Step-Up DC/DC Converter / Controller

FEATURES

- Operating Input Voltage Range: $0.9 \mathrm{~V} \sim 10.0 \mathrm{~V}$
- Output Voltage Range: 1.5V~7.0V with (0.1V increments, accuracy $\pm 2.5 \%$)
- Maximum Oscillation Frequency: 100 kHz (180kHz for the IXD2111)
- Built-in Switching NMOSFET (A/C/E type) or External Transistor (B/D/F type)
- Low Operating Supply Current: $2.0 \mu \mathrm{~A}$
- Small Package: SOT-23 \& SOT89 (for IXD2111 series),SOT-25, USP-6C 8 -pin $2 \times 3 \times 0.8 \mathrm{~mm}$ TDFN package

APPLICATION

- Mobile phones
- Cameras, VCRs
- Various portable equipment

DESCRIPTION

The IXD2110/IXD2111 series is a group of PFM stepup DC/DC converter/controller ICs, designed to generate low supply voltage. The series is ideal for applications where a longer battery life is needed such as in portable communication equipment. With a built-in $2.5 \Omega \mathrm{~N}$-channel driver transistor, the IXD2110A/C/E and IXD2111A/C/E types provide a

TYPICAL APPLICATION CIRCUIT

step-up operation by using only an inductor, a capacitor, and a diode connected externally.
The IXD2110/111B, D, and F versions can be used with an external transistor for applications requiring larger currents.
Output voltage is internally programmed in a range from 1.5 V to 7.0 V in increments of 0.1 V (accuracy $\pm 2.5 \%$).
Maximum oscillation frequency is set to 100 kHz for IXD2110/111 series. (At light loads, it is set to 180 kHz for the IXD2111 series.)
Options include products equipped with a CE pin (C and D versions) that allows the IC to be shut down, thereby reducing supply current, and with separated $V_{D D} / V_{\text {out }}$ pins (E and F versions) to separate the power supply block and the output voltage detect block.
With the IXD2110 series, maximum duty cycle is set to $75 \%\left(\mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}\right.$) making it suitable for use with large current operations. The IXD2111 series automatically switches duty ratio between 56% \& $75 \%\left(\mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}\right)$ to drop output ripple voltage, when it senses changes in load, It can support both large and small currents.
The external transistor types (B/D/F types) designed for applications, which require larger currents.

TYPICAL PERFORMANCE CHARACTERISTIC

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNITS
$\mathrm{V}_{\text {Out }}$ Voltage		$\mathrm{V}_{\text {OUT }}$	-0.3 ~ 12.0	V
Lx Pin Voltage		$\mathrm{V}_{\text {Lx }}$	$-0.3 \sim 12.0$	V
Lx Pin Current		$\mathrm{I}_{\text {Lx }}$	400	mA
EXT Pin Voltage		$\mathrm{V}_{\text {EXT }}$	$\mathrm{V}_{\text {SS }}-0.3 \sim \mathrm{~V}_{\text {OUT }}+0.3$	V
EXT Pin Current		$\mathrm{I}_{\text {EXT }}$	100	mA
CE Input Voltage		$V_{C E}$	$-0.3 \sim 12.0$	V
VDD Input Voltage		$V_{\text {DD }}$	$-0.3 \sim 12.0$	V
Power Dissipation	SOT-23, 25	$P_{\text {D }}$	250	mW
	SOT-89		500	
	USP-6C		100	
Operating Temperature Range		TopR	$-40 \sim+85$	${ }^{0} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {STG }}$	$-55 \sim+125$	${ }^{0} \mathrm{C}$

ELECTRICAL OPERATING CHARACTERISTICS

IXD2111Axx1MR

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	CIRCUIT
Output Voltage	$\mathrm{V}_{\text {OUT }}$	Connected to external components	$\times 0.975$	$\mathrm{V}_{\text {OUT }}$	$\times 1.025$	V	(1)
Output Voltage Temperature Characteristics	$\frac{\Delta \text { Vout }}{\text { Vout } * \Delta \text { Topr }}$	Connected to external components $-40^{\circ} \mathrm{C} \leq$ Topr $\leq 85{ }^{\circ} \mathrm{C}$		± 100		$\mathrm{ppm} /{ }^{0} \mathrm{C}$	(1)
Maximum Input Voltage	$\mathrm{V}_{\text {IN }}$		10	-	-	V	(1)
Operating Start Voltage	$\mathrm{V}_{\text {ST1 }}$	$\mathrm{l}_{\text {OUT }}=1 \mathrm{~mA},$ Connected to external components	-	0.8	0.9	V	(1)
Oscillation Start Voltage	$\mathrm{V}_{\text {ST2 }}$	Applied 0.8 V to $\mathrm{V}_{\text {Out }}$, Vpull $=1.0 \mathrm{~V}$	-	-	0.8	V	(2)
Operating Hold Voltage	$\mathrm{V}_{\text {HLD }}$	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA} \text {, }$ Connected to external components	0.7	-	-	V	(1)
Input Current at No Load	I_{IN}	$\mathrm{l}_{\text {Out }}=0 \mathrm{~mA}{ }^{*} 1{ }^{\text {a }}$	-	E1-1()	E1-2()	$\mu \mathrm{A}$	(1)
Supply Current 1 (*2)	$\mathrm{l}_{\mathrm{DD} 1}$	Applied (output voltage $\times 0.95$) to $\mathrm{V}_{\text {OUT }}$	-	E2-1(${ }^{*}$)	E2-2()	$\mu \mathrm{A}$	(2)
Supply Current 2	$\mathrm{I}_{\mathrm{DD} 2}$	Applied (output voltage +0.5) to $\mathrm{V}_{\text {OUT }}$	-	E3-1()	E3-2()	$\mu \mathrm{A}$	(2)
Lx Switch ON Resistance	$\mathrm{R}_{\text {SWON }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{Lx}}=0.4 \mathrm{~V}$ (*3)	-	E4-1()	E4-2()	Ω	(2)
Lx Leak Current	$\mathrm{I}_{\text {LxL }}$	Same as $\mathrm{I}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{Lx}}=7 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$	(2)
Duty Ratio	DTY	Same as $\mathrm{I}_{\mathrm{DD1} 1}$, measure Lx waveform	E7-1()	E7-2()	E7-3()	\%	(2)
Duty Ratio 2	DTY2	Iout $=1 \mathrm{~mA}$, measure Lx ON time. Connect to external components	48	56	64	\%	(1)
Maximum Oscillation Frequency	$\mathrm{MAXf}_{\text {osc }}$	Same as $\mathrm{IDD1}$	85	100	115	kHz	(2)
Maximum Oscillation Frequency 2	MAXfosc2	Same as $\mathrm{I}_{\text {DD1 }}$	153	180	207	kHz	(2)
Lx Limit Voltage (*)	$\mathrm{V}_{\text {LxLMt }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{Lx}}$ when max oscillation frequency is more than double	0.7	-	1.1	V	(2)
Efficiency (${ }^{*}$)	EFFI	Connect to external components	-	E8()	-	\%	(1)

Test condition: Unless otherwise specified, $\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\text {OUT }} \times 0.6$, $\mathrm{l}_{\text {OUT }} \leq \mathrm{C} 1$ (*), Vpull $=5.0 \mathrm{~V}$
NOTE:
*1: XBS104S14R-G is used, reverse current $I_{R}<1 \mu \mathrm{~A}$ (when reverse voltage $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ is applied), in case of using selected parts.
*2: Supply Current 1 is the value when the IC is constantly switching. In actual operation, the oscillator periodically switches, resulting in lower power consumption. Please refer to Input Current $\left(l_{\text {IN }}\right)$ under no load condition for the actual current, which is supplied from the input power supply (V_{IN}).
*3: Lx switch ON resistance can be calculated by $\left(\mathrm{V}_{\mathrm{Lx}} \times \mathrm{Rp}\right) /\left(\mathrm{Vpull}-\mathrm{V}_{\mathrm{Lx}}\right)$. * Change Vpull so that V_{Lx} will become 0.4 V .
*4: The Lx limit voltage function becomes stable when $\mathrm{V}_{\text {Out }}$ is over 2.0 V .
*5: EFFI $=\{[$ output voltage] \times (output current) $\} /[$ (input voltage) \times (input current)] $\times 100$
*6: Please be aware of the absolute maximum ratings of the external components.
(*): Please refer to the charts.

ELECTRICAL OPERATING CHARACTERISTICS (Continued)

IXD2111Bxx1MR

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	CIRCUIT
Output Voltage	$\mathrm{V}_{\text {Out }}$	Connected to external components	$\times 0.975$	$V_{\text {OUt }}$	$\times 1.025$	V	©
Output Voltage Temperature Characteristics	$\frac{\Delta \text { Vout }}{\text { Vout } * \Delta \text { Topr }}$	Connected to external components $-40^{\circ} \mathrm{C} \leq \text { Topr } \leq 85^{\circ} \mathrm{C}$		± 100		ppm/ ${ }^{\circ} \mathrm{C}$	©
Maximum Input Voltage	$\mathrm{V}_{\text {IN }}$		10	-	-	V	
Operating Start Voltage	$\mathrm{V}_{\text {ST1 }}$	$\text { lout }=1 \mathrm{~mA} \text {, }$ Connected to external components	-	0.8	0.9	V	©
Oscillation Start Voltage	$V_{\text {ST2 }}$	Applied 0.8 V to $\mathrm{V}_{\text {out }}$	-	-	0.8	V	(7)
Operating Hold Voltage	$\mathrm{V}_{\text {HLD }}$	lout $=1 \mathrm{~mA}$, Connected to external components	0.7	-	-	V	©
Supply Current 1 (*1)	$\mathrm{l}_{\mathrm{DD} 1}$	Applied (output voltage $\times 0.95$) to $\mathrm{V}_{\text {OUt }}$	-	E2-1()	E2-2()	$\mu \mathrm{A}$	(2)
Supply Current 2	$\mathrm{l}_{\mathrm{DD} 2}$	Applied (output voltage +0.5) to $\mathrm{V}_{\text {out }}$	-	E3-1()	E3-2()	$\mu \mathrm{A}$	(2)
EXT "H" ON Resistance	$\mathrm{R}_{\text {EXTH }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\text {EXT }}=$ VOUT -0.4 V ($\left.{ }^{*} 2\right)$	-	E5-1()	E5-2()	Ω	(2)
EXT "L" ON Resistance	$\mathrm{R}_{\text {ExTL }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\text {EXT }}=0.4 \mathrm{~V}$ (*3)		E6-1()	E6-2()	Ω	(2)
Duty Ratio	DTY	Same as $\mathrm{I}_{\mathrm{DD} 1}$, measure Lx waveform	E7-1()	E7-2()	E7-3()	\%	(7)
Duty Ratio 2	DTY2	$l_{\text {out }}=1 \mathrm{~mA}$, measure Lx ON time. Connect to external components	48	56	64	\%	©
Maximum Oscillation Frequency	MAXfosc	Same as IDD1	85	100	115	kHz	(7)
Maximum Oscillation Frequency 2	MAXfosc2	Same as $\mathrm{l}_{\text {D } 1}$	153	180	207	kHz	(2)
Lx Limit Voltage (4)	$\mathrm{V}_{\text {LxLMT }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{Lx}}$ when max oscillation frequency is more than double	0.7	-	1.1	V	(2)
Efficiency (*5)	EFFI	Connect to external components	-	E9()	-	\%	©

Test condition: Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {OUT }} \times 0.6$, $\mathrm{I}_{\text {OUT }} \leq \mathrm{C} 1$ (${ }^{*}$)
NOTE:
*1: Supply Current 1 is the value when the IC is constantly switching. In actual operation, the oscillator periodically switches, resulting in lower power consumption.
*2: EXT 'H' ON resistance can be calculated by ($0.4 \times \mathrm{Rp}$) / (VEXT - Vpull). * Change Vpull so that $\mathrm{V}_{\text {EXT }}$ will become Vout - 0.4 V .
*3: EXT 'L' ON resistance can be calculated by ($\mathrm{V}_{\mathrm{EXT}} \times \mathrm{Rp}$) / (Vpull - $\mathrm{V}_{\text {EXT }}$). * Change Vpull so that $\mathrm{V}_{\text {EXT }}$ will become 0.4 V .
*4: EFFI $=\{$ [output voltage] \times (output current) $\}$ /[(input voltage) \times (input current)] $\times 100$
${ }^{*} 5$: Please be aware of the absolute maximum ratings of the external components.
$\left(^{*}\right):$ Please refer to the charts.

ELECTRICAL OPERATING CHARACTERISTICS (Continued)

IXD2110Cxx1MR, IXD2111Cxx1MR $\quad \mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	CIRCUIT
Output Voltage	$V_{\text {Out }}$	Connected to external components	$\times 0.975$	Vout	x 1.025	V	(1)
Output Voltage Temperature Characteristics	$\frac{\Delta \text { Vout }}{\text { Vout } * \Delta \text { Topr }}$	Connected to external components $-40^{\circ} \mathrm{C} \leq \text { Topr } \leq 85^{\circ} \mathrm{C}$		± 100		ppm $/{ }^{\circ} \mathrm{C}$	(1)
Maximum Input Voltage	$\mathrm{V}_{\text {IN }}$		10	-	-	V	(1)
Operating Start Voltage	$\mathrm{V}_{\text {ST1 }}$	$\text { lout }=1 \mathrm{~mA},$ Connected to external components	-	0.8	0.9	V	(1)
Oscillation Start Voltage	$V_{\text {ST2 }}$	Applied 0.8 V to $\mathrm{V}_{\text {out }}$, Vpull $=1.0 \mathrm{~V}$	-	-	0.8	V	(2)
Operating Hold Voltage	$\mathrm{V}_{\text {HLD }}$	lout $=1 \mathrm{~mA}$, Connected to external components	0.7	-	-	V	(1)
Input Current at No Load	1 N	lout $=0 \mathrm{~mA} \mathrm{(1)}$	-	E1-1()	E1-2()	$\mu \mathrm{A}$	(1)
Supply Current 1 (*2)	$\mathrm{l}_{\mathrm{DD} 1}$	Applied (output voltage $\times 0.95$) to $\mathrm{V}_{\text {Out }}$	-	E2-1()	E2-2()	$\mu \mathrm{A}$	(2)
Supply Current 2	$\mathrm{I}_{\mathrm{DD} 2}$	Applied (output voltage +0.5) to $\mathrm{V}_{\text {OUt }}$	-	E3-1()	E3-2()	$\mu \mathrm{A}$	(2)
Lx Switch ON Resistance	$\mathrm{R}_{\text {swon }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{LX}}=0.4 \mathrm{~V}$ (3)	-	E4-1()	E4-2()	Ω	(2)
Lx Leak Current	I LxL	Same as $\mathrm{I}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{Lx}}=7 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$	(2)
Duty Ratio	DTY	Same as $\mathrm{I}_{\mathrm{DD1}}$, measure Lx waveform	E7-1()	E7-2()	E7-3()	\%	(2)
Duty Ratio 2	DTY2	lout $=1 \mathrm{~mA}$, measure Lx ON time. Connect to external components	48	56	64	\%	(1)
Maximum Oscillation Frequency	MAXfosc	Same as IDD1	85	100	115	kHz	(2)
Maximum Oscillation Frequency 2	MAXfosc2	Same as $\mathrm{I}_{\text {D } 1}$	153	180	207	kHz	(2)
Lx Limit Voltage (*)	$\mathrm{V}_{\text {LxLmt }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{Lx}}$ when max oscillation frequency is more than double	0.7	${ }^{-}$	1.1	V	(2)
Efficiency (*5)	EFFI	Connect to external components	-	E8()	-	\%	(1)
Standby Current	$\mathrm{I}_{\text {stв }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			0.50	$\mu \mathrm{A}$	(4)
CE "High" Voltage	$\mathrm{V}_{\text {CEH }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}$, determine Lx oscillation	0.75			V	(4)
CE "Low" Voltage	$\mathrm{V}_{\text {CEL }}$	Same as $\mathrm{IDD1}$, determine Lx shutdown			0.20	V	(4)
CE "High" Current	$\mathrm{I}_{\text {CEH }}$	Same as $\mathrm{IDD1}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {OUT }} \times 0.95$			0.25	$\mu \mathrm{A}$	(5)
CE "Low" Current	$\mathrm{I}_{\text {cel }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			-0.25	$\mu \mathrm{A}$	(5)

Test condition: Unless otherwise specified, connect CE to $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }} \times 0.6, \mathrm{I}_{\text {OUT }} \leq \mathrm{C} 1$ (*), $\mathrm{Vpull}=5.0 \mathrm{~V}$

NOTE:

*1: XBS104S14R-G is used, reverse current $I_{R}<1 \mu A$ (when reverse voltage $V_{R}=10 \mathrm{~V}$ is applied), in case of using selected parts.
*2: Supply Current 1 is the value when the IC is constantly switching. In actual operation, the oscillator periodically switches, resulting in lower power consumption. Please refer to Input Current (l|l| under no load condition for the actual current, which is supplied from the input power supply ($\mathrm{V}_{\text {II }}$).
*3: Lx switch ON resistance can be calculated by ($\mathrm{V}_{\mathrm{Lx}} \times \mathrm{Rp}$) / (Vpull - VLx). * Change Vpull so that V_{Lx} will become 0.4 V .
*4: The Lx. limit voltage function becomes stable when Vout of the IXD2110/111 series is over 2.0 V.
${ }^{*} 5$: EFFI $=\{[$ output voltage $\times($ output current $)\} /[$ (input voltage $) \times($ input current $)] \times 100$
*6: Please be aware of the absolute maximum ratings of the external components.
$\left(^{*}\right):$ Please refer to the charts.

ELECTRICAL OPERATING CHARACTERISTICS (Continued)

IXD2110Dxx1MR, IXD2111Dxx1MR
 $\mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	CIRCUIT
Output Voltage	$\mathrm{V}_{\text {Out }}$	Connected to external components	$\times 0.975$	$\mathrm{V}_{\text {Out }}$	$\times 1.025$	V	©
Output Voltage Temperature Characteristics	$\frac{\Delta \text { Vout }}{\text { Vout } * \Delta \text { Topr }}$	Connected to external components $-40^{\circ} \mathrm{C} \leq \mathrm{Topr} \leq 85^{\circ} \mathrm{C}$		± 100		ppm/ ${ }^{\circ} \mathrm{C}$	©
Maximum Input Voltage	$\mathrm{V}_{\text {IN }}$		10	-	-	V	
Operating Start Voltage	$V_{\text {ST1 }}$	lout $=1 \mathrm{~mA}$, Connected to external components	-	0.8	0.9	V	©
Oscillation Start Voltage	$\mathrm{V}_{\text {ST } 2}$	Applied 0.8 V to $\mathrm{V}_{\text {out }}$	-	-	0.8	V	(8)
Operating Hold Voltage	$\mathrm{V}_{\text {HLD }}$	lout $=1 \mathrm{~mA}$, Connected to external components	0.7	-	-	V	©
Supply Current 1 (*1)	$\mathrm{I}_{\mathrm{DD} 1}$	Applied (output voltage $\times 0.95$) to $\mathrm{V}_{\text {OUt }}$	-	E2-1()	E2-2()	$\mu \mathrm{A}$	(8)
Supply Current 2	$\mathrm{I}_{\mathrm{DD} 2}$	Applied (output voltage +0.5) to $\mathrm{V}_{\text {Out }}$	-	E3-1()	E3-2()	$\mu \mathrm{A}$	(2)
EXT "H" ON Resistance	$\mathrm{R}_{\text {ExTH }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{EXT}}=$ VOUT - 0.4 V (${ }^{\text {(2) }}$	-	E5-1()	E5-2()	Ω	(2)
EXT "L" ON Resistance	$\mathrm{R}_{\text {EXTL }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{EXT}}=0.4 \mathrm{~V}$ (*3)	-	E6-1()	E6-2()	Ω	(2)
Duty Ratio	DTY	Same as $\mathrm{I}_{\mathrm{DD} 1}$, measure Lx waveform	E7-1()	E7-2()	E7-3()	\%	(7)
Duty Ratio 2	DTY2	$I_{\text {out }}=1 \mathrm{~mA}$, measure Lx ON time. Connect to external components	48	56	64	\%	©
Maximum Oscillation Frequency	MAXfosc	Same as $\mathrm{I}_{\mathrm{DD} 1}$	85	100	115	kHz	(8)
Maximum Oscillation Frequency 2	MAXfosc2	Same as $\mathrm{I}_{\mathrm{DD} 1}$	153	180	207	kHz	(7)
Efficiency (*)	EFFI	Connect to external components	-	E9()	-	\%	©
Standby Current	$\mathrm{I}_{\text {STB }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}$			0.50	$\mu \mathrm{A}$	(5)
CE "High" Voltage	$\mathrm{V}_{\text {CEH }}$	Same as $\mathrm{I}_{\mathrm{DD1}}$, determine Lx oscillation	0.75			V	(8)
CE "Low" Voltage	$\mathrm{V}_{\text {CEL }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}$, determine Lx shutdown			0.20	V	(8)
CE "High" Current	$\mathrm{I}_{\text {ceh }}$	Same as $\mathrm{I}_{\text {DD } 1}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {OUT }} \times 0.95$			0.25	$\mu \mathrm{A}$	(5)
CE "Low" Current	$\mathrm{I}_{\text {ceL }}$	Same as $\mathrm{I}_{\mathrm{DD1}}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}$			-0.25	$\mu \mathrm{A}$	(5)

Test condition: Unless otherwise specified, connect CE to $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\mathrm{IN}_{\mathrm{N}}}=\mathrm{V}_{\text {OUT }} \times 0.6$, lout $^{\leq C 1}$ (${ }^{*}$)
NOTE:
*1: "Supply Current 1" is the value when the IC is constantly switching. In actual operation, the oscillator periodically switches, resulting in lower power consumption.
*2: EXT "H" ON resistance can be calculated by ($0.4 \times \mathrm{Rp}$) / ($\left.\mathrm{V}_{\text {EXT }}-\mathrm{Vpull}\right)$. * Change Vpull so that $\mathrm{V}_{\text {EXT }}$ will become $\mathrm{V}_{\text {out }}-0.4 \mathrm{~V}$.
*3: EXT "L" ON resistance can be calculated by ($\mathrm{V}_{\mathrm{EXT}} \times \mathrm{Rp}$) / (Vpull - $\left.\mathrm{V}_{\text {EXT }}\right)$. * Change Vpull so that $\mathrm{V}_{\text {EXT }}$ will become 0.4 V .
*4: EFFI $=\{[$ output voltage $\times($ output current $)\} /[$ (input voltage $) \times($ input current $)] \times 100$
*5: Please be aware of the absolute maximum ratings of the external components.
$\left(^{*}\right)$: Please refer to the charts.

ELECTRICAL OPERATING CHARACTERISTICS (Continued)

IXD2110Exx1MR, IXD2111Exx1MR $\quad \mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	CIRCUIT
Output Voltage	$\mathrm{V}_{\text {OUT }}$	Connected to external components	$\times 0.975$	$\mathrm{V}_{\text {OUT }}$	$\times 1.025$	V	(1)
Output Voltage Temperature Characteristics	$\frac{\Delta \text { Vout }}{\text { Vout } * \Delta \text { Topr }}$	Connected to external components $-40^{\circ} \mathrm{C} \leq \mathrm{Topr} \leq 85^{\circ} \mathrm{C}$		± 100		ppm/ ${ }^{\circ} \mathrm{C}$	(1)
Maximum Input Voltage	$\mathrm{V}_{\text {IN }}$		10	-	-	V	(1)
Operating Start Voltage	$\mathrm{V}_{\text {ST1 }}$	$\mathrm{I}_{\text {Out }}=1 \mathrm{~mA} \text {, }$ Connected to external components	-	0.8	0.9	V	(1)
Oscillation Start Voltage	$\mathrm{V}_{\text {ST2 }}$	Applied 0.8 V to $\mathrm{V}_{\text {Out }}$, Vpull $=1.0 \mathrm{~V}$	-	-	0.8	V	(2)
Operating Hold Voltage	$\mathrm{V}_{\text {HLD }}$	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA},$ Connected to external components	0.7	-	-	V	(1)
Input Current at No Load	I_{N}	l $\mathrm{OUT}=0 \mathrm{~mA}{ }^{*} 1{ }^{\text {a }}$	-	E1-1()	E1-2()	$\mu \mathrm{A}$	(1)
Supply Current 1 (*2)	$\mathrm{I}_{\mathrm{DD} 1}$	Applied (output voltage $\times 0.95$) to $\mathrm{V}_{\text {OUT }}$	-	E2-1(${ }^{*}$)	E2-2()	$\mu \mathrm{A}$	(2)
Supply Current 2	$\mathrm{I}_{\mathrm{DD} 2}$	Applied (output voltage +0.5) to $\mathrm{V}_{\text {OUT }}$	-	E3-1()	E3-2()	$\mu \mathrm{A}$	(2)
Lx Switch ON Resistance	$\mathrm{R}_{\text {SWON }}$	Same as $I_{\text {DD } 1}, V_{L x}=0.4 \mathrm{~V}$ (3)	-	E4-1(${ }^{*}$)	E4-2()	Ω	(2)
Lx Leak Current	$\mathrm{I}_{\text {LxL }}$	Same as $\mathrm{I}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{Lx}}=7 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$	(3)
Duty Ratio	DTY	Same as $\mathrm{I}_{\mathrm{DD1} 1}$, measure Lx waveform	E7-1()	E7-2()	E7-3()	\%	(2)
Duty Ratio 2	DTY2	Iout $=1 \mathrm{~mA}$, measure Lx ON time. Connect to external components	48	56	64	\%	(1)
Maximum Oscillation Frequency	$\mathrm{MAXf}_{\text {osc }}$	Same as $\mathrm{IDD1}^{\text {d }}$	85	100	115	kHz	(2)
Maximum Oscillation Frequency 2	MAXfosc2	Same as $\mathrm{I}_{\text {D } 1}$	153	180	207	kHz	(2)
Lx Limit Voltage (*)	$\mathrm{V}_{\text {LxLM }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{Lx}}$ when max oscillation frequency is more than double	0.7	-	1.1	V	(2)
Efficiency (${ }^{*}$)	EFFI	Connect to external components	-	E8()	-	\%	(1)

Test condition: Unless otherwise specified, connect $\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\text {OUT }} \times 0.6$, $\mathrm{I}_{\text {OUT }} \leq \mathrm{C} 1$ ($\left.^{*}\right)$, V pull $=5.0 \mathrm{~V}$
NOTE:
*1: XBS104S14R-G is used; reverse current $I_{R}<1 \mu \mathrm{~A}$ (when reverse voltage $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$ is applied), in case of using selected parts.
*2: "Supply Current 1 " is the value when the IC is constantly switching. In actual operation, the oscillator periodically switches, resulting in lower power consumption. Please refer to Input Current (l) under no load condition for the actual current, which is supplied from the input power supply (V_{IN}).
*3: Lx switch ON resistance can be calculated by ($\mathrm{V}_{\mathrm{Lx}} \times \mathrm{Rp}$) / (Vpull - V_{Lx}). * Change Vpull so that V_{Lx} will become 0.4 V .
*4: The Lx limit voltage function becomes stable when $\mathrm{V}_{\text {out }}$ of the IXD2110/111 series is over 2.0 V .
*5: EFFI $=\{[$ output voltage $\times($ output current $)\} /[$ (input voltage) $\times($ input current $)] \times 100$
*6: When using V_{DD} and $\mathrm{V}_{\text {OUt }}$ separately, please, set the voltage range of V_{DD} from 1.5 V to 10 V . The IC operates from $\mathrm{V}_{\mathrm{DD}}=0.8 \mathrm{~V}$, but output voltage and oscillation frequency will be stable when $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ or more.
*7: Please be aware of the absolute maximum ratings of the external components.
${ }^{*}$): Please refer to the charts.

ELECTRICAL OPERATING CHARACTERISTICS (Continued)

IXD2110Fxx1MR, IXD2111Fxx1MR $\quad \mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	CIRCUIT
Output Voltage	$V_{\text {Out }}$	Connected to external components	$\times 0.975$	$V_{\text {Out }}$	$\times 1.025$	V	©
Output Voltage Temperature Characteristics	$\frac{\Delta \text { Vout }}{\text { Vout } * \Delta \text { Topr }}$	Connected to external components $-40^{\circ} \mathrm{C} \leq \mathrm{Topr} \leq 85^{\circ} \mathrm{C}$		± 100		ppm/ $/{ }^{\circ} \mathrm{C}$	©
Maximum Input Voltage	$\mathrm{V}_{\text {IN }}$		10	-	-	V	
Operating Start Voltage	$\mathrm{V}_{\text {ST1 }}$	lout $=1 \mathrm{~mA}$, Connected to external components	-	0.8	0.9	V	©
Oscillation Start Voltage	$\mathrm{V}_{\text {ST2 }}$	Applied 0.8 V to $\mathrm{V}_{\text {out }}$	-	-	0.8	V	(7)
Operating Hold Voltage	$\mathrm{V}_{\text {HLD }}$	lout $=1 \mathrm{~mA}$, Connected to external components	0.7	-	-	V	©
Supply Current 1 (*1)	$\mathrm{I}_{\mathrm{DD} 1}$	Applied (output voltage $\times 0.95$) to $\mathrm{V}_{\text {OUT }}$	-	E2-1()	E2-2()	$\mu \mathrm{A}$	(7)
Supply Current 2	$\mathrm{I}_{\mathrm{DD} 2}$	Applied (output voltage +0.5) to $\mathrm{V}_{\text {Out }}$	-	E3-1()	E3-2()	$\mu \mathrm{A}$	(7)
EXT "H" ON Resistance	$\mathrm{R}_{\text {EXTH }}$	Same as $\mathrm{I}_{\mathrm{DD} 1}, \mathrm{~V}_{\text {EXT }}=$ VOUT - 0.4 V (${ }^{\text {(2) }}$	-	E5-1()	E5-2()	Ω	(2)
EXT "L" ON Resistance	$\mathrm{R}_{\mathrm{EXTL}}$	Same as $\mathrm{I}_{\mathrm{DL} 1}, \mathrm{~V}_{\mathrm{EXT}}=0.4 \mathrm{~V}$ (*3)	-	E6-1()	E6-2()	Ω	(2)
Duty Ratio	DTY	Same as $\mathrm{I}_{\mathrm{DD} 1}$, measure Lx waveform	E7-1()	E7-2()	E7-3()	\%	(2)
Duty Ratio 2	DTY2	$\mathrm{I}_{\text {out }}=1 \mathrm{~mA}$, measure Lx ON time. Connect to external components	48	56	64	\%	©
Maximum Oscillation Frequency	MAXfosc	Same as IDD1	85	100	115	kHz	(2)
Maximum Oscillation Frequency 2	MAXfosc2	Same as $\mathrm{ldD}_{\text {d }}$	153	180	207	kHz	(7)
Efficiency (4)	EFFI	Connect to external components	-	E9()	-	\%	©

Test condition: Unless otherwise specified, connect $\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }} \times 0.6, \mathrm{I}_{\text {OUT }} \leq \mathrm{C} 1$ ($\left.{ }^{*}\right)$
NOTE:
*1: "Supply Current 1" is the value when the IC is constantly switching. In actual operation, the oscillator periodically switches, resulting in lower power consumption.
*2: EXT "H" ON resistance can be calculated by ($0.4 \times \mathrm{Rp}$) / ($\left.\mathrm{V}_{\text {EXT }}-\mathrm{Vpull}\right)$. * Change Vpull so that $\mathrm{V}_{\text {EXT }}$ will become $\mathrm{V}_{\text {out }}-0.4 \mathrm{~V}$.
*3: EXT "L" ON resistance can be calculated by ($\mathrm{V}_{\mathrm{EXT}} \times \mathrm{Rp}$) / (Vpull - $\mathrm{V}_{\mathrm{EXT}}$). * Change Vpull so that $\mathrm{V}_{\mathrm{EXT}}$ will become 0.4 V .
*4: EFFI $=\{[$ output voltage] $\times($ output current $)\} /[$ (input voltage) $\times($ input current $)] \times 100$
*5: When using V_{DD} and $\mathrm{V}_{\text {Out }}$ separately, please, set the voltage range of V_{DD} from 1.5 V to 10 V . The IC operates from $\mathrm{V}_{\mathrm{DD}}=0.8 \mathrm{~V}$, but output voltage and oscillation frequency will be stable when $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ or more.
*6: Please be aware of the absolute maximum ratings of the external components.
$\left(^{*}\right)$: Please refer to the charts.

ELECTRICAL OPERATING CHARACTERISTICS (Continued)

Idd2, Rexth, Rextl, DTY CHART

SYMBOL	E2-1	E2-2	E1-1	E1-2	E3-1	E3-2	E4-1	E4-2	E5-1	E5-2	E6-1	E6-2
PARAMETER	Supply Current 1		Input Current (No Load)		Supply Current 2		Lx Switch ON Resistance		EXT H ON Resistance		EXT L ON Resistance	
UNIT	$(\mu \mathrm{A})$		($\mu \mathrm{A}$)		$(\mu \mathrm{A})$		(Ω)		(Ω)		(Ω)	
SETTING	$\mathrm{I}_{\mathrm{DD} 1}$		IIN		$\mathrm{I}_{\mathrm{DD} 2}$		$\mathrm{R}_{\text {swon }}$		$\mathrm{R}_{\text {Exth }}$		$\mathrm{R}_{\text {ExtL }}$	
VOLTAGE	TYP.	MAX.										
1.5	7.7	15.1	4.3	8.6	1.9	3.5	4.2	6.3	160	240	67	101
1.6	8.0	15.6										
1.7	8.3	16.2										
1.8	8.6	16.8										
1.9	8.9	17.5					3.5	5.3	108	162	52	78
2.0	9.3	18.2				3.9						
2.1	9.7	18.9	4.4	8.8	2.0	4.0	3.2	4.8	91	137	45	68
2.2	10.1	19.7										
2.3	10.5	20.6										
2.4	11.0	21.5	4.5	9.1		4.1						
2.5	11.5	22.5										
2.6	12.0	23.5					2.8	4.2	70	105	38	57
2.7	12.5	24.5			2.1	4.2						
2.8	13.1	25.6	4.6	93								
2.9	13.7	26.8	4.6	9.3								
3.0	14.3	28.0										
3.1	15.0	29.3		9.5		4.3						
3.2	15.7	30.6	4.7				2.5	3.8	59	89	33	50
3.3	16.4	31.9										
3.4	17.1	33.3			2.2	4.4						
3.5	17.8	34.8	4.8	9.7								
3.6	18.6	36.3										
3.7	19.4	37.9										
3.8	20.3	39.5	5.0	10.0		5						
3.9	21.1	41.1	5.0	10.0		5						
4.0	22.0	42.8										
4.1	22.9	44.5			2.3							
4.2	23.8	46.3	5.1	10.2		4.6						
4.3	24.8	48.2										
4.4	25.7	50.0	5.2	10.4		4.7						
4.5	26.7	52.0										
4.6	27.7	53.9										
4.7	28.8	56.0	5.3	10.6	2.4	4.8						
4.8	29.8	58.0										
4.9	30.9	60.1										
5.0	31.7	63.4										
5.1	32.3	64.7	5.4	10.8		4.9						
5.2	32.9	65.9										
5.3	33.5	67.1					2.1	3.2	40	60	24	36
5.4	34.1	68.3	5.5	11.1	2.5	5.0						
5.5	34.7	69.5										
5.6	35.3	70.7										
5.7	36.0	72.0										
5.8	36.5	73.1	5.6	11.3		5.1						
5.9	37.1	74.3	5.6	11.3		5.1						
6.0	37.7	75.5										
6.1	38.4	76.8			2.6	5.2						
6.2	38.9	77.9	5.7	11.5								
6.3	39.5	79.1										
6.4	40.2	80.4		11.7		5.3						
6.5	40.8	81.6	5.8									
6.6	41.3	82.7										
6.7	42.0	84.0	6.0	12.0	2.7	5.4						
6.8	42.6	85.2										
6.9	43.2	86.4										
7.0	43.7	87.5										

ELECTRICAL OPERATING CHARACTERISTICS (Continued)

lout, DTY, EFFI CHART

PIN CONFIGURATION

PIN ASSIGNMENT

IXD2111A/B

PIN NUMBER				PIN NAME	
SOT-23		SOT-89			FUNCTIONS
A	B	A	B		
1	1	1	1	$\mathrm{V}_{\text {SS }}$	Ground
3	3	2	2	$\mathrm{V}_{\text {OUT }}$	Output Voltage Monitor, Internal Power Supply Input
2	-	3	-	Lx	Switch
-	2	-	3	EXT	External Switching transistor drive, Connect to the gate of N -channel transistor

IXD2110//111C/D/E/F

PIN NUMBER								PIN NAME	
SOT-25				USP-6C					FUNCTIONS
C	D	E	F	C	D	E	F		
-	-	2	2	-	-	1	1	$V_{D D}$	Internal Power Supply Input
4	4	4	4	6	6	6	6	$\mathrm{V}_{\text {SS }}$	Ground
-	5	-	5	-	4	-	4	EXT	External Switching transistor drive, Connect to the gate of N -channel transistor
5	-	5	-	4	-	4	-	LX	Switch
1	1	-	-	3	3	-	-	CE	Chip Enable, Connect to the $\mathrm{V}_{\text {Out }}$ pin when Active and the $\mathrm{V}_{\text {SS }}$ in standby mode
2	2	1	1	1	1	3	3	$\mathrm{V}_{\text {OUT }}$	Output Voltage Monitor
3	3	3	3	2, 5	2, 5	2, 5	2, 5	NC	No connection

BLOCK DIAGRAMS

IXD2111A and B Series

Note:
The IXD2111 series with built-in transistor use the Lx pin and the IXD2111 series with external transistor use the EXT pin.
The duty ratio of the IXD2111 series automatically varies between 56% at oscillation frequency 180 kHz and 75% at oscillation frequency ($\mathrm{f}_{\mathrm{osc}}$) 100 kHz .
The V_{L} limit function applies to the IXD2111A types only.

* The duty ratio depends on power supply. Please refer to the electrical characteristics on duty cycle against output voltage you use.

IXD2110/111C and D series

IXD2110/111C and D series

Note:
The IXD2110/111 series with built-in transistor use the Lx pin and the IXD2110/111 series with external transistor use the EXT pin.
The IXD2110 series' duty cycle ratio is 75% at oscillation frequency (fosc) 100 kHz . The duty cycle ratio of the IXD2111 series automatically varies between 56% at frequency 180 kHz and 75% at oscillation frequency (fosc) 100 kHz .
The VLx limit function only applies to the IXD2110/111 C versions.

* The duty ratio depends on power supply. Please refer to the electrical characteristics on duty cycle against output voltage you use.

Note:
The IXD2110/111 series with built-in transistor uses the Lx pin and the IXD2110/111 series with external transistor use the EXT pin. The IXD2110 / 111 series E and F have the $V_{D D}$ pin.
The IXD2110 series' duty cycle ratio is 75% at oscillation frequency (fosc) 100 kHz . The duty ratio of the IXD2111 series automatically varies between 56% at oscillation frequency 180 kHz and 75% at oscillation frequency (fosc) 100 kHz .
The VLx limit function applies to the IXD2110/111 C versions only.

* The duty ratio depends on power supply. Please refer to the electrical characteristics on duty cycle against output voltage you use.

BASIC OPERATION

The IXD2110/111 series are PFM mode step-up DC/DC converters (A, C and E types) / controllers ICs (B, D and F types), which contain voltage reference source Vref, PFM Comparator, Duty Cycle Selector, PFM controlled Oscillator, V_{Lx} Voltage Limiter, Buffer, and MOSFET transistor.
Maximum duty cycle ratio of 75% at oscillation frequency 100 kHz for IXD2110 series makes it suitable for use with large load current.
The IXD2111 series automatically switches duty cycle ratio between 56% at oscillation frequency 180 kHz and 75% at oscillation frequency 100 kHz , when it senses changes in load, and it can support both large and small load currents.

Reference Voltage Source (Vref)

The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.

PFM Comparator

The PFM comparator compares the feedback voltage divided by the internal resistive divider with the internal reference voltage. When the feedback voltage is higher than the reference voltage, PFM controlled oscillator will be stopped. When the feedback voltage is lower than the reference voltage, the PFM controlled oscillator sends through buffer a signal to the internal or external switching transistor to keep output voltage stable.

Duty Cycle Selector

With the IXD2111 series, the duty cycle selector automatically switches duty cycle ratio between 56% and 75% when it senses changes in load to support both large and small currents.

PFM Controlled Oscillator

The PFM controlled oscillator determines maximum oscillation frequency. The circuit generates the oscillation frequency of 100 kHz at 75% duty cycle and 180 kHz at 56%.

V_{Lx} Voltage Limiter

The $V_{L x}$ circuits of the ISD110/111 A, C, and D types detect in-rush current and over-current, which flows from the $V_{\text {out }}$ pin to the Lx pin. In case of over-current, the switching transistor will be OFF. When the over-current condition removed, the IC resumes its normal operation.

Chip Enable Function

The chip enable function of the IXD2110/111 C and D types sends IC into shut down mode, when CE pin is logic low. The current consumption in shutdown mode is less than $0.5 \mu \mathrm{~A}$.

Separated $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {out }}$

Additional V_{DD} pin allows IXD2110/111 E and F types operate with $\mathrm{V}_{\text {OUT }}$ voltage higher or lover than V_{DD} voltage reguired for stable IC operations.

TYPICAL APPLICATION CIRCUITS

A type IC

$\mathrm{L}-100 \mu \mathrm{H} \quad$ (Coil, CR54, SUMIDA)
D - XBS104S14R-G (Schottky type, TOREX)
$\mathrm{C}_{\text {out }}-16 \mathrm{~V}, 47 \mu \mathrm{~F} \quad$ (Tantalum)
$\mathrm{C}_{\mathrm{IN}}-16 \mathrm{~V}, 47 \mu \mathrm{~F} \quad$ (Tantalum)

C type IC

$\mathrm{L}-100 \mu \mathrm{H} \quad$ (Coil, CR54, SUMIDA)
D - XBS104S14R-G (Schottky type, TOREX)
Cout $-16 \mathrm{~V}, 47 \mu \mathrm{~F} \quad$ (Tantalum)
$\mathrm{C}_{\mathrm{IN}}-16 \mathrm{~V}, 47 \mu \mathrm{~F} \quad$ (Tantalum)

E type IC

$\begin{array}{lc}\mathrm{L}-100 \mu \mathrm{H} & \text { (Coil, CR54, SUMIDA) } \\ \mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}-\mathrm{G} & \text { (Schottky type, TOREX) } \\ \mathrm{C}_{\text {out }}-16 \mathrm{~V}, 47 \mu \mathrm{~F} & \text { (Tantalum) } \\ \mathrm{C}_{\text {IN }}-16 \mathrm{~V}, 47 \mu \mathrm{~F} & \text { (Tantalum) }\end{array}$

B type IC

$\mathrm{L}=47 \mu \mathrm{H} \quad$ (Coil, CR54, SUMIDA)
D XBS $104 \mathrm{~S} 14 \mathrm{R}-\mathrm{G}$ (Schottky type, TOREX)
$\mathrm{C}_{\text {out }}-16 \mathrm{~V}, 47 \mu \mathrm{~F} \quad$ (Tantalum)
$\mathrm{C}_{\mathrm{IN}}-16 \mathrm{~V}, 47 \mu \mathrm{~F} \quad$ (Tantalum)
$R_{B}-500 \Omega$
$\mathrm{C}_{\mathrm{B}}-2200 \mathrm{pF}$
Q-2SD1628 (Sanyo)
D type IC

$\mathrm{L}=47 \mu \mathrm{H} \quad$ (Coil, CR54, SUMIDA)
D XBS104S14R-G (Schottky type, TOREX)
Cout $-16 \mathrm{~V}, 47 \mu \mathrm{~F}$ (Tantalum)
$\mathrm{C}_{\mathrm{IN}}-16 \mathrm{~V}, 47 \mu \mathrm{~F} \quad$ (Tantalum)
$R_{B}-500 \Omega$
$\mathrm{C}_{\mathrm{B}}-2200 \mathrm{pF}$
Q-2SD1628 (Sanyo)
F type IC

$\mathrm{L}=47 \mu \mathrm{H} \quad$ (Coil, CR54, SUMIDA)
D XBS104S14R-G (Schottky type, TOREX)
Cout $-16 \mathrm{~V}, 47 \mu \mathrm{~F} \quad$ (Tantalum)
$\mathrm{C}_{\mathrm{IN}}-16 \mathrm{~V}, 47 \mu \mathrm{~F} \quad$ (Tantalum)
$R_{B}-500 \Omega$
$\mathrm{C}_{\mathrm{B}}-2200 \mathrm{pF}$
Q-2SD1628 (Sanyo)

EXTERNAL COMPONENTS

The IXD2110/111 B/D/F type allows use of the n-channel MOSFET or n-p-n transistor as external switch. In case of a MOSFET, recommended type is XP151A13A0MR-G from TOREX.
Note:
V_{GS} breakdown voltage of this transistor is 8 V . If the power supply voltage is above 6 V use XP 151 A 12 A 2 MR -G with a V_{Gs} breakdown voltage of 12 V .
In case of n-p-n transistor, recommended type is 2SD1628 from SANYO with $R_{B} 500 \Omega$ (Adjust in accordance with load and transistors h_{FE}.), and $\mathrm{C}_{\mathrm{B}} 2200 \mathrm{pF} . \mathrm{C}_{\mathrm{B}} \leq 1 /\left(2 T T \times R_{B} \times \mathrm{F}_{\text {OSc }} \times 0.7\right)$
Recommended R_{B} values for low input voltages are show in the table below.
R_{B} value examples for $n-p-n$ transistor

$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	$\mathrm{l}_{\text {OUT }}(\mathrm{mA})$	$\mathrm{V}_{\text {IN }}(\mathrm{V})$	$\mathrm{R}_{\mathrm{B}}(\Omega)$	$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	$\mathrm{l}_{\text {OUT }}(\mathrm{mA})$	$\mathrm{V}_{\text {IN }}(\mathrm{V})$	$\mathrm{R}_{\mathrm{B}}(\Omega)$
1.8	10	1.2	4.5	3.3	5	1.2	6.5
1.8	10	1.5	6.0	3.3	5	1.5	6.5
1.8	30	1.2	2.0	3.3	10	1.2	5.0
1.8	30	1.5	2.0	3.3	10	1.5	4.5
1.8	50	1.2	1.2	3.3	30	1.2	3.5
1.8	50	1.5	1.5	3.3	30	1.5	3.5

Other recommended components are:
Diodes XBS104S14R-G from TOREX, or MA2Q735 from MATSUSHITA
Output capacitor Cout 16V, $47 \mu \mathrm{~F}$ TAJ type from KYOCERA
Input capacitor $\mathrm{C}_{\mathbb{N}} 16 \mathrm{~V}, 47 \mu \mathrm{~F}$ TAJ type from KYOCERA, or 16 V , $220 \mu \mathrm{~F}$ (electrolytic capacitor)
Inductor L for IXD2110/111A, C, and E series with built-in transistor $100 \mu \mathrm{H}$ CR54, or CDRH6D28 type from SUMIDA
Inductor L for IXD2110/111B, D, and F series with external transistor $22 \mu \mathrm{H}$ or $47 \mu \mathrm{H}$ CR54 type from SUMIDA

LAYOUT AND USE CONSIDERATIONS

1. Please, do not exceed the value of stated absolute maximum ratings.
2. The DC/DC converter / controller IC's performance is greatly influenced by not only the ICs' characteristics, but also by those of the external components. Care must be taken when selecting external components.
3. The Lx limit voltage function becomes stable when $\mathrm{V}_{\text {OUT }}$ of the IXD2110/111C series is over 2.0 V and the V_{DD} of the IXD2110/111E series is over 2.0V.
4. Make sure that the PCB ground traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC.
5. Please, mount each external component as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.

IXD2110/IXD2111

TEST CIRCUITS

Circuit (1)

Circuit (2)

Circuit (3)

Circuit (4)

External Components

Circuit (1)
$\mathrm{C}_{\mathrm{IN}}=47 \mu \mathrm{~F}, 16 \mathrm{~V}$ (Tantalum)
$\mathrm{L}=100 \mu \mathrm{H}$, CR54 (SUMIDA)
D - XBS104S14R-G (Schottky, TOREX)
$C_{L}=47 \mu \mathrm{~F}, 16 \mathrm{~V}$ (Tantalum)
Circuit(2)
$R p=300 \Omega$
Rp $=10 \Omega$ (For Lx ON Resistance and Lx Current Limit Measurement)
$\mathrm{Rp}=200 \Omega$ (For measuring EXT ON Resistance)
$\mathrm{Cp}=100 \mu \mathrm{~F}$ (OS-CON, SANYO)

Circuit (5)

Circuit (6)

Circuit (7)

Circuit (8)

Circuit (4)
Cp: 100 $\mu \mathrm{F}$ (OS-CON, SANYO)
Circuit (6)
$\mathrm{C}_{\mathrm{IN}}=47 \mu \mathrm{~F}, 16 \mathrm{~V}$ (Tantalum)
$\mathrm{L}=100 \mu \mathrm{H}, \mathrm{CR} 54$ (SUMIDA)
Q-2SD1628 (SANYO)
$\mathrm{C}_{\mathrm{B}}=2200 \mathrm{pF}$
$R_{B}=500 \Omega$
D - XBS 104S14R-G (Schottky, TOREX)
$C_{L}=47 \mu \mathrm{~F}, 16 \mathrm{~V}$ (Tantalum

TYPICAL PERFORMANCE CHARACTERISTICS
(1) Output Voltage vs. Output Current

IXD2111E181MR

L = 100uH (CR54), $C_{L}=47 u F$ (Tantalum), D - XBS104S14R

IXD2111E331MR

L = 100uH (CR54), CL= 47uF (Tantalum), D - XBS104S14R

IXD2111E501MR
$\mathrm{L}=100 \mathrm{uH}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mathrm{uF}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

IXD2110E181MR

$\mathrm{L}=100 \mathrm{uH}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mathrm{uF}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

IXD2110E331MR
$\mathrm{L}=100 \mathrm{uH}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mathrm{uF}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

IXD2110E501MR

$\mathrm{L}=100 \mathrm{uH}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mathrm{uF}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

IXD2110/IXD2111

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(1) Output Voltage vs. Output Current

IXD2111F181MR

$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), D - XBS104S14R, Q - XP151A13A0M

IXD2111F501MR

$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}, \mathrm{Q}-\mathrm{XP} 151 \mathrm{~A} 12 \mathrm{~A} 2 \mathrm{M}$

IXD2111F331MR
$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), D - XBS104S14R, Q - XP151A13A0M

IXD2111F181MR

$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{C}_{\mathrm{B}}=2200 \mathrm{pF}, \mathrm{R}_{\mathrm{B}}=100 \Omega$, D - XBS 104S14R, Q-2SD1628,

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Efficiency vs. Output Current

IXD2111E181MR

$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), D - XBS104S14R

IXD2111E331MR

$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

IXD2111E501MR

$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

Topr $=25^{\circ} \mathrm{C}$

IXD2110E181MR

$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

IXD2110E331MR

$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

IXD2110E501MR
$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(2) Efficiency vs. Output Current

IXD2111F181MR

$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), D - XBS104S14R, Q - XP151A13A0M

IXD2111F501MR

$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}, \mathrm{Q}-\mathrm{XP} 151 \mathrm{~A} 12 \mathrm{~A} 2 \mathrm{M}$

IXD2111F331MR
$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), CL $=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}, \mathrm{Q}-\mathrm{XP} 151 \mathrm{~A} 13 \mathrm{~A} 0 \mathrm{M}$

IXD2111F181MR
$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{C}_{\mathrm{B}}=2200 \mathrm{pF}, \mathrm{R}_{\mathrm{B}}=100 \Omega$, D - XBS104S14R, Q - 2SD1628

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Ripple Voltage vs. Output Current

IXD2111E181MR

$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

IXD2111E331MR

$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{CL}=47 \mu \mathrm{~F}$ (Tantalum), D - XBS104S14R

IXD2111E501MR

$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

Topr $=25^{\circ} \mathrm{C}$
IXD2110E181MR
$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), D - XBS104S14R

IXD2110E331MR
$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

IXD2110E501MR
$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(2) Ripple Voltage vs. Output Current ${ }^{0} \mathrm{C}$

IXD2111F181MR

$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), D - XBS104S14R, Q - XP151A13A0M

IXD2111F501MR
$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}, \mathrm{Q}-\mathrm{XP} 151 \mathrm{~A} 12 \mathrm{~A} 2 \mathrm{M}$

IXD2111F331MR
$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), CL $=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}, \mathrm{Q}-\mathrm{XP} 151 \mathrm{~A} 13 \mathrm{~A} 0 \mathrm{M}$

IXD2111F181MR
$\mathrm{L}=22 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{C}_{\mathrm{B}}=2200 \mathrm{pF}, \mathrm{R}_{\mathrm{B}}=100 \Omega$, D - XBS104S14R, Q-2SD1628

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Supply Current 1 vs. Output Voltage

IXD2111xx1
$\mathrm{V}_{\text {DD }}=\mathrm{V}_{\text {OUT }} \times 0.95$

(6) Standby Current vs. Output Voltage IXD2111E331MR

(8) Lx Limit Voltage vs. Output Voltage IXD2111E501MR
$\mathrm{V}_{\text {DD }}=\mathrm{V}_{\text {OUT }} \times 0.95$

(5) Supply Current 2 vs. Output Voltage

IXD2111xx1
$\mathrm{V}_{\text {DD }}=\mathrm{V}_{\text {OUT }} \times 0.5$

(7) No Load Input Current vs. Output Voltage IXD2110E331MR
$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

(9) Lx Switch ON Resistance vs. Output Voltage IXD2110E501MR
$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {OUT }} \times 0.95, \mathrm{~V}_{\mathrm{Lx}}=0.4 \mathrm{~V}$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(10) EXT "H" ON Resistance vs. Output Voltage

IXD2111Fxx1
$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {OUT }} \mathrm{x} 0.95, \mathrm{~V}_{\mathrm{EXT}}=\mathrm{V}_{\text {OUT }}-0.4 \mathrm{~V}$

(12) Maximum Oscillation Frequency 1 vs. Output Voltage IXD2111Exx1
$V_{D D}=V_{\text {OUT }} \times 0.95$

(14) Duty Cycle Ratio 1 vs. Output Voltage IXD2111Exx1
$V_{D D}=V_{\text {OUT }} \times 0.95$

(11) EXT "L" ON Resistance vs. Output Voltage Topr $=25^{\circ} \mathrm{C}$ IXD2111Fxx1
$V_{D D}=V_{\text {OUT }} \times 0.5, V_{E X T}=0.4 \mathrm{~V}$

(13) Maximum Oscillation Frequency 2 vs. Output Voltage IXD2111Exx1
$V_{D D}=V_{\text {OUT }} \times 0.95$

(15) Duty Cycle Ratio 2 vs. Output Voltage

IXD2111Exx1
$\mathrm{V}_{\text {DD }}=\mathrm{V}_{\text {OUT }} \times 0.95$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(16) Output Voltage vs. Ambient Temperature IXD2111E331

(18) Operation Start Voltage vs. Ambient Temperature IXD2111E331
$\mathrm{L}=100 \mu \mathrm{H}$ (CR54), $\mathrm{C}_{\mathrm{L}}=47 \mu \mathrm{~F}$ (Tantalum), $\mathrm{D}-\mathrm{XBS} 104 \mathrm{~S} 14 \mathrm{R}$

(20) Operation Hold Voltage vs. Ambient Temperature

IXD2111E331

(17) CE "H" "L" Voltage vs. Output Voltage

Topr $=25^{\circ} \mathrm{C}$

IXD2111Cxx1
$V_{D D}=V_{\text {OUT }} \times 0.5$

(19) Oscillation Start Voltage vs. Ambient Temperature IXD2111E331
$\mathrm{V}_{\text {OUT }}=0.8 \mathrm{~V}$

IXD2110/IXD2111

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(21) Load Transient Response

IXD2111E331

$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\text {OUT }}$, $\mathrm{l}_{\text {OUT }}=0.1-50 \mathrm{~mA}$

IXD2111E331

$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\text {OUT }}, \mathrm{I}_{\text {OUT }}=1-100 \mathrm{~mA}$

IXD2111E181
$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\text {OUT }}, \mathrm{l}_{\text {OUT }}=0.1-50 \mathrm{~mA}$

Topr $=25^{\circ} \mathrm{C}$
IXD2111E331
$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=\mathrm{V}_{\text {OUT }}$, $\mathrm{l}_{\text {OUT }}=0.1-50 \mathrm{~mA}$

IXD2111E331
$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\text {OUT }}, \mathrm{I}_{\text {OUT }}=1-100 \mathrm{~mA}$

IXD2111E181
$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=\mathrm{V}_{\text {OUT }}, \mathrm{l}_{\text {OUT }}=0.1-50 \mathrm{~mA}$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(22) Input Transien Response

IXD2111E181
$\mathrm{V}_{\text {IN }}=0-1.5 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=\mathrm{V}_{\text {OUT, }}$ lout $=10 \mathrm{~mA}$

IXD2111E331MR
$\mathrm{V}_{\text {IN }}=0-1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\text {OUT, }}$, IOUT $=20 \mathrm{~mA}$

IXD2111E501
$\mathrm{V}_{\text {IN }}=0-3.3 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=\mathrm{V}_{\text {OUT }}, \mathrm{l}_{\text {OUT }}=50 \mathrm{~mA}$

IXD2111E331
$\mathrm{V}_{\text {IN }}=0-2.4 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=\mathrm{V}_{\text {OUT }}$, lout $=50 \mathrm{~mA}$

IXD2110/IXD2111

ORDERING INFORMATION

IXD2110(1)(2)(3)(4)(5)(6)-(7) - PFM control, 75\% duty
IXD2111(1)(2)(3)(5)(6)-(7) - PFM control, 56\% / 75\% duty variable

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION	
(1)	CE Function	A	$\mathrm{V}_{\text {DD }} / \mathrm{V}_{\text {Out }}$ common type (for IXD2111 series)	Built-in Transistor
		B	$\mathrm{V}_{\text {DD }} / \mathrm{V}_{\text {Out }}$ common type (for IXD2111 series)	External Transistor
		C	CE pin (5 pin)	Built-in Transistor
		D	CE pin (5 pin)	External Transistor
		E	$\mathrm{V}_{\text {DD }} / \mathrm{V}_{\text {OUT }}$ separated type (5 pin)	Built-in Transistor
		F	$\mathrm{V}_{\text {DD }} / \mathrm{V}_{\text {Out }}$ separated type (5 pin)	External Transistor
(2) (3)	Output Voltage	$15 \sim 70$	example 3.5 V output - (2) $=3$, (3) $=5$	
(4)	Maximum Oscillation Frequency	1	100kHz	
(5) (6)-(7)*	Packages (Order Limit)	MR	(1) $=$ A \sim B SOT-23 ($3,000 /$ Reel $)$	
			(1) $=$ C \sim F SOT- 25 ($3,000 /$ Reel $)$	
		MR-G	(1) $=$ A \sim B SOT-23 (3,000/Reel)	
			(1) $=$ C \sim F SOT-25 ($3,000 /$ Reel $)$	
		PR	(1) $=$ A \sim B SOT-89 (1,000/Reel)	
		PR-G	(1) $=$ A \sim B SOT-89 (1,000/Reel)	
		ER	(1) $=$ C \sim F USP-6C ($3,000 /$ Reel $)$	
		ER-G	(1) $=$ C \sim F USP-6C ($3,000 /$ Reel $)$	

(*) The "-G" suffix denotes halogen and antimony free, as well as being fully ROHS compliant.

PRODUCT CLASSIFICATION

PACKAGE DRAWING AND DIMENSIONS

Units: mm
SOT-23

SOT-89

USP-6C

\square

IXD2110/IXD2111

PACKAGE DRAWING AND DIMENSIONS

USP-6C Reference Pattern Layout

USP-6C Reference Metal Mask Design

IXD2110/IXD2111

MARKING

SOT-23

(3) represents decimal point of output voltage and oscillation frequency

OUTPUT VOLTAGE	MARK
	$f_{\text {osc }}=100 \mathrm{kHz}$
$x .0$	0
$x .1$	1
$x .2$	2
$x .3$	3
$x .4$	4
$x .5$	5
$x .6$	6
$x .7$	7
$x .9$	8
$x .9$	9

(4) represents production lot number 0 to 9 , A to Z repeated ($\mathrm{G}, \mathrm{I}, \mathrm{J}, \mathrm{O}, \mathrm{Q}, \mathrm{W}$ excluded)

MARKING (Continue)

SOT-25
(1) represents product series

SOT-25 (TOP VIEW)

MARK	FUNCTION		PRODUCT SERIES
V	CE	Built-in Transistor	IXD2110Cxxxxx
X	$C E$	External Transistor	IXD2110Dxxxxx
Y	$V_{\text {DD }} / V_{\text {OUT }}$	Built-in Transistor	IXD2110Exxxxx
Z	$V_{\text {DD }} / V_{\text {OUT }}$	External Transistor	IXD2110Fxxxxx
5	CE	Built-in Transistor	IXD2110Cxxxxx
6	CE	External Transistor	IXD2110Dxxxx
7	$V_{\text {DD }} / V_{\text {OUT }}$	Built-in Transistor	IXD2110Exxxx
8	$V_{\text {DD }} / V_{\text {OUT }}$	External Transistor	IXD2110Fxxxxx

(2) represents integer of output voltage and oscillation frequency

OUTPUT VOLTAGE	MARK
$1 . x$	$f_{0 S c}=100 \mathrm{kHz}$
$2 . x$	1
$3 . x$	2
$4 . x$	3
$5 . x$	4
$6 . x$	5
$7 . x$	6

(3) represents decimal point of output voltage and oscillation frequency

OUTPUT VOLTAGE	MARK
	$\mathrm{f}_{\text {Osc }}=100 \mathrm{kHz}$
x. 0	0
x. 1	1
x. 2	2
x. 3	3
x. 4	4
x. 5	5
x. 6	6
x. 7	7
x. 9	8
x. 9	9

(4) represents production lot number 0 to 9 , A to Z repeated (G, I, J, O, Q, W excluded)

IXD2110/IXD2111

MARKING (Continue)

SOT-89

(1) represents product series

MARK	FUNCTIONS	PRODUCT SERIES
5	Built-In Transistor	IXD2111Axxxxx
6	External Transistor	IXD2111Bxxxxx

(2) represents integer of output voltage and oscillation frequency

OUTPUT VOLTAGE	MARK
	$\mathrm{fosc}_{\mathrm{o}}=100 \mathrm{kHz}$
$1 . \mathrm{x}$	1
$2 . x$	2
$3 . x$	3
$4 . x$	4
$5 . x$	5
$6 . x$	6
$7 . x$	7

(3) represents decimal point of output voltage and oscillation frequency

OUTPUT VOLTAGE	MARK
	fosc $=100 \mathrm{kHz}$
x. 1	0
x.	1
x. 3	2
x.4	3
x.5	4
x.6	5
x. 9	6
x. 9	7
	8

(4) represents production lot number 0 to 9 , A to Z repeated (G, I, J, O, Q, W excluded)

IXD2110/IXD2111

MARKING (Continue)
USP-6C

USP-6C (TOP VIEW)
(1) represents product series

MARK	PRODUCT SERIES
M	IXD2110xxx1D
N	IXD2111xxx1D

(2) represents series type

MARK	FUNCTION		PRODUCT SERIES
C	CE	Built-in Transistor	IXD2110Cxxxxx
D	CE	External Transistor	IXD2110Dxxxxx
E	$V_{D D} / V_{\text {OUT }}$	Built-in Transistor	IXD2110Exxxxx
F	$V_{D D} / V_{\text {OUT }}$	External Transistor	IXD2110Fxxxxx

(3) represents integer of output voltage and oscillation frequency

OUTPUT VOLTAGE	MARK
	fosc $=100 \mathrm{kHz}$
$1 \cdot \mathrm{x}$	1
$2 . \mathrm{x}$	2
$3 . \mathrm{x}$	3
$4 . \mathrm{x}$	4
$5 . x$	5
$6 . \mathrm{x}$	6
$7 . \mathrm{x}$	7

(4) represents decimal point of output voltage and oscillation frequency

	MARK
OUTPUT VOLTAGE	$\mathrm{f}_{\text {osc }}=100 \mathrm{kHz}$
x. 0	0
x. 1	1
x. 2	2
x. 3	3
x. 4	4
x. 5	5
x. 6	6
x. 7	7
x. 9	8
x. 9	9

(5) represents oscillation frequency

MARK	OSCILLATION FREQUENCY	PRODUCT SERIES
1	100 kHz	IXD2111xx1Dx

(6) represents production lot number 0 to 9 , A to Z repeated (G, I, J, O, Q, W excluded)

IXD2110/IXD2111

Warranty and Use

IXYS CORP. MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABIIITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

IXYS Corp. products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the IXYS Corp. product could create a situation where personal injury or death may occur.

IXYS Corp. reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.

IXYS Corp. advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.

IXYS Corp.

1590 Buckeye Dr.
Milpitas, CA 95035-7418
Phone: 408. 457.9000
Document No:IXD211x DS
Fax: 408. 496.0222
Revision: NO
http://www.ixys.com
Issue date: 2/12/2014

