

M5M21C67P-45, -55

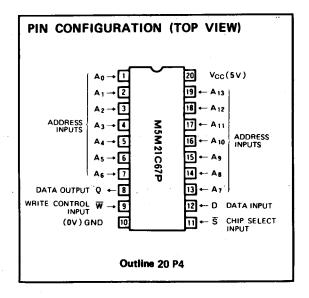
16384-BIT (16384-WORD BY 1-BIT) CMOS STATIC RAM

DESCRIPTION

This is a family of 16384-word by 1-bit static RAMs, fabricated with the high-performance CMOS silicon-gate MOS process and designed for high-speed application. These devices operate on a single 5V supply, and are directly TTL compatible. They include a power-down feature as well.

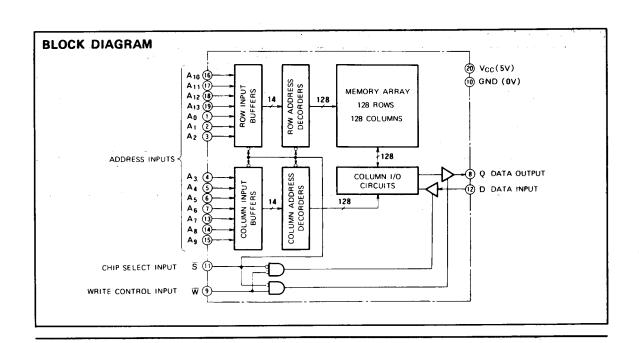
FEATURES

- Fast access time
 M5M21C67P-45 45 ns (max)
 M5M21C67P-55 55 ns (max)
- Low power dissipation Active200 mW (typ)
 Stand by μW (typ)
- Power down by S
- Single 5V power supply
- Fully static operation
 Requires neither external clock nor refreshing
- All inputs and output are directly TTL compatible
- Easy memory expansion by chip-select (S) input


APPLICATION

High-speed memory systems

FUNCTION


A write operation is executed during the \overline{S} low and \overline{W} low overlap time. In this period, address signals must be stable. When \overline{W} is low, the Q terminal is maintained in the high impedance state, so it is possible to connect D and Q terminals directly.

In a read operation, after setting \overline{W} to high, and \overline{S} to low if the address signals are stable, the data is available at the Q terminal.

When \overline{S} is high, the chip is in the non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for ORties with other devices.

Signal \overline{S} controls the power-down feature. When \overline{S} goes high, power dissipation is reduced extremely. The access time from \overline{S} is equivalent to the address access time.

16384-BIT (16384-WORD BY 1-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit	
Vcc	Supply voltage		-3.5*~7	٧	
Vi	Input voltage	With respect to GND	-3.5*-7	V	
V ₀	Output voltage		-3.5 [*] ~7	V	
Pd	Maximum power dissipation		1	w	
Topr	Operating temperature		-10~85	·c	
Tstg	Storage temperature		-65~150	•c	

^{*} Pulse width = 20 ns, DC: -0.5V

DC ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}\text{C}$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted)

C	Parameter						
Symbol		lest condit	Test conditions			Max	Unit
VIH	High-level input voltage		2.2		V _{CC} +0.3	V	
VIL	Low-level input voltage			3*		0.8	V
Vон	High-level output voltage	I _{OH} = 4 mA	2.4			V	
VoL	Low-level output voltage	I _{OL} = 8 mA			0.4	V	
I ₁	Input current	V ₁ =0~5.5V		-	10	μΑ	
loz (Off-state output current	V _{I(\$)} =2.2V, V _O =0			50	μА	
	Supply current from V _{CC}	V _I (S)=0.8V	DC		25	50	mA
ICC1		Output open	AC			80	шА
I CC2	Stand by current	V _{i(S)} =2.2V Other V	V _I (S)=2.2V Other V _I =2.2V			20	mA
1003	Stand by current	$V_{i}(\bar{s}) \ge V_{CC} - 0.2V$, Other $V_{i} \le 0.2V$ or		0.001	2	mA	
C ₁	Input capacitance	V _I =GND, V _I =25mVr			5	pF	
Co	Output capacitance	V _O =GND, V _O =25 mV			6	ρF	

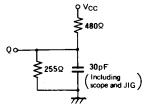
Note 1. Current flow into an IC is positive, out is negative.

SWITCHING CHARACTERISTICS (FOR READ CYCLE) ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted)

Symbol	Parameter	M5I	M5M21C67P-45			M5M21C67P-55		
		Min	Тур	Max	Min	Тур	Max	Unit
tor	Read cycle time	45			55			ns
ta(A)	Address access time			45			55	ns
ta(S)	Chip select access time			45			55	ns
t _{V(A)}	Data valid time after address	5			5			ns
t _{en(S)}	Output enable time after chip selection	10			10			ns
t _{dis(s)}	Output disable time after chip deselection	0		20	-0		25	ns
t _{PU}	Power-up time after chip selection	0			. 0			ns
t _{PD}	Power down time after chip deselection	-		45	T -		55	ns

^{*} Pulse width = 20 ns, DC: -0.5V

M5M21C67P-45, -55

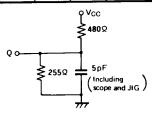
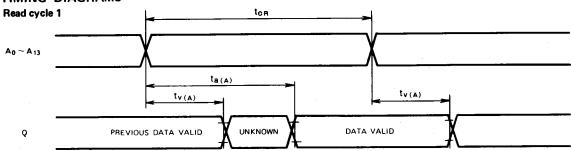

16384-BIT (16384-WORD BY 1-BIT) CMOS STATIC RAM

TIMING REQUIREMENTS (FOR WRITE CYCLE) ($T_a = 0 \sim 70^{\circ}\text{C}$, $V_{CC} = 5 \text{V} \pm 10\%$, unless otherwise noted)

Symbol	Parameter	M51	M5M21C67P-45			M5M21C67P-55		
		Min	Тур	Max	Min	Тур	Max	Unit
t _{cw}	Write cycle time	45		Ī	55			ns
t _{su(s)}	Chip select setup time	35			40	<u></u>		ns
tsu(A)	Address setup time 1 (W CONTROL)	0			0_	Ĺ	<u></u> .	ns
t su (A)2	Address setup time 2 (\$\overline{S}\$ CONTROL)	0			0		<u>. </u>	ns
t _{w(w)}	Write pulse width	25			30			ns
t _{rec(w)}	Write recovery time	0			0			ns
t _{su(D)}	Data setup time	25			25	L	<u> </u>	ns
th (D)	Data hold time	0			0	1		ns
tdis(w)	Output disable time after W low	0		15	0		20	ns
ten(w)	Output enable time after W high	0			0			ns
tsu (A.WIA)	Address to W high	35			40			ns

CONDITIONS

Input pulse levels 0 to 3V Input rise and fall time 5ns Input timing reference level 1.5V Output timing reference level $0.8V \sim 2V$ Output loads Fig. 1, Fig. 2

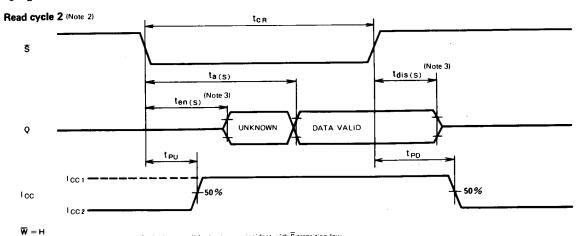
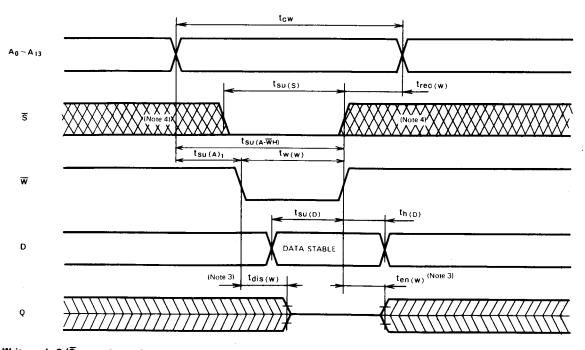

Fig. 1 Output load

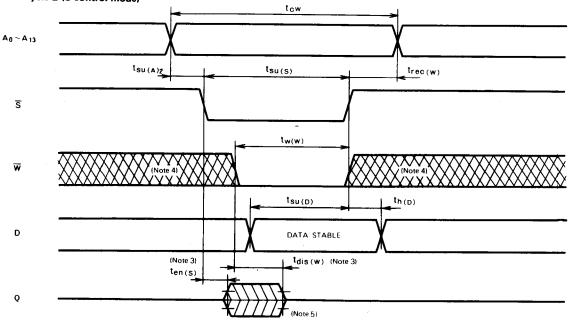
Fig. 2 Output load for ten, tdis

TIMING DIAGRAMS

 $\overline{\mathbf{w}} = \mathbf{H}$


Note 2. Addresses valid prior to or coincident with $\overline{\mathbb{S}}$ transition low.

Transition is measured ±500mV from steady state voltage with specified loading in Figure 2.


16384-BIT (16384-WORD BY 1-BIT) CMOS STATIC RAM

TIMING DIAGRAMS

Write cycle 1 (W control mode)

Write cycle 2 (\$\overline{S}\$ control mode)

Note 4. Hatching indicates the state is don't care.

^{5.} When the falling edge of \overline{W} is simultaneous or prior to the falling edge of \overline{S} , the output is maintained in the high impedance,