Serial Input PLL with 2.5-GHz Prescaler

Features

- Operating voltage 2.7 V to 5.5 V
- Operating frequency: up to 2.5 GHz with prescaler ratios of 32/33 and 64/65
- Lock detect feature
- Power-down mode
- 20-pin TSSOP (Thin Shrink Small Outline Package)
- 20-pin MLF (Micro Lead Frame)

Applications

The CYW2325 is a serial-input high-performance frequency synthesizer which includes a dual modulus prescaler for RF applications up to 2.5 GHz . The synthesizer is designed for cellular telephone systems, portable wireless communications, CATV and other wireless communication systems. The device operates from 2.7V and dissipates only 21 mW .

CYW2325 PLL Block Diagram

Pin Configuration

MLF

Pin Definitions

Pin Name	$\begin{gathered} \text { Pin } \\ \text { No. } \\ \text { (TSSOP) } \end{gathered}$	Pin No. (MLF)	$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Pin Description
OSC_IN	1	18	I	Oscillator Input: This input has a $\mathrm{V}_{\mathrm{CC}} / 2$ threshold and CMOS logic level sensitivity.
OSC_OUT	3	20	0	Oscillator Output
V_{P}	4	1	P	Charge Pump Rail Voltage: This supply for charge pump. Must be $>\mathrm{V}_{\text {Cc }}$.
V_{CC}	5	2	P	Power Supply Connection for PLL: When power is removed from V_{CC} all latched data is lost.
D_{O}	6	3	0	Charge Pump Output: The phase detector gain is $\mathrm{I}_{\mathrm{P}} / 2 \pi$. Sense polarity can be reversed by setting FC LOW (pin 15).
GND	7	4	G	Analog and Digital Ground Connection: This pin must be grounded.
LD	8	5	0	Lock Detect Pin: This output is HIGH with narrow LOW pulses when the loop is locked.
$\mathrm{F}_{\text {IN }}$	10	7	I	Input to Prescaler: Maximum frequency 2.5 GHz.
CLOCK	11	8	I	Data Clock Input: One bit of data is loaded into the Shift Register on the rising edge of this signal.
DATA	13	10	1	Serial Data Input
LE	14	11	I	Load Enable: On the rising edge of this signal, the data stored in the Shift Register is latched into the counters and configuration controls.
F_{C}	15	12	I	Phase Sense Control for Phase Detector with Internal Pull-up: When pulled LOW, the polarity of the Phase Detector is reversed.
BISW	16	13	0	Analog Switch Output: Connects to output of charge pump when LE is HIGH.
$\mathrm{F}_{\text {OUT }}$	17	14	0	Monitor Point for Phase Detector Input
\varnothing_{P}	18	15	0	External Charge Pump Output: Open drain N-Channel FET, pull-up resistor required.
PWDN	19	16	I	Power-Down Pin with Internal Pull-up: When pin is HIGH, device is in normal state. When pin is LOW, device is in power-down mode. When device enters power-down mode the charge pump is in the High-Impedance condition.
\varnothing_{R}	20	17	O	External Change Pump: (CMOS logic output).
NC	2, 9, 12	6, 9, 19		No Connect

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating
only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Description	Rating	Unit
V_{CC} or V_{P}	Power Supply Voltage	-0.5 to +6.5	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {OUT }}$	Output Current	± 15	mA
$\mathrm{~T}_{\mathrm{L}}$	Lead Temperature	+260	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$

Handling Precautions

Devices should be transported and stored in antistatic containers.
These devices are static sensitive. Ensure that equipment and personnel contacting the devices are properly grounded.
Cover workbenches with grounded conductive mats.

Always turn off power before adding or removing devices from system.
Protect leads with a conductive sheet when handling or transporting PC boards with devices.
If devices are removed from the moisture protective bags for more than 36 hours, they should be baked at $85^{\circ} \mathrm{C}$ in a moisture free environment for 24 hours prior to assembly in less than 24 hours.

Recommended Operating Conditions

Parameter	Description	Test Condition	Rating	Unit
V_{CC}	Power Supply Voltage		2.7 to 5.5	V
$\mathrm{~V}_{\mathrm{P}}$	Charge Pump Voltage		V_{CC} to +5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	Ambient air at 0 CFM flow	-40 to +85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless otherwise specified

Parameter	Description	Test Condition	Pin	Min.	Typ.	Max.	Unit
I_{CC}	Power Supply Current		V_{CC}		8		mA
$\mathrm{I}_{\text {PD }}$	Power-down Current	Power-down, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	V_{CC}		6	100	$\mu \mathrm{A}$
F_{IN}	Maximum Operating Frequency		$\mathrm{F}_{\text {IN }}$	100		2500	MHz
Fosc	Oscillator Input Frequency	No load on OSC_OUT	OSC_IN	5		45	MHz
		With OSC_OUT loaded		5		25	MHz
F ϕ	Phase Detector Frequency					10	MHz
$\mathrm{PF}_{\mathrm{IN}}$	Input Sensitivity	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\mathrm{F}_{\text {IN }}$	-15		4	dBm
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		-10		4	dBm
$\mathrm{V}_{\text {OSC }}$	Oscillator Input Sensitivity		OSC_IN	0.5			$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	Oscillator Input Current			-100		100	$\mu \mathrm{A}$
V_{IH}	High Level Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	DATA, CLOCK, LE	$\mathrm{V}_{\mathrm{CC}}{ }^{*} 0.8$			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage					$\mathrm{V}_{\mathrm{CC}}{ }^{*} 0.2$	V
I_{IH}	High Level Input Current			-10	1	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current			-10	1	10	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA} \end{aligned}$	F_{O}	2.2			V
V_{OL}	Low Level Output Voltage					0.4	V
$\mathrm{ID}_{\mathrm{O}(\mathrm{SO})}$	ID ${ }_{\text {O }}$, Source Current	$\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2$	D_{0}		-3.7		mA
		$\mathrm{V}_{\mathrm{P}}=5.0 \mathrm{~V}, \mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2$			-4.1		mA
$\mathrm{ID}_{\mathrm{OH}(\mathrm{SI})}$	ID_{O}, Sink Current	$\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}, \mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2$	D_{0}		3.7		mA
		$\mathrm{V}_{\mathrm{P}}=5.0 \mathrm{~V}, \mathrm{VD}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}} / 2$			4.1		mA
$\Delta \mathrm{ID}_{\mathrm{O}}$	ID ${ }_{\mathrm{O}}$ Charge Pump Sink and Source Mismatch				5		\%
ID_{O} vs T	Charge Pump Current Variation vs. Temperature	$-40^{\circ} \mathrm{C}<\mathrm{T}<85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DO}}=\mathrm{V}_{\mathrm{P}} / 2^{[1]}$			5		\%
$\mathrm{ID}_{\mathrm{O}-\mathrm{tri}}$	Charge Pump HighImpedance Leakage Current				± 2		nA

Note:

1. $\mathrm{ID}_{\mathrm{O}} \mathrm{VS} \mathrm{T}$; Charge pump current variation vs. temperature.
$\left[\mathrm{IID}_{\mathrm{O}(\mathrm{SI}) @ \mathrm{~T}^{1}}-\mathrm{IID}_{\mathrm{O}(\mathrm{SI}) @ 25^{\circ} \mathrm{C}} \mathrm{I}\right] / \mathrm{II} \mathrm{D}_{\mathrm{O}(\mathrm{SI}) @ 25^{\circ} \mathrm{C}^{\mathrm{I}}}{ }^{*} 100 \%$ and
$\left[I I \mathrm{D}_{\mathrm{O}(\mathrm{SO}) @ \mathrm{~T}} \mathrm{I}^{\mathrm{I}} \mathrm{II} \mathrm{D}_{\mathrm{O}(\mathrm{SO}) @ 25^{\circ} \mathrm{C}} \mathrm{I}\right] / I \mathrm{D}_{\mathrm{O}}(\mathrm{SO}) @ 25^{\circ} \mathrm{C}^{\mathrm{I}}{ }^{*} 100 \%$.

Timing Waveforms

Phase Characteristics

For normal operation, the FC pin is used to select the output polarity of the phase detector. Both the internal and any external charge pump are affected.
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1), FC should be set HIGH or OPEN CIRCUIT:
When VCO characteristics are like (2), FC should be set LOW.
When FC is set HIGH or OPEN CIRCUIT, $F_{\text {out }}$ pin is set to the reference divider output, F_{r}. When FC is set LOW, $F_{\text {out }}$ pin is set to the programmable divider output F_{p}.

Phase Detector Output Waveform

D_{O} Charge Pump Output Current Waveform

Timing Waveforms (continued)
Serial Data Input Timing Waveform ${ }^{[2,3,4,5]}$

Serial Data Input

Data is input serially using the DATA, CLOCK, and LE pins.
Two control bits direct data into the locations given in Table 1.
Table 1. Control Configuration

CNT	Function
1	Reference Counter: $\mathrm{R}=3$ to 16383 , set prescaler ratio $\mathrm{PRE}=0: 64 / 65, \mathrm{PRE}=1: 32 / 33$
0	Program Counter: $\mathrm{A}=0$ to $63, \mathrm{~B}=3$ to 2047

Table 2. Shift Register Configuration ${ }^{[6]}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Reference Counter and Configuration Bits																		
CNT	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	PRE			
Programmable Counter Bits																		
CNT	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Bit(s) Name			Function															
CNT			Control Bit: Directs programming data to reference or programmable counters.															
R1-R14			Reference Counter Setting Bits: 14 bits, $\mathrm{R}=3$ to 16383. ${ }^{[7]}$															
PRE			Prescaler Divide Bit: LOW = 64/65 and HIGH = 32/33.															
A1-A7			Swallow Counter Divide Ratio: $\mathrm{A}=0$ to 63.															
B1-B11			Programmable Counter Divide Ratio: B = 3 to 2047. ${ }^{[7]}$															

Notes:

2. $\mathrm{t} 1-\mathrm{t} 6=\mathrm{t}>50 \mathrm{~ns}$.
3. CLOCK may remain HIGH after latching in data.
4. DATA is shifted in with the MSB first.
5. For DATA definitions, refer to Table 2.
6. The MSB is loaded in first.
7. Low count ratios may violate frequency limits of the phase detector.

Table 3. 6-Bit Swallow Counter (A) Truth Table ${ }^{[8]}$

Divide Ratio A	A7	A6	A5	A4	A3	A2	A1
0	X	0	0	0	0	0	0
1	X	0	0	0	0	0	1
$:::$	$:::$	$:::$	$:::$	$:::$	$:::$	$:::$	$::$
62	X	1	1	1	1	1	0
63	X	1	1	1	1	1	1

Table 4. 11-Bit Programmable Counter (B) Truth Table ${ }^{[9]}$

Divide Ratio B	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
$:::$	$:::$	$:::$	$:::$	$:::$	$::$	$:::$	$::$	$::$	$:::$	$::$	$::$
2046	1	1	1	1	1	1	1	1	1	1	0
2047	1	1	1	1	1	1	1	1	1	1	1

Table 5. 14-Bit Programmable Reference Counter Truth Table ${ }^{[9]}$

Divide Ratio R	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
$::$	$:::$	$::$	$:::$	$:::$	$:::$	$::$	\cdots	$:::$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
16382	1	1	1	1	1	1	1	1	1	1	1	1	1	0
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Ordering Information ${ }^{[10]}$

Ordering Code	Package Name	Package Type	Tape and Reel Option
CYW2325	ZI	$20-\mathrm{pin}$ TSSOP $(0.173$ " wide $)$	TR
	LFI	$20-$ pin MLF $(4 \mathrm{~mm} \times 4 \mathrm{~mm})$	

Notes:
8. B is greater than or equal to A.
9. Divide ratio less than 3 is prohibited. The divide ratio can be calculated using the following equation:
fvco $=\left\{\left(P^{*} B\right)+A\right\}^{*}$ fosc $/ R$ where $(A \leq B)$
fvco: Output frequency of the external VCO.
fosc: The crystal reference oscillator frequency.
A: Preset divide ratio of the 6 -bit swallow counter.
B: Preset ratio of the 11-bit programmable counter (3 to 2047).
P: Preset divide ratio of the dual modulus prescaler.
R: Preset ratio of the 15-bit programmable reference counter (3 to 16383).
The divide ratio $N=(P * B)+A$.
10. Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Document \#: 38-00920-*A

Examples

Figure 1. Charge Pump Current

Marker Number	Input Frequency	S11 (Ω)
Marker 1	100 MHz	$501-\mathrm{j} 688$
Marker 2	1000 MHz	$36-\mathrm{j} 158$
Marker 3	1800 MHz	$30-\mathrm{j} 98$
Marker 4	2500 MHz	$20-\mathrm{j} 38$

Figure 2. Input Impedance
$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to 5.5 V
FIN=100 MHz to 2700 MHz

Reference Spur	Level (dBc/Hz)
250 KHz	-85

Figure 4. Reference Spur

Figure 3. Phase Noise vs Offset Frequency

Package Diagrams

TOP VIEW

$\frac{\text { DETAIL }{ }^{\prime} \text { ' }}{(\text { SCALLE } 30 / 1)}$

DETAIL "B" DAMEAR PROTRUSION
THIS TABLE IN MILLIMETERS

THIS TABLE IN INCHES

${ }^{s_{1}}$	COMMON DIMENSIONS				NOTE	4			$\stackrel{6}{N}$
				${ }^{N_{0}}{ }_{T_{E}}$	VARIATIONS		D		
	MIN.	NOM.	MAX.			MIN.	NOM.	MAX.	
A			. 0433		AA	. 114	. 118	. 122	8
A_{1}	002	004	. 006		AB	. 193	. 197	. 201	14
A_{2}	. 0335	. 0354	0374		AC	. 193	. 197	. 201	16
b	. 0075	-	. 0118	8	AD	. 252	. 256	. 260	20
b1	. 0075	. 0087	. 0098		AE	. 303	. 307	. 311	24
c	. 0035	-	0079		AF	. 378	. 382	. 386	28
c1	. 0035	. 0050	0053						
D	SEE VARIATIONS			4					
E	169	173	. 177	4					
e	0256 BSC								
H	246	252	. 256						
L	020	024	. 028	5					
N	SEE VARIATIONS			6					
∞	0°	4°	8°						

VARIATION AF IS DESIGNED BUT NOT TOOLED

CYW2325

Package Diagrams (continued)

20-Pin Micro Lead Frame Package (MLF 4 mm X 4 mm)

TOP VEW

SECION "C-C"

BOTTOM VIEW

FOR ODD TERMINAL/SIDE

FOR EVEN TERMINAL/SIDE

NOTES:

1. DIE THICKNESS ALLOWABLE IS 0.305 mm MAXIMMM(. 012 INCHES NAXIMUM)
2. DINENSIONING \& TOLERANCES CONFORN TO ASME Y14.5M. - 1994
3. N IS THE NUMBER OF TERMINALS,

Nd IS THE NUNBER OF TERMINALS IN X-DIRECTION \&
Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.
4. DIMENSION b APPLIES TO PLATED TERNINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.
5. THE PIN \#1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE

PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.
6. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
7. ALL DIMENSIONS ARE IN MLLIMETERS.
8. THE SHAPE SHOWN ON FOUR CORNERS ARE NOT ACTUAL I/O.
9. PACKAGE WARPAGE MAX 0.05 mm .
10. APPLIED FOR EXPOSED PAD AND TERMINALS

EXCLUDE EMBEDDING PART OF EXPOSED
PAD FROM MEASURING.
11. APPLIED ONLY FOR TERMINALS.

Revision History

$\begin{array}{l}\text { Document Title: CYW2325 Serial Input PLL with 2.5-GHz Prescaler } \\ \text { Document Number: 38-07406 } \\ \hline \text { REV. }\end{array}$ ECN No.					$\begin{array}{c}\text { Isue } \\ \text { Date }\end{array}$
$* *$	113872	$04 / 25 / 02$	Orig. of		
Change					

