UT54ACS14E/UT54ACTS14E

Hex Inverting Schmitt Triggers January, 2018 **Datasheet** www.cobham.com/HiRel

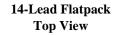
COBHAM

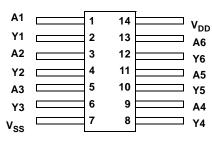
The most important thing we build is trust

FEATURES

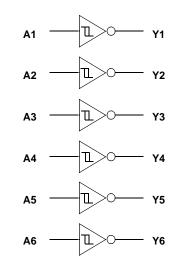
- 0.6µm CRH CMOS Process - Latchup immune
- High speed
- Low power consumption
- Wide power supply operating range of 3.0V to 5.5V
- Available QML Q or V processes
- 14-lead flatpack
- UT54ACS14E SMD 5962-96524 •
- UT54ACTS14E SMD 5962-96525

FUNCTION TABLE

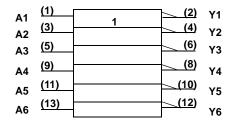

INPUT	OUTPUT
А	Y
Н	L
L	Н


DESCRIPTION

The UT54ACS14E and the UT54ACTS14E are hex inverters with schmitt trigger inputs. The circuits perform the Boolean function Y = A.


The devices are characterized over full HiRel temperature range of -55° C to $+125^{\circ}$ C.

PINOUTS



LOGIC DIAGRAM

LOGIC SYMBOL

Note:

1. Logic symbol in accordance with ANSI/IEEE standard 91-1984 and IEC Publication 617-12.

OPERATIONAL ENVIRONMENT¹

PARAMETER	LIMIT	UNITS
Total Dose	1.0E6	rads(Si)
SEU Threshold ²	80	MeV-cm ² /mg
SEL Threshold	108	MeV-cm ² /mg
Neutron Fluence	1.0E14	n/cm ²

Notes:

1. Logic will not latchup during radiation exposure within the limits defined in the table.

2. Device storage elements are immune to SEU affects.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	LIMIT	UNITS
V _{DD}	Supply voltage	-0.3 to 7.0	V
V _{I/O}	Voltage any pin	-0.3 to V _{DD} + 0.3	V
T _{STG}	Storage Temperature range	-65 to +150	°C
T _J	Maximum junction temperature	+175	°C
T _{LS}	Lead temperature (soldering 5 seconds)	+300	°C
$\Theta_{ m JC}$	Thermal resistance junction to case	15 (ACS) 15.5 (ACTS)	°C/W
II	DC input current	±10	mA
P _D	Maximum package power dissipation permitted @ Tc = +125°C	3.3	W

Note:

1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Per MIL-STD-883, method 1012.1, Section 3.4.1, P_D = (T_{j(max)} - T_{c(max)}) / \Theta_{jc}

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMIT	UNITS
V _{DD}	Supply voltage	3.0 to 5.5	V
V _{IN}	Input voltage any pin	0 to V _{DD}	V
T _C	Temperature range	-55 to +125	°C

DC ELECTRICAL CHARACTERISTICS FOR THE UT54ACS14E⁷ ($V_{DD} = 3.0V$ to 5.5V; $V_{SS} = 0V^6$; -55°C < T_C < +125°C)

SYMBOL	DESCRIPTION	CONDITION	MIN	MAX	UNIT
V_{T^+}	Schmitt trigger positive-going threshold ¹	V _{DD} from 3.0V to 5.5V		$0.7 V_{DD}$	V
V _T -	Schmitt trigger negative-going threshold ¹	V _{DD} from 3.0V to 5.5V	0.3V _{DD}		V
$V_{\rm H1}$	Range of hysteresis ($V_{T+} - V_{T-}$)	V _{DD} from 4.5V to 5.5V	0.6	1.5	V
V _{H2}	Range of hysteresis (V _{T+} - V _{T-})	V _{DD} from 3.0V to 3.6V	0.3	1.2	V
I _{IN}	Input leakage current	$V_{IN} = V_{DD} \text{ or } V_{SS}$	-1	1	μΑ
V _{OL}	Low-level output voltage ³	$I_{OL} = 100 \mu A$ V _{DD} from 3.0V to 5.5V		0.25	V
V _{OH}	High-level output voltage ³	$I_{OH} = -100\mu A$ V_{DD} from 3.0V to 5.5V	V _{DD} - 0.25		V
I _{OS1}	Short-circuit output current ² , ⁴	$V_{O} = V_{DD}$ and V_{SS} V_{DD} from 4.5V to 5.5V	-200	200	mA
I _{OS2}	Short-circuit output current ² , ⁴	$V_{O} = V_{DD}$ and V_{SS} V_{DD} from 3.0V to 3.6V	-100	100	mA
I _{OL1}	Low level output current ⁹ (sink)	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OL} = 0.4V$ $V_{DD} \text{ from } 4.5V \text{ to } 5.5V$	8		mA
I _{OL2}	Low level output current ⁹ (sink)	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OL} = 0.4V$ $V_{DD} \text{ from } 3.0V \text{ to } 3.6V$	6		mA
I _{OH1}	High level output current ⁹ (source)	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OH} = V_{DD} - 0.4V$ $V_{DD} \text{ from } 4.5V \text{ to } 5.5V$	-8		mA
I _{OH2}	High level output current ⁹ (source)	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OH} = V_{DD} - 0.4V$ $V_{DD} \text{ from } 3.0V \text{ to } 3.6V$	-6		mA
P _{total1}	Power dissipation ^{2, 8}	$C_L = 50 pF$ V_{DD} from 4.5V to 5.5V		1.8	mW/ MHz
P _{total2}	Power dissipation ^{2, 8}	$C_L = 50 pF$ V_{DD} from 3.0V to 3.6V		0.72	mW/ MHz

		Pre-Rad		10	
	Quiescent	All Device Types	$V_{IN} = V_{DD}$ or V_{SS}		
I _{DDQ}	Supply	Post-Rad	$V_{DD} = V_{DD} MAX$	50	μΑ
	Current	Device Type - 03			
		Post-Rad		 130	
		Device Type - 02		150	
C _{IN}	Input capacita	ance ⁵	$f = 1$ MHz, $V_{DD} = 0$	15	pF
C _{OUT}	Output capaci	itance ⁵	$f = 1$ MHz, $V_{DD} = 0$	15	pF

Notes:

1. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $V_{IH} = V_{IH}(min) + 20\%$, -0%; $V_{IL} = V_{IL}(max) + 0\%$, -50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $V_{IH}(min)$ and $V_{IL}(max)$.

2. Supplied as a design limit but not guaranteed or tested.

3. Per MIL-PRF-38535, for current density \leq 5.0E5 amps/cm², the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765pF/MHz. 4. Not more than one output may be shorted at a time for maximum duration of one second. 5. Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V_{SS} at

frequency of 1MHz and a signal amplitude of 50mV rms maximum.

6. Maximum allowable relative shift equals 50mV.

Maintent and water betary source (quars source)
 Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

Power dissipation specified per switching output.
 Guaranteed by characterization, but not tested.

AC ELECTRICAL CHARACTERISTICS FOR THE UT54ACS14 E^2

SYMBOL	PARAMETER	Condition	V _{DD}	MINIMUM	MAXIMUM	UNIT
t _{PHL}	Input to Yn	$C_L = 50 pF$	3.0V to 3.6V	2	18	ns
			4.5V to 5.5V	2	14	ns
t _{PLH}	Input to Yn	$C_L = 50 pF$	3.0V to 3.6V	2	17	ns
			4.5V to 5.5V	2	13	ns
t _{PHL}	Input to Yn	$C_L = 30 pF$	3.0V to 3.6V	2	14	ns
			4.5V to 5.5V	2	10	ns
t _{PLH}	Input to Yn	$C_L = 30 pF$	3.0V to 3.6V	2	13	ns
			4.5V to 5.5V	2	9	ns

 $(V_{DD}$ = 3.0V to 5.5V; V_{SS} = $~0V^{-1},~-55^{\circ}C < T_C < +125^{\circ}C)$

Notes:

1. Maximum allowable relative shift equals 50mV.

Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

DC ELECTRICAL CHARACTERISTICS FOR THE UT54ACTS14 ${\rm E}^7$

(V_{DD} = 3.0V to 5.5V; V_{SS} = 0V^6; -55°C < T_C < +125°C)

SYMBOL	DESCRIPTION	CONDITION	MIN	MAX	UNIT
V_{T+1}	Schmitt trigger positive-going threshold ¹	V _{DD} from 4.5V to 5.5V		2.25	V
V _{T+2}	Schmitt trigger positive-going threshold ¹	V _{DD} from 3.0V to 3.6V		2.0	V
V _{T-1}	Schmitt trigger negative-going V _{DD} from 4.5V to 5.5 threshold ¹		0.5		V
V _{T-2}	Schmitt trigger negative-going threshold 1V DD from 3.0V to 3.6V0.5		0.5		V
V_{H1}	Range of hysteresis (V _{T+1} - V _{T-1})	V _{DD} from 4.5V to 5.0V	0.4	1.5	V
V _{H2}	Range of hysteresis ($V_{T+2} - V_{T-2}$)	V _{DD} from 3.0V to 3.6V	0.2	1.2	V
I _{IN}	Input leakage current	$V_{IN} = V_{DD}$ or V_{SS}	-1	1	μΑ
V _{OL1}	Low-level output voltage ³	$I_{OL} = 8mA$ V_{DD} from 4.5V to 5.5V		0.4	V
V _{OL2}	Low-level output voltage ³	$I_{OL} = 6mA$ V_{DD} from 3.0V to 3.6V		0.4	V
V _{OH1}	High-level output voltage ³	$I_{OH} = -8mA$ V _{DD} from 4.5V to 5.5V	0.7V _{DD}		V
V _{OH2}	High-level output voltage ³	$I_{OH} = -6mA$ V_{DD} from 3.0V to 3.6V	2.4		V
I _{OS1}	Short-circuit output current ² , ⁴	$V_{O} = V_{DD}$ or V_{SS} V_{DD} from 4.5V to 5.5V	-200	200	mA
I _{OS1}	Short-circuit output current ² , ⁴	$V_{O} = V_{DD}$ or V_{SS} V_{DD} from 3.0V to 3.6V	-100	100	mA
I _{OL1}	Low level output current ⁹	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OL} = 0.4V$ V_{DD} from 4.5V to 5.5V	8		mA
I _{OL2}	Low level output current ⁹	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OL} = 0.4V$ V_{DD} from 3.0V to 3.6V	6		mA

I _{OH1}	High level output current ⁹		$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OH} = V_{DD} \text{-} 0.4 \text{V},$ $V_{DD} \text{ from } 4.5 \text{V to } 5.5 \text{V}$	-8		mA
I _{OH2}	High level out	put current ⁹	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OH} = V_{DD} - 0.4V$ $V_{DD} \text{ from } 3.0V \text{ to } 3.6V$	-6		mA
P _{total1}	Power dissipat	tion ^{2, 8}	$C_L = 50 pF$ V_{DD} from 4.5V to 5.5V		1.3	mW/ MHz
P _{total2}	Power dissipat	tion ^{2, 8}	$C_L = 50 pF$ V _{DD} from 3.0V to 3.6V		0.5	mW/ MHz
		Pre-Rad			10	
	Quiescent	All Device Types	$V_{IN} = V_{DD}$ or V_{SS}			
I _{DDQ}	Supply	Post-Rad	$V_{DD} = V_{DD} MAX$		50	μΑ
	Current	Device Type - 03				
		Post-Rad		-	130	
		Device Type - 02				
ΔI_{DDQ}	Quiescent Sup	ply Current Delta	For input under test		3.1	mA
			$V_{IN} = V_{DD} - 2.1V$			
			For all other inputs			
			$V_{IN} = V_{DD}$ or V_{SS}			
			$V_{DD} = 5.5 V$			
C _{IN}	Input capacitat	nce ⁵	$f = 1$ MHz, $V_{DD} = 0$		15	pF
C _{OUT}	Output capacit	tance ⁵	$f = 1$ MHz, $V_{DD} = 0$		15	pF

Notes:

2. Supplied as a design limit but not guaranteed or tested.

3. Per MIL-PRF-38535, for current density \leq 5.0E5 amps/cm², the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765pF/ MHz.

4. Not more than one output may be shorted at a time for maximum duration of one second.

5. Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V_{SS} at frequency of 1MHz and a signal amplitude of 50mV rms maximum.

6. Maximum allowable relative shift equals 50mV.

Maximum and water feature similar equals soliny.
 Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

Power dissipation specified per switching output.
 Guaranteed by characterization, but not tested.

^{1.} Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $V_{IH} = V_{IH}(min) + 20\%$, - 0%; $V_{IL} = V_{IL}(max) + 0\%$, -50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $V_{IH}(min)$ and $V_{IL}(max)$.

AC ELECTRICAL CHARACTERISTICS FOR THE UT54ACTS14E²

$(V_{DD} = 3.0V \text{ to } 5.5V; V_{SS} = 0V^{-1}, -55^{\circ}C < T_C < +125^{\circ}C)$

SYMBOL	PARAMETER	Condition	V _{DD}	MINIMUM	MAXIMUM	UNIT
t _{PHL}	Input to Yn	$C_L = 50 pF$	3.0V to 3.6V	2	20	ns
			4.5V to 5.5V	2	9	
t _{PLH}	Input to Yn	$C_L = 50 pF$	3.0V to 3.6V	3	20	ns
			4.5V to 5.5V	2	12	

Notes:

Maximum allowable relative shift equals 50mV.
 Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

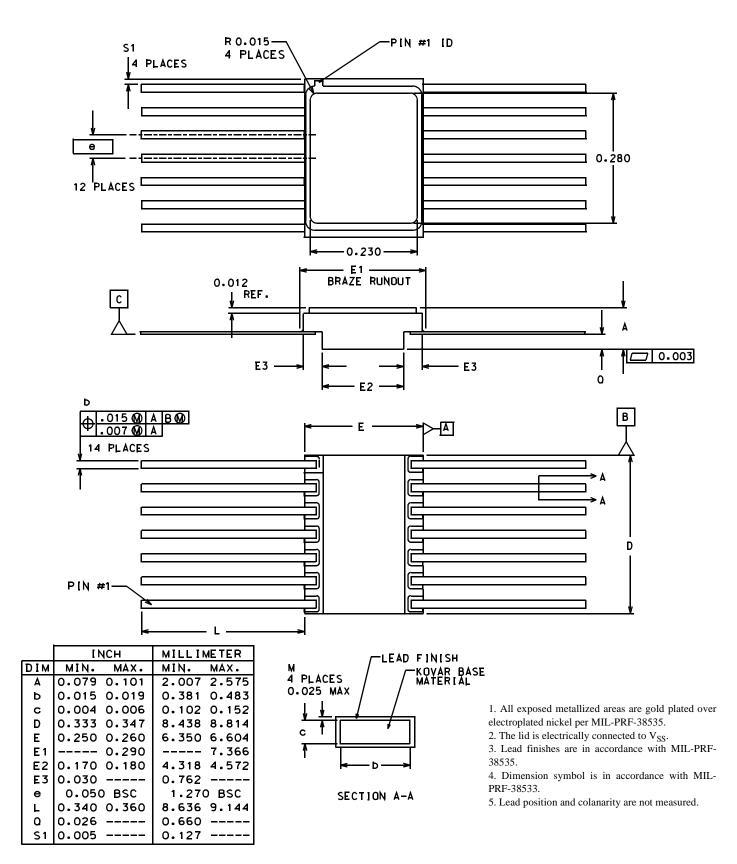
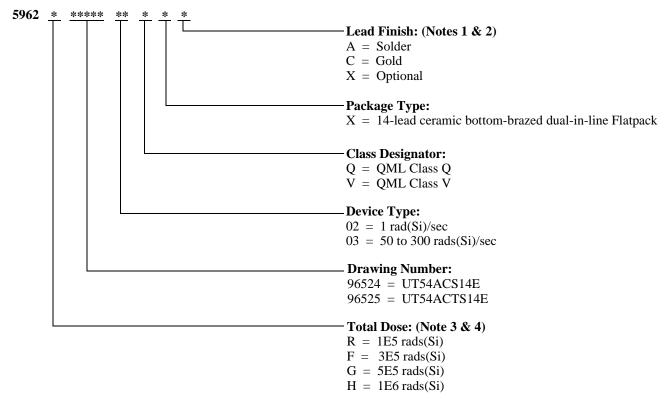



Figure 1. 14-Lead Flatpack

UT54ACS14E/UT54ACTS14E: SMD

Notes:

1. Lead finish (A,C, or X) must be specified.

2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).

3. Total dose radiation must be specified when ordering. QML-2 and V is not available without radiation testing. For prototyping inquiries, contact factory. 4. Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si) or 1E6 rads(Si) and is tested in accordance with MIL-STD-883 Test

Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

Aeroflex Colorado Springs - Datasheet Definition

Advanced Datasheet - Product In Development Preliminary Datasheet - Shipping Prototype Datasheet - Shipping QML & Reduced HiRel

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordnance with the Export Administration Regulations. Divsion contrary to the U.S. law is prohibited.

Cobham Semiconductor Solutions 4350 Centennial Blvd Colorado Springs, CO 80907

E: info-ams@aeroflex.com T: 800 645 8862

Aeroflex Colorado Springs Inc., dba Cobham Semiconductor Solutions, reserves the right to make changes to any products and services described herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.

Revision Date	Description of Change	Author
10-17	Page 3 edited PTOTAL2 Pages 4 and 7edited IDDQ Page 5 AC Electricals Added new Cobham Data Sheet template to the document.	RT
1-18	Updates to reflect current SMD	RT