M5M21C67P-45, -55 16384-BIT (16384-WORD BY 1-BIT) CMOS STATIC RAM ### DESCRIPTION This is a family of 16384-word by 1-bit static RAMs, fabricated with the high-performance CMOS silicon-gate MOS process and designed for high-speed application. These devices operate on a single 5V supply, and are directly TTL compatible. They include a power-down feature as well. ### **FEATURES** - Fast access time M5M21C67P-45 45 ns (max) M5M21C67P-55 55 ns (max) - Low power dissipation Active200 mW (typ) Stand by μW (typ) - Power down by S - Single 5V power supply - Fully static operation Requires neither external clock nor refreshing - All inputs and output are directly TTL compatible - Easy memory expansion by chip-select (S) input #### **APPLICATION** High-speed memory systems ### **FUNCTION** A write operation is executed during the \overline{S} low and \overline{W} low overlap time. In this period, address signals must be stable. When \overline{W} is low, the Q terminal is maintained in the high impedance state, so it is possible to connect D and Q terminals directly. In a read operation, after setting \overline{W} to high, and \overline{S} to low if the address signals are stable, the data is available at the Q terminal. When \overline{S} is high, the chip is in the non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for ORties with other devices. Signal \overline{S} controls the power-down feature. When \overline{S} goes high, power dissipation is reduced extremely. The access time from \overline{S} is equivalent to the address access time. ### 16384-BIT (16384-WORD BY 1-BIT) CMOS STATIC RAM ### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Conditions | Ratings | Unit | | |----------------|---------------------------|---------------------|----------------------|------|--| | Vcc | Supply voltage | | -3.5*~7 | ٧ | | | Vi | Input voltage | With respect to GND | -3.5*-7 | V | | | V ₀ | Output voltage | | -3.5 [*] ~7 | V | | | Pd | Maximum power dissipation | | 1 | w | | | Topr | Operating temperature | | -10~85 | ·c | | | Tstg | Storage temperature | | -65~150 | •c | | ^{*} Pulse width = 20 ns, DC: -0.5V ### DC ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}\text{C}$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted) | C | Parameter | | | | | | | |----------------|-------------------------------------|---|--|-------|----------------------|-----|------| | Symbol | | lest condit | Test conditions | | | Max | Unit | | VIH | High-level input voltage | | 2.2 | | V _{CC} +0.3 | V | | | VIL | Low-level input voltage | | | 3* | | 0.8 | V | | Vон | High-level output voltage | I _{OH} = 4 mA | 2.4 | | | V | | | VoL | Low-level output voltage | I _{OL} = 8 mA | | | 0.4 | V | | | I ₁ | Input current | V ₁ =0~5.5V | | - | 10 | μΑ | | | loz (| Off-state output current | V _{I(\$)} =2.2V, V _O =0 | | | 50 | μА | | | | Supply current from V _{CC} | V _I (S)=0.8V | DC | | 25 | 50 | mA | | ICC1 | | Output open | AC | | | 80 | шА | | I CC2 | Stand by current | V _{i(S)} =2.2V Other V | V _I (S)=2.2V Other V _I =2.2V | | | 20 | mA | | 1003 | Stand by current | $V_{i}(\bar{s}) \ge V_{CC} - 0.2V$,
Other $V_{i} \le 0.2V$ or | | 0.001 | 2 | mA | | | C ₁ | Input capacitance | V _I =GND, V _I =25mVr | | | 5 | pF | | | Co | Output capacitance | V _O =GND, V _O =25 mV | | | 6 | ρF | | Note 1. Current flow into an IC is positive, out is negative. ## SWITCHING CHARACTERISTICS (FOR READ CYCLE) ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted) | Symbol | Parameter | M5I | M5M21C67P-45 | | | M5M21C67P-55 | | | |---------------------|--|-----|--------------|-----|-----|--------------|-----|------| | | | Min | Тур | Max | Min | Тур | Max | Unit | | tor | Read cycle time | 45 | | | 55 | | | ns | | ta(A) | Address access time | | | 45 | | | 55 | ns | | ta(S) | Chip select access time | | | 45 | | | 55 | ns | | t _{V(A)} | Data valid time after address | 5 | | | 5 | | | ns | | t _{en(S)} | Output enable time after chip selection | 10 | | | 10 | | | ns | | t _{dis(s)} | Output disable time after chip deselection | 0 | | 20 | -0 | | 25 | ns | | t _{PU} | Power-up time after chip selection | 0 | | | . 0 | | | ns | | t _{PD} | Power down time after chip deselection | - | | 45 | T - | | 55 | ns | ^{*} Pulse width = 20 ns, DC: -0.5V # M5M21C67P-45, -55 16384-BIT (16384-WORD BY 1-BIT) CMOS STATIC RAM # TIMING REQUIREMENTS (FOR WRITE CYCLE) ($T_a = 0 \sim 70^{\circ}\text{C}$, $V_{CC} = 5 \text{V} \pm 10\%$, unless otherwise noted) | Symbol | Parameter | M51 | M5M21C67P-45 | | | M5M21C67P-55 | | | |---------------------|---|-----|--------------|-----|-----|--------------|--|------| | | | Min | Тур | Max | Min | Тур | Max | Unit | | t _{cw} | Write cycle time | 45 | | Ī | 55 | | | ns | | t _{su(s)} | Chip select setup time | 35 | | | 40 | <u></u> | | ns | | tsu(A) | Address setup time 1 (W CONTROL) | 0 | | | 0_ | Ĺ | <u></u> . | ns | | t su (A)2 | Address setup time 2 (\$\overline{S}\$ CONTROL) | 0 | | | 0 | | <u>. </u> | ns | | t _{w(w)} | Write pulse width | 25 | | | 30 | | | ns | | t _{rec(w)} | Write recovery time | 0 | | | 0 | | | ns | | t _{su(D)} | Data setup time | 25 | | | 25 | L | <u> </u> | ns | | th (D) | Data hold time | 0 | | | 0 | 1 | | ns | | tdis(w) | Output disable time after W low | 0 | | 15 | 0 | | 20 | ns | | ten(w) | Output enable time after W high | 0 | | | 0 | | | ns | | tsu (A.WIA) | Address to W high | 35 | | | 40 | | | ns | ### CONDITIONS Input pulse levels 0 to 3V Input rise and fall time 5ns Input timing reference level 1.5V Output timing reference level $0.8V \sim 2V$ Output loads Fig. 1, Fig. 2 Fig. 1 Output load Fig. 2 Output load for ten, tdis # TIMING DIAGRAMS $\overline{\mathbf{w}} = \mathbf{H}$ Note 2. Addresses valid prior to or coincident with $\overline{\mathbb{S}}$ transition low. Transition is measured ±500mV from steady state voltage with specified loading in Figure 2. ### 16384-BIT (16384-WORD BY 1-BIT) CMOS STATIC RAM ### **TIMING DIAGRAMS** ### Write cycle 1 (W control mode) ### Write cycle 2 (\$\overline{S}\$ control mode) Note 4. Hatching indicates the state is don't care. ^{5.} When the falling edge of \overline{W} is simultaneous or prior to the falling edge of \overline{S} , the output is maintained in the high impedance,