5V/ 3.3V 128K X 8 CMOS SRAM (Revolutionary pinout)

Features

- AS7C1025A (5V version)
- AS7C31025A (3.3V version)
- Industrial and commercial temperatures
- Organization: 131,072 x 8 bits
- High speed
- 10/12/15/20 ns address access time
- $5,6,7,8$ ns output enable access time
- Low power consumption: ACTIVE
- 853 mW (AS7C1025A) / max @ $10 \mathrm{~ns}(5 \mathrm{~V})$
- 522 mW (AS7C31025A) / max @ $10 \mathrm{~ns}(3.3 \mathrm{~V})$
- Low power consumption: STANDBY
- 55 mW (AS7C1025A) / max CMOS(5V)
- 36 mW (AS7C31025A) / max CMOS (3.3V)

Logic block diagram

- Latest 6T 0.25u CMOS technology
- Easy memory expansion with CE, OE inputs
- Center power and ground
- TTL/ LVTTL-compatible, three-state I/ 0
- JEDEC-standard packages
- 32-pin, 300 mil SOJ
- 32-pin, 400 mil SOJ
- 32-pin, TSOP 2
- ESD protection ≥ 2000 volts
- Latch-up current $\geq 200 \mathrm{~mA}$

Pin arrangement

$$
\text { 32-pin SOJ (} 300 \mathrm{mil} \text {) }
$$

$$
32 \text {-pin SOj (} 400 \mathrm{mil} \text {) }
$$

Selection guide

		$\mathbf{- 1 0}$	$\mathbf{- 1 2}$	$\mathbf{- 1 5}$	$\mathbf{- 2 0}$	Unit
Maximum address access time	10	12	15	20	ns	
Maximum output enable access time	5	6	7	8	ns	
Maximum operating current	AS7C1025A	155	150	145	140	mA
	AS7C31025A	145	140	135	130	mA
Maximum CMOS standby current	AS7C1025A	10	10	10	10	mA
	AS7C31025A	5	5	5	5	mA

Functional description

The AS7C1025A and AS7C31025A are high-performance CMOS 1,048,576-bit Static Random Access Memory (SRAM) devices organized as $131,072 \times 8$ bits. They are designed for memory applications where fast data access, low power, and simple interfacing are desired.
Equal address access and cycle times ($\mathrm{t}_{\mathrm{AA}}, \mathrm{t}_{\mathrm{RC}}, \mathrm{t}_{\mathrm{WC}}$) of $10 / 12 / 15 / 20 \mathrm{~ns}$ with output enable access times (t_{OE}) of $5,6,7,8 \mathrm{~ns}$ are ideal for high-performance applications. The chip enable input CE permits easy memory and expansion with multiple-bank memory systems.
When CE is high the devices enter standby mode. The standard AS7C1025A is guaranteed not to exceed 55 mW power consumption in standby mode.
A write cycle is accomplished by asserting write enable (WE) and chip enable (CE). Data on the input pins I/ 00-I/ 07 is written on the rising edge of WE (write cycle 1) or CE (write cycle 2). To avoid bus contention, external devices should drive I/ 0 pins only after outputs have been disabled with output enable (OE) or write enable (WE).
A read cycle is accomplished by asserting output enable ($\overline{O E}$) and chip enable ($\overline{C E}$), with write enable (WE) high. The chips drive I/ 0 pins with the data word referenced by the input address. When either chip enable or output enable is inactive, or write enable is active, output drivers stay in high-impedance mode.
All chip inputs and outputs are TTL-compatible, and operation is from a single 5 V supply (AS7C1025A) or 3.3V supply (AS7C31025A). The AS7C1025A and AS7C31025A are packaged in common industry standard packages.

Absolute maximum ratings

Parameter	Device	Symbol	Min	Max	Unit
Voltage on $\mathrm{V}_{\text {CC }}$ relative to GND	AS7C1025A	$\mathrm{V}_{\mathrm{t} 1}$	-0.50	+7.0	V
	AS7C31025A	$\mathrm{V}_{\mathrm{t} 1}$	-0.50	+5.0	V
Voltage on any pin relative to GND	$\mathrm{V}_{\mathrm{t} 2}$	-0.50	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	
Power dissipation	P_{D}	-	1.0	W	
Storage temperature (plastic)	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$	
Ambient temperature with $\mathrm{V}_{\text {CC }}$ applied	$\mathrm{T}_{\text {bias }}$	-55	+125	${ }^{\circ} \mathrm{C}$	
DC current into outputs (low)	$\mathrm{I}_{\text {OUT }}$	-	mA		

NOTE: Stresses greater than those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth table

CE	WE	OE	Data	Mode
H	X	X	High Z	Standby $\left(I_{\text {SB }} I_{\text {SBI }}\right)$
L	H	H	High Z	Output disable $\left(I_{\mathrm{CC}}\right)$
L	H	L	$\mathrm{D}_{\text {OUT }}$	Read $\left(I_{\mathrm{CC}}\right)$
L	L	X	$\mathrm{D}_{\text {IN }}$	Write $\left(\mathrm{I}_{\mathrm{CC}}\right)$

Key: X = Don't Care, L = Low, H = High

Recommended operating conditions

Parameter	Device	Symbol	Min	Nominal	Max	Unit
Supply voltage	AS7C1025A	$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	V
	AS7C31025A	$\mathrm{V}_{\text {CC }}$	3.0	3.3	3.6	V
Input voltage	AS7C1025A	$\mathrm{V}_{\text {IH }}$	2.2	-	$\mathrm{V}_{\text {CC }}+0.5$	V
	AS7C31025A	V_{IH}	2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
	Both	$\mathrm{V}_{\text {IL }}{ }^{\dagger}$	-0.5	-	0.8	V
Ambient operating temperature	commercial	T_{A}	0	-	70	${ }^{0} \mathrm{C}$
	industrial	T_{A}	-40	-	85	${ }^{\circ} \mathrm{C}$

${ }^{\dagger} \mathrm{V}_{\text {IL }}$ min. $=-3.0 \mathrm{~V}$ for pulse width less than $\mathrm{t}_{\mathrm{R} C} 2$.

DC operating characteristics (over the operating range) ${ }^{1}$

Parameter	Sym	Test conditions	Device	-10		-12		-15		-20		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
Input leakage current	$\left\|l_{\text {LI }}\right\|$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}$	Both	-	1	-	1	-	1	-	1	$\mu \mathrm{A}$
Output leakage current	\| ${ }_{\text {LO }}$ \|	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{CE}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {out }}=\mathrm{GND} \\ \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	Both	-	1	-	1	-	1	-	1	$\mu \mathrm{A}$
Operating power supply current	$\mathrm{I}_{\text {CC }}$	$\overline{C E}=\mathrm{V}_{\text {IL }}, \mathrm{f}=\mathrm{f}_{\text {Max, }}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	AS7C1025A	-	155	-	150	-	145	-	140	
			AS7C31025A	-	145	-	140	-	135	-	130	mA
Standby power supply current ${ }^{l}$	$I_{\text {SB }}$	$\mathrm{CE}=\mathrm{V}_{\text {IH }}, \mathrm{f}=\mathrm{f}_{\text {Max, }}, \mathrm{f}_{\text {OUT }}=0$	AS7C1025A	-	30	-	25	-	20	-	20	mA
			AS7C31025A	-	30	-	25	-	20	-	20	
	$\mathrm{I}_{\text {SB1 }}$	$\begin{gathered} \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}^{-} 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \\ \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{f}=0, \mathrm{f}_{\text {OUT }}=0 \end{gathered}$	AS7C1025A	-	10		10		10		10	mA
			AS7C31025A	-	5		5		5		5	
Output voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=\mathrm{Min}$	Both	-	0.4	-	0.4	-	0.4	-	0.4	V
	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		2.4		2.4	-	2.4	-	2.4	-	V

Capacitance ($\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=$ NOMINAL) ${ }^{2}$

Parameter	Symbol	Signals	Test conditions	Max	Unit
Input capacitance	$\mathrm{C}_{I N}$	$\mathrm{~A}, \mathrm{CE}, \mathrm{WE}, \mathrm{OE}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	5	PF
I / O capacitance	$\mathrm{C}_{1 / O}$	I / O	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	7	pF

Read cycle (over the operating range) ${ }^{3,9}$

Parameter	Symbol	-10		-12		-15		-20		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Read cycle time	t_{RC}	10	-	12	-	15	-	20	-	ns	
Address access time	t_{AA}	-	10	-	12	-	15	-	20	ns	3
Chip enable (CE) access time	$\mathrm{t}_{\text {ACE }}$	-	10	-	12	-	15	-	20	ns	3
Output enable (0E) access time	t_{OE}	-	5	-	6	-	7	-	8	ns	
Output hold from address change	t_{OH}	2	-	3	-	3	-	3	-	ns	5
CE Low to output in low Z	$\mathrm{t}_{\text {CLZ }}$	0	-	0	-	0	-	0	-	ns	4,5
CE High to output in high Z	$\mathrm{t}_{\text {chz }}$	-	5	-	6	-	7	-	7	ns	4,5
OE Low to output in low Z	$\mathrm{t}_{\text {OLZ }}$	0	-	0	-	0	-	0	-	ns	4, 5
OE High to output in high Z	$\mathrm{t}_{\mathrm{OHZ}}$	-	5	-	6	-	7	-	7	ns	4,5
Power up time	t_{PU}	0	-	0	-	0	-	0	-	ns	4,5
Power down time	tPD	-	10	-	12	-	15	-	20	ns	4, 5

Key to switching waveforms

Rising input $\quad \square$ Undefined/ don't care

Read waveform 1 (address controlled) 3,6,7,9

Read waveform 2 (CE and OE controlled) ${ }^{3,6,8,9}$

Write cycle (over the operating range) ${ }^{I I}$

Parameter	Symbol	-10		-12		-15		-20		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
W rite cycle time	twc	10	-	12	-	15	-	20	-	ns	
Chip enable (CE) to write end	t_{CW}	8	-	10	-	12	-	12	-	ns	
Address setup to write end	$t_{\text {AW }}$	8	-	9	-	10	-	12	-	ns	
Address setup time	$\mathrm{t}_{\text {AS }}$	0	-	0	-	0	-	0	-	ns	
W rite pulse width	twp	7	-	8	-	9	-	12	-	ns	
W rite recovery time	$\mathrm{t}_{\text {WR }}$	0	-	0	-	0	-	0	-	ns	
Address hold from end of write	t_{AH}	0	-	0	-	0	-	0	-	ns	
Data valid to write end	$\mathrm{t}_{\text {DW }}$	5	-	6	-	8	-	10	-	ns	
Data hold time	t_{DH}	0	-	0	-	0	-	0	-	ns	4,5
W rite enable to output in high Z	$t_{\text {wz }}$	-	6	-	6	-	6	-	8	ns	4,5
Output active from write end	tow	1	-	1	-	1	-	2	-	ns	4,5

Write waveform 1 (WE controlled) ${ }^{10,11}$

Write waveform 2 (CE controlled) ${ }^{10,11}$

AC test conditions

- Output load: see Figure B or Figure C.
- Input pulse level: GND to 3.0 V . See Figure A.
- Input rise and fall times: 2 ns . See Figure A.
- Input and output timing reference levels: 1.5V.

Figure A: Input pulse

Figure B: 5V Output load

Thevenin equivalent:

Figure C: 3.3V Output load

Notes

1 During $\mathrm{V}_{C C}$ power-up, a pull-up resistor to V_{CC} on CE is required to meet I_{SB} Specification.
2 This parameter is sampled, but not 100% tested.
3 For test conditions, see AC Tet Conditions, Figures A, B, and C.
$4 \mathrm{t}_{\mathrm{CZ}}$ and $\mathrm{t}_{\mathrm{CHZ}}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$, as in Figure C . Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
5 This parameter is guaranteed, but not 100% tested.
6 WE is High for read cycle.
7 CE and $O E$ are Low for read cycle.
8 Address valid prior to or coincident with CE transition Low.
9 All read cycle timings are referenced from the last valid address to the first transitioning address.
10 CE or WE must be High during address transitions. Either CE or WE asserting high terminates a write cycle.
11 All write cycle timings are referenced from the last valid address to the first transitioning address.
12 NA.
$13 \mathrm{C}=30 \mathrm{pF}$, except all high Z and low Z parameters, where $\mathrm{C}=5 \mathrm{pF}$.

Package dimensions

32-pin TSOP 2

Symbol	32-pin TSOP 2 (mm)	
	Min	
A	-	Max
A1	0.05	0.15
b	0.3	0.52
C	0.12	0.21
D	20.82	21.08
E1	10.03	10.29
E	11.56	11.96
e	1.27 BSC	
L	0.40	0.60
ZD	0.95 REF.	
α	0°	5°

32-pin SOJ

$300 \mathrm{mil} / 400 \mathrm{mil}$

Symbol	32-pin SOJ 300 mil		32-pin SOJ 400 mil	
	Max	Min		Max
	-	0.145	-	0.145
A1	0.025	-	0.025	-
A2	0.086	0.105	0.086	0.115
B	0.026	0.032	0.026	0.032
b	0.014	0.020	0.015	0.020
C	0.006	0.013	0.007	0.013
D	0.820	0.830	0.820	0.830
E	0.250	0.275	0.360	0.380
E1	0.292	0.305	0.395	0.405
E2	0.330	0.340	0.435	0.445
e	0.050	BSC	0.050	BSC

Ordering codes

Package \} Access time	Volt.	Temperature	10 ns	12 ns	15 ns	20 ns
TSOP 2	5V	Commercial	AS7C1025A-10HFC	AS7C1025A-12HFC	AS7C1025A-15HFC	AS7C1025A-20HFC
		Industrial	AS7C1025A-10TI	AS7C1025A-12HFI	AS7C1025A-15HFI	AS7C1025A-20HFI
	3.3V	Commercial	AS7C31025A-10HFC	AS7C31025A-12HFC	AS7C31025A-15HFC	AS7C31025A-20HFC
		Industrial	AS7C31025A-10HFI	AS7C31025A-12HFI	AS7C31025A-15HFI	AS7C31025A-20HFI
300-mil SOJ	5V	Commercial	AS7C1025A-10TJC	AS7C1025A-12TJC	AS7C1025A-15TJC	AS7C1025A-20TJC
		Industrial	AS7C1025A-10TJI	AS7C1025A-12TJI	AS7C1025A-15TJI	AS7C1025A-20TJI
	3.3 V	Commercial	AS7C31025A-10TJC	AS7C31025A-12TJC	AS7C31025A-15TJC	AS7C31025A-20TJC
		Industrial	AS7C31025A-10TJI	AS7C31025A-12TJI	AS7C31025A-15TJI	AS7C31025A-20TJI
400-mil SOJ	5 V	Commercial	AS7C1025A-10JC	AS7C1025A-12JC	AS7C1025A-15JC	AS7C1025A-20JC
		Industrial	AS7C1025A-10JI	AS7C1025A-12JI	AS7C1025A-15JI	AS7C1025A-20JI
	3.3 V	Commercial	AS7C31025A-10JC	AS7C31025A-12JC	AS7C31025A-15JC	AS7C31025A-20JC
		Industrial	AS7C31025A-10JI	AS7C31025A-12JI	AS7C31025A-15JI	AS7C31025A-20JI

Part numbering system

AS7C	\mathbf{X}	$\mathbf{1 0 2 5}$	$\mathbf{- X X}$	\mathbf{X}	\mathbf{X}
SRAM prefix	VoItage: Blank $=5 \mathrm{~V}$ CMOS $3=3.3 V$ CMOS	Device number	Access time	Package: HF $=$ TSOP 2 $/ 32$ Pin TJ SOJ 300 mil $J=S O J 400$ mil	Temperature range $\mathrm{C}=$ Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\mathrm{I}=$ Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

