLL core.

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
			Active low Input for determining SRC output frequency SRC or
1	SRC_DIV#	INPUT	SRC/2.
			0 = SRC/2, 1= SRC
2	VDD	POWER	Power supply, nominal 3.3V
3	GND	POWER	Ground pin.
4	SRC_IN	INPUT	0.7 V Differential SRC TRUE input
5	SRC_IN#	INPUT	0.7 V Differential SRC COMPLEMENTARY input
6	OE0#	INPUT	Active low input for enabling DIF pair 0.
O	OLO#	INFO	1 = tri-state outputs, 0 = enable outputs
7	OE3#	INPUT	Active low input for enabling DIF pair 3.
,	OL3#	1141 01	1 = tri-state outputs, 0 = enable outputs
8	DIF_0	OUTPUT	0.7V differential true clock outputs
9	. DIF_0#	OUTPUT	0.7V differential complement clock outputs
10	GND	POWER	Ground pin.
11	VDD	POWER	Power supply, nominal 3.3V
12	DIF_1	OUTPUT	0.7V differential true clock outputs
13	DIF_1#	OUTPUT	0.7V differential complement clock outputs
14	OE1#	INPUT	Active low input for enabling DIF pair 1.
14	OL1#	IIVI O I	1 = tri-state outputs, 0 = enable outputs
15	OE2#	INPUT	Active low input for enabling DIF pair 2.
13			1 = tri-state outputs, 0 = enable outputs
16	DIF_2	OUTPUT	0.7V differential true clock outputs
17	DIF_2#	OUTPUT	0.7V differential complement clock outputs
18	GND	POWER	Ground pin.
19	VDD	POWER	Power supply, nominal 3.3V
20	DIF_3	OUTPUT	0.7V differential true clock outputs
21	DIF_3#	OUTPUT	0.7V differential complement clock outputs
22	BYPASS#/PLL	INPUT	Input to select Bypass(fan-out) or PLL (ZDB) mode
			0 = Bypass mode, 1= PLL mode
23	SCLK	INPUT	Clock pin of SMBus circuitry, 5V tolerant.
24	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
25	GND	PWR	Ground pin.
26	PD	IN	Asynchronous active high input pin used to power down the device. The internal clocks are disabled and the VCO is stopped.
27	SRC_STOP	IN	Active high input to stop SRC outputs.
28	HIGH_BW#	IN	3.3V input for selecting PLL Band Width 0 = High, 1= Low
29	DIF_4#	OUT	0.7V differential complement clock outputs
30	DIF_4	OUT	0.7V differential true clock outputs
31	VDD	PWR	Power supply, nominal 3.3V
32	GND	PWR	Ground pin.
33	DIF_5#	OUT	0.7V differential complement clock outputs
34	DIF_5	OUT	0.7V differential true clock outputs
35	OE5#	IN	Active low input for enabling DIF pair 5. 1 = tri-state outputs, 0 = enable outputs
36	OE6#	IN	Active low input for enabling DIF pair 6. 1 = tri-state outputs, 0 = enable outputs
37	DIF_6#	OUT	0.7V differential complement clock outputs
38	DIF 6	OUT	0.7V differential true clock outputs
39	VDD	PWR	Power supply, nominal 3.3V
40	OE_INV	IN	This latched input selects the polarity of the OE pins. 0 = OE pins active high, 1 = OE pins active low (OE#)
41	DIF_7#	OUT	0.7V differential complement clock outputs
42	DIF_7	OUT	0.7V differential true clock outputs
43	OE4#	IN	Active low input for enabling DIF pair 4 1 = tri-state outputs, 0 = enable outputs
44	OE7#	IN	Active low input for enabling DIF pair 7. 1 = tri-state outputs, 0 = enable outputs
45	LOCK	OUT	3.3V output indicating PLL Lock Status. This pin goes high when lock is achieved.
46	IREF	IN	This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.
47	GNDA	PWR	Ground pin for the PLL core.
48	VDDA	PWR	3.3V power for the PLL core.

Absolute Max

Symbol	Parameter	Min	Max	Units
VDD_A	3.3V Core Supply Voltage		4.6	V
VDD_In	3.3V Logic Supply Voltage		4.6	V
V_{IL}	Input Low Voltage	GND-0.5		V
V_{IH}	Input High Voltage		V _{DD} +0.5V	V
Ts	Storage Temperature	-65	150	°C
Tambient	Ambient Operating Temp	0	70	°C
Tcase	Case Temperature		115	Ŝ
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics - Input/Supply/Common Output Parameters $T_A = 0 - 70^{\circ}\text{C}$; Supply Voltage $V_{DD} = 3.3 \text{ V } + /-5\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V_{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	
Input Low Voltage	V_{IL}	3.3 V +/-5%	GND - 0.3		8.0	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
loout Lour Current	I _{IL1}	$V_{IN} = 0 \text{ V}$; Inputs with no pull-up resistors	-5			uA	
Input Low Current	I _{IL2}	$V_{IN} = 0 \text{ V}$; Inputs with pull-up resistors	-200			uA	
Operating Supply Current	I _{DD3.3PLL}	Full Active, $C_L = Full load;$		175	200	mA	
Operating Supply Surrent	I _{DD3.3ByPass}	Tall Active, OL = Tall load,		160	175	mA	
Powerdown Current	I _{DD3.3PD}	all diff pairs driven		50	70	mA	
1 owerdown ourient		all differential pairs tri-stated		1	4	mA	
Input Frequency	F_{iPLL}	PLL Mode	50		200	MHz	
Input Frequency	F _{iBypass}	Bypass Mode (Revision B/REV ID = 1H)	0		333.33	MHz	
Input Frequency	F _{iBypass}	Bypass Mode (Revision C/REV ID = 2H)	0		400	MHz	
Pin Inductance ¹	L_{pin}				7	nΗ	1
Innut Con a 2'12 a 2 1	C _{IN}	Logic Inputs	1.5		4	pF	1
Input Capacitance ¹	C _{OUT}	Output pin capacitance			4	pF	1
DI I Dan de delle		PLL Bandwidth when PLL BW=0	2.4	3	3.4	MHz	1
PLL Bandwidth	BW	PLL Bandwidth when PLL BW=1	0.7	1	1.4	MHz	1
Clk Stabilization ^{1,2}	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or deassertion of PD# to 1st clock		0.5	1	ms	1,2
Modulation Frequency	fMOD	Triangular Modulation	30		33	kHz	1
Tdrive_SRC_STOP#		DIF output enable after SRC_Stop# de-assertion		10	15	ns	1,3
Tdrive_PD#		DIF output enable after PD# de-assertion			300	us	1,3
Tfall		Fall time of PD# and SRC_STOP#			5	ns	1
Trise		Rise time of PD# and SRC_STOP#			5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

²See timing diagrams for timing requirements.

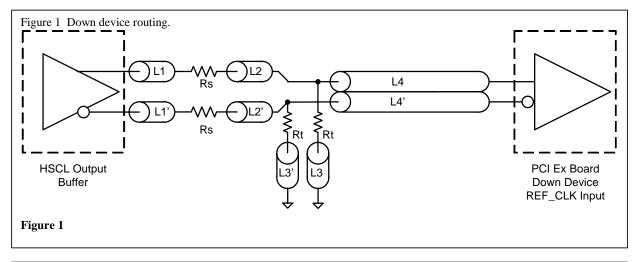
³Time from deassertion until outputs are >200 mV

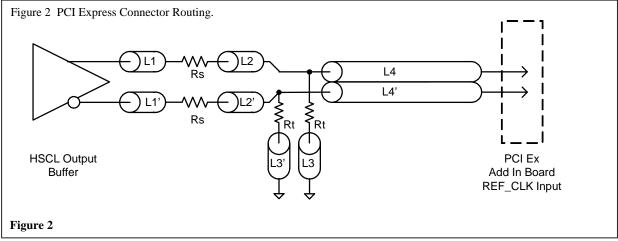
Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 $T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 2pF$, $R_S = 33.2\Omega$, $R_P = 49.9\Omega$, $I_{REF} = 475\Omega$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope	660		850	mV	1,3
Voltage Low	VLow	math function.	-150		150	IIIV	1,3
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300			IIIV	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525 V V_{OL} = 0.175 V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skew	t _{sk3}	V _T = 50%			50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode, Measurement from differential wavefrom			50	ps	1
		BYPASS mode as additive jitter			50	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

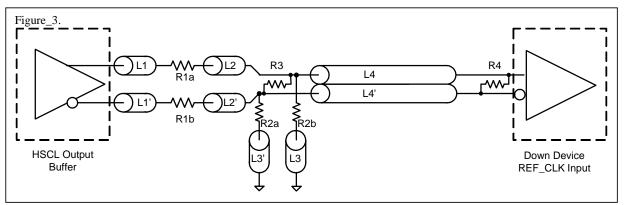

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that the input clock complies with CK409/CK410 accuracy requirements


 $^{^{3}}I_{REF}=V_{DD}/(3xR_{R}). \ \ For \ R_{R}=475\Omega \ (1\%), \ I_{REF}=2.32mA. \ I_{OH}=6 \ x \ I_{REF} \ and \ V_{OH}=0.7V \ @ \ Z_{O}=50\Omega.$

SRC Reference Clock					
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure		
L1 length, Route as non-coupled 50 ohm trace.	0.5 max	inch	1		
L2 length, Route as non-coupled 50 ohm trace.	0.2 max	inch	1		
L3 length, Route as non-coupled 50 ohm trace.	0.2 max	inch	1		
Rs	33	ohm	1		
Rt	49.9	ohm	1		

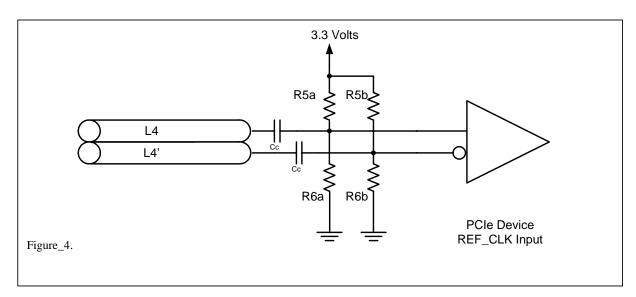
Down Device Differential Routing	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	2 min to 16 max	inch	1
L4 length, Route as coupled stripline 100 ohm differential trace.	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differential trace.	0.25 to 14 max	inch	2
L4 length. Route as coupled stripline 100 ohm differential trace.	0.225 min to 12.6 max	inch	2



Alternative termination for LVDS and other common differential signals. Figure 3.

Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note
0.45 v	0.22v	1.08	33	150	100	100	
0.58	0.28	0.6	33	78.7	137	100	
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible
0.60	0.3	1.2	33	174	140	100	Standard LVDS


R1a = R1b = R1

 $\overline{R2a = R2b = R2}$

Cable connected AC coupled application, figure 4

Component	Value	Note
R5a,R5b	8.2K 5%	
R6a,R6b	1K 5%	
Сс	0.1 uF	
Vcm	0.350 volts	

General SMBus serial interface information for the ICS9DB801C

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address DC (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will *acknowledge* each byte *one at a time*
- · Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address DC (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	Index Block Write Operation								
Cor	ntroller (Host)		ICS (Slave/Receiver)						
Т	starT bit								
Slave	e Address DC _(H)								
WR	WRite								
		ACK							
Begi	nning Byte = N								
·		ACK							
Data	Byte Count = X								
·			ACK						
Begir	ning Byte N								
	·		ACK						
	\Diamond	ţe							
	\Diamond	X Byte	\rightarrow						
	\rightarrow	×	\Q						
			\rightarrow						
Byte	e N + X - 1								
			ACK						
Р	stoP bit								

Ind	ex Block Rea	ad	Operation		
Con	troller (Host)	IC	S (Slave/Receiver)		
Т	starT bit				
Slave	Address DC _(H)				
WR	WRite				
			ACK		
Begii	nning Byte = N				
			ACK		
RT	Repeat starT				
Slave	Address DD _(H)				
RD	ReaD				
			ACK		
		Data Byte Count = X			
	ACK				
			Beginning Byte N		
	ACK				
		ıte	0		
	0	X Byte	0		
	0	×	0		
0					
			Byte N + X - 1		
N	Not acknowledge				
Р	stoP bit				

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

Ву	rte 0	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	-		PD_Mode	PD# drive mode	RW	driven	Hi-Z	0
Bit 6	-		STOP_Mode	SRC_Stop# drive mode	RW	driven	Hi-Z	0
Bit 5	-		Reserved	Reserved	RW	Res	erved	Х
Bit 4	-		Reserved	Reserved	RW	Res	erved	Х
Bit 3	-		Reserved	Reserved	RW	Res	erved	Х
Bit 2	Bit 2 -		PLL_BW#	Select PLL BW	RW	High BW	Low BW	1
Bit 1	-		BYPASS#	BYPASS#/PLL	RW	fan-out	ZDB	1
Bit 0	-		SRC_DIV#	SRC Divide by 2 Select	RW	x/2	1x	1

SMBus Table: Output Control Register

Ву	rte 1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	· 42,	,41	DIF_7	Output Control	RW	Disable	Enable	1
Bit 6	38,	,37	DIF_6	Output Control	RW	Disable	Enable	1
Bit 5	34,	,33	DIF_5	Output Control	RW	Disable	Enable	1
Bit 4	30,	,29	DIF_4	Output Control	RW	Disable	Enable	1
Bit 3	20,	,21	DIF_3	Output Control	RW	Disable	Enable	1
Bit 2	16,	,17	DIF_2	Output Control	RW	Disable	Enable	1
Bit 1	12,	,13	DIF_1	Output Control	RW	Disable	Enable	1
Bit 0	8,	,9	DIF_0	Output Control	RW	Disable	Enable	1

SMBus Table: Output Control Register

Ву	rte 2	Pin #	Name	Control Function	Type	0	1	PWD
Bit 7	42,	41	DIF_7	Output Control	RW	Free-run	Stoppable	0
Bit 6	38,	,37	DIF_6	Output Control	RW	Free-run	Stoppable	0
Bit 5	34,	,33	DIF_5	Output Control	RW	Free-run	Stoppable	0
Bit 4	30,	.29	DIF_4	Output Control	RW	Free-run	Stoppable	0
Bit 3	20,	,21	DIF_3	Output Control	RW	Free-run	Stoppable	0
Bit 2	16,	,17	DIF_2	Output Control	RW	Free-run	Stoppable	0
Bit 1	12,	13	DIF_1	Output Control	RW	Free-run	Stoppable	0
Bit 0	8,	,9	DIF_0	Output Control	RW	Free-run	Stoppable	0

SMBus Table: Output Control Register

Ву	te 3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				Reserved	RW	Res	Reserved	
Bit 6				Reserved	RW	Res	Reserved	
Bit 5				Reserved	RW	Reserved		X
Bit 4				Reserved	RW	Reserved		X
Bit 3				Reserved	RW Reserved		erved	X
Bit 2				Reserved	RW	Reserved		Х
Bit 1				Reserved	RW	Reserved		X
Bit 0				Reserved	RW	Reserved		X

SMBus Table: Vendor & Revision ID Register

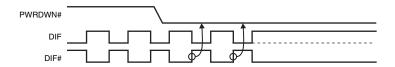
Byt	e 4 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	RID3		R	-	-	Х
Bit 6	-	RID2	REVISION ID	R	-	-	Х
Bit 5	-	RID1		R	-	-	Х
Bit 4	•	RID0		R	-	-	Х
Bit 3	•	VID3		R	-	-	0
Bit 2	-	VID2	VENDOR ID	R	-	-	0
Bit 1	-	VID1	VENDOR ID	R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBus Table: DEVICE ID

Ву	Byte 5 Pin #		Name	Control Function	Туре	0	1	PWD
Bit 7	•	-	Dev	rice ID 7 (MSB)	R	Reserved		1
Bit 6		-		Device ID 6	R	Res	erved	0
Bit 5		-		Device ID 5	R	Reserved		0
Bit 4	t 4 -		Device ID 4		R	Reserved		0
Bit 3	3 -		Device ID 3		R	Reserved		0
Bit 2	· -		- Device ID 2		R	Reserved		0
Bit 1	1 -		Device ID 1		R	Res	erved	0
Bit 0		- Device ID 0		R	Res	erved	1	

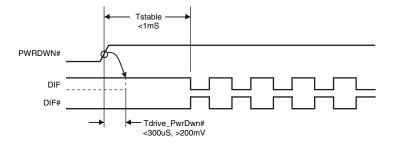
SMBus Table: Byte Count Register

Ву	te 6	Pin#	Name	Control Function	Type	0	1	PWD
Bit 7		-	BC7		RW	•	-	0
Bit 6	-		BC6		RW	•	-	0
Bit 5		-	BC5 Writing to this register	RW	-	-	0	
Bit 4		-	BC4	Writing to this register configures how many bytes	RW	•	-	0
Bit 3		-	BC3	will be read back.	RW	•	-	0
Bit 2		-	BC2	will be read back.	RW	-	-	1
Bit 1		- BC1	RW	-	-	1		
Bit 0		-	BC0		RW	-	-	1


Note: Polarities in timing diagrams are shown OE_INV = 0. They are similar to OE_INV = 1.

PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

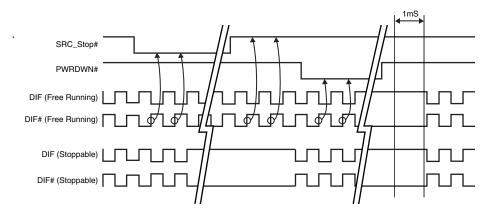
When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

PD# De-assertion

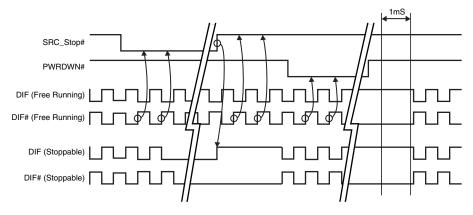
Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 us of PD# de-assertion.

SRC STOP#

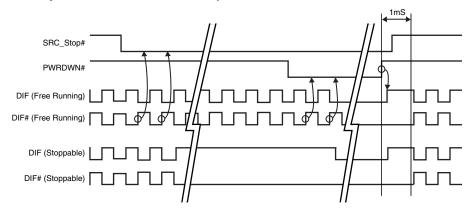
The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

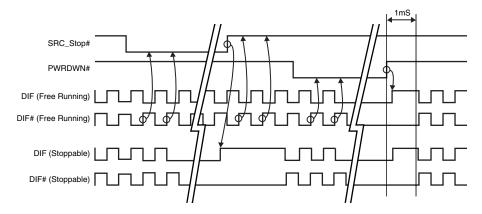

SRC STOP# - Assertion

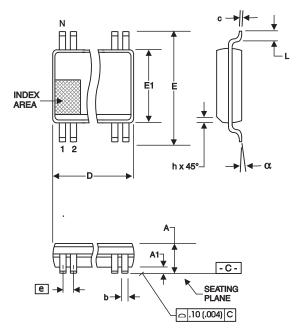
Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xl_{REF} DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.


SRC_STOP# - De-assertion (transition from '0' to '1')

All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.


SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)


SRC_STOP_2 (SRC_Stop =Tristate, PD = Driven)



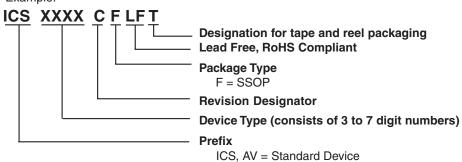
SRC_STOP_3 (**SRC_Stop** = **Driven**, **PD** = **Tristate**)

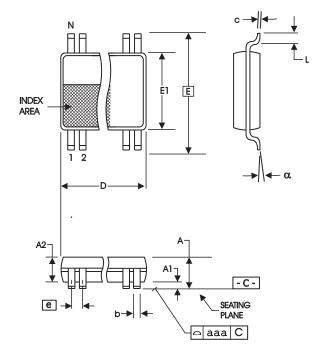
SRC_STOP_4 (SRC_Stop = Tristate, PD = Tristate)

	In Millir	meters	In Ir	nches	
SYMBOL	COMMON D	IMENSIONS	COMMON [DIMENSIONS	
	MIN	MAX	MIN	MAX	
Α	2.41	2.80	.095	.110	
A1	0.20	0.40	.008	.016	
b	0.20	0.34	.008	.0135	
С	0.13	0.25	.005	.010	
D	SEE VAR	IATIONS	SEE VARIATIONS		
E	10.03	10.68	.395	.420	
E1	7.40	7.60	.291	.299	
е	0.635 I	BASIC	0.025	BASIC	
h	0.38	0.64	.015	.025	
Ĺ	0.50	1.02	.020	.040	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
48	15.75	16.00	.620	.630


Reference Doc.: JEDEC Publication 95, MO-118


10-0034

Ordering Information

ICS9DB801CFLFT

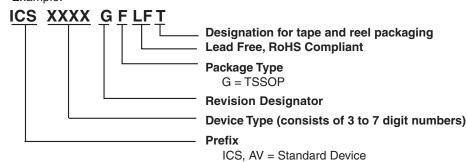
Example:

48-Lead, 6.10 mm. Body, 0.50 mm. Pitch TSSOP (240 mil) (20 mil)

SYMBOL	In Millimeters		In Inches		
	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS		SEE VARIATIONS		
E	8.10 BASIC		0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 BASIC		0.020 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VARIATIONS		
а	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

NI	D mm.		D (inch)	
IN	MIN	MAX	MIN	MAX
48	12.40	12.60	.488	.496


Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

ICS9DB801CGLFT

Example:

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

