

## FEATURES

- Spread Spectrum Clock Generator with selectable SST mode.
- Output frequency ranges: 24MHz to 200MHz.
- Selectable Center Spread Modulation.
- TTL/CMOS compatible outputs.
- 3.3V Operating Voltage.
- Low short-term jitter.
- Available in 8-Pin 150mil SOIC GREEN/RoHS compliant packaging.

## PIN CONFIGURATION



FIN = 24 ~ 200 Mhz

Note: v:  $30k\Omega$  Internal Pull down. ^:  $30k\Omega$  Internal Pull up.

## DESCRIPTION

The PLL701-21 is a Spread Spectrum Clock Generator designed for the purpose of reducing EMI in high-speed digital systems, with selectable Center Spread modulation magnitude (see table below). The device operates over a very wide range of input frequencies and provides a 1x modulated clock output.

## SST BY-PASS SELECTOR

| S3 | Spread Spectrum Mode   |
|----|------------------------|
| 0  | OFF                    |
| 1  | ON (See below) Default |

Note: S3 has an internal Pull Up. Default="1"

### MODULATION MAGNITUDE SELECTION

| S2 S1 S0 | 50    | FIN Range | FOUT     | Spread Spectrum Modulation |           |           |
|----------|-------|-----------|----------|----------------------------|-----------|-----------|
| 52       | 01 01 | 30        | (MHz)    | FUUT                       | Frequency | Magnitude |
| 0        | 0     | 0         | 24 - 200 | X1                         |           | ±0.75%    |
| 0        | 0     | 1         | 24 - 200 | X1                         |           | ±1.00%    |
| 0        | 1     | 0         | 24 - 200 | X1                         |           | ±1.25%    |
| 0        | 1     | 1         | 24 - 200 | X1                         |           | ±0.125%   |
| 1        | 0     | 0         | 24 - 200 | X1                         | 1111/1024 | ±0.25%    |
| 1        | 0     | 1         | 24 - 200 | X1                         |           | ±0.50%    |
| 1        | 1     | 0         | 24 - 200 | X1                         |           | ±0.375%   |
| 1        | 1     | 1         | 24 - 200 | X1                         |           | ±0.625%   |



#### **BLOCK DIAGRAM**



#### **PIN DESCRIPTIONS**

| Name | Number | Туре | Description                                                                               |  |  |  |
|------|--------|------|-------------------------------------------------------------------------------------------|--|--|--|
| FIN  | 1      | I    | Input Clock Frequency. 24MHz to 200MHz.                                                   |  |  |  |
| S2   | 2      | I    | Digital control input for SST modulation magnitude selection. Has internal pull-<br>up.   |  |  |  |
| S1   | 3      | I    | Digital control input for SST modulation magnitude selection. Has internal pup.           |  |  |  |
| S0   | 4      | I    | Digital control input for SST modulation magnitude selection. Has internal pull-<br>down. |  |  |  |
| GND  | 5      | Р    | Ground.                                                                                   |  |  |  |
| FOUT | 6      | 0    | SST Modulated Clock Frequency Output.                                                     |  |  |  |
| S3   | 7      | I    | SST By-Pass Selector. S3 has internal pull-up. Default ="1"                               |  |  |  |
| VDD  | 8      | Р    | 3.3V Power Supply.                                                                        |  |  |  |

## **ELECTRICAL SPECIFICATIONS**

#### 1. Absolute Maximum Ratings

| PARAMETERS                        | SYMBOL          | MIN. | MAX.                 | UNITS |
|-----------------------------------|-----------------|------|----------------------|-------|
| Supply Voltage                    | V <sub>DD</sub> |      | 4.6                  | V     |
| Input Voltage, dc                 | VI              | -0.5 | $V_{DD}$ +0.5        | V     |
| Output Voltage, dc                | Vo              | -0.5 | V <sub>DD</sub> +0.5 | V     |
| Storage Temperature               | Ts              | -65  | 150                  | °C    |
| Ambient Operating Temperature*    | T <sub>A</sub>  | -40  | 85                   | °C    |
| Junction Temperature              | TJ              |      | 125                  | °C    |
| Lead Temperature (soldering, 10s) |                 |      | 260                  | °C    |
| ESD Protection, Human Body Model  |                 |      | 2                    | kV    |

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

\* Note: Operating Temperature is guaranteed by design for all parts (COMMERCIAL and INDUSTRIAL), but tested for COMMERCIAL grade only.



### 2. DC/AC Specifications

| PARAMETERS                  | SYMBOL          | CONDITIONS                    | MIN.                 | TYP. | MAX.                 | UNITS |
|-----------------------------|-----------------|-------------------------------|----------------------|------|----------------------|-------|
| Supply Voltage              | V <sub>DD</sub> |                               | 2.97                 |      | 3.63                 | V     |
| Input High Voltage          | VIH             |                               | 0.7* V <sub>DD</sub> |      |                      | V     |
| Input Low Voltage           | VIL             |                               |                      |      | 0.3* V <sub>DD</sub> | V     |
| Input High Current          | Іін             |                               |                      |      | 100                  | μA    |
| Input Low Current           | ١L              |                               |                      |      | 100                  | μA    |
| Output High Voltage         | V <sub>OH</sub> | $I_{OH}$ =5mA, $V_{DD}$ =3.3V | 2.4                  |      |                      | V     |
| Output Low Voltage          | Vol             | $I_{OL}=6mA$ , $V_{DD}=3.3V$  |                      |      | 0.4                  | V     |
| Input Frequency             | Fin             |                               | 24                   |      | 200                  | MHz   |
| Maximum interruption of FIN |                 |                               |                      |      | 100                  | μs    |
| Input Capacitance           | Cin1            |                               |                      | 4    |                      | рF    |
| Pull-up Resistor            | Rpu             | PIN 2, 3, 7                   |                      | 30   |                      | kΩ    |
| Pull-down Resistor          | R <sub>pd</sub> | PIN 4                         |                      | 30   |                      | kΩ    |
| Short Circuit Current       | lsc             |                               |                      | 50   |                      | mA    |
| 3.3V Dynamic Supply Current | lcc             | No Load                       |                      | 20   |                      | mA    |

### **3. TIMING CHARACTERISTICS**

| PARAMETERS            | SYMBOL               | CONDITIONS                                   | MIN. | TYP. | MAX. | UNITS |
|-----------------------|----------------------|----------------------------------------------|------|------|------|-------|
| Rise Time             | Tr                   | Measured at 0.8V ~ 2.0V @ 3.3V,<br>15pF Load | 0.8  | 0.95 | 1.1  | ns    |
| Fall Time             | Tf                   | Measured at 2.0V ~ 0.8V @ 3.3V,<br>15pF Load | 0.78 | 0.85 | 0.9  | ns    |
| Output Duty Cycle     | DT                   |                                              | 45   | 50   | 55   | %     |
| Cycle to Cycle Jitter | T <sub>cyc-cyc</sub> | Over output frequency range @ 3.3V           |      |      | 100  | ps    |

## FUNCTIONAL DESCRIPTION

#### Selectable spread spectrum and modulation rates

The PLL701-21 provides Center Spread modulation, as well as a selectable modulation magnitude. Selection is made by connecting pins 2 (S2), 3 (S1) and 4 (S0) to a logical "zero" or "one", according to the modulation magnitude selection table on page 1.

#### Default values for S(0:3) through internal pull-up and pull-down resistor

Selection pin 4 (S0) has an internal pull-down resistor of  $30k\Omega$  while pins 2, 3 and 7 (S2, S1 and S3) have an internal pull-up resistor of  $30k\Omega$ . This internal pull-down (or pull-up) resistor will pull the input value to a logical "zero" (or "one" respectively) by default, i.e. when no connection is made between the pin and VDD (GND respectively). In order to override the internal pull-down (pull-up), the pin has to be connected to VDD (GND respectively).



## PACKAGE INFORMATION (GREEN PACKAGE COMPLIANT)



## **ORDERING INFORMATION (GREEN PACKAGE COMPLIANT)**



PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Phaselink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: PhaseLink's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.