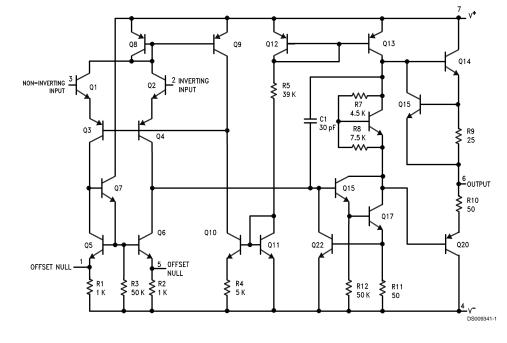
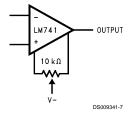
National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

May 1998


LM741 Operational Amplifier

General Description


The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations. The LM741C/LM741E are identical to the LM741/LM741A except that the LM741C/LM741E have their performance guaranteed over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Schematic Diagram

Offset Nulling Circuit

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 6)

	LM741A	LM741E	LM741	LM741C
Supply Voltage	±22V	±22V	±22V	±18V
Power Dissipation (Note 2)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	±30V	±30V	±30V	±30V
Input Voltage (Note 3)	±15V	±15V	±15V	±15V
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Operating Temperature Range	-55°C to +125°C	0°C to +70°C	-55°C to +125°C	0°C to +70°C
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C
Junction Temperature	150°C	100°C	150°C	100°C
Soldering Information				
N-Package (10 seconds)	260°C	260°C	260°C	260°C
J- or H-Package (10 seconds)	300°C	300°C	300°C	300°C
M-Package				
Vapor Phase (60 seconds)	215°C	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C	215°C
See AN-450 "Surface Mounting Me	thods and Their Effect of	on Product Reliability" for	or other methods of solo	lering
surface mount devices.				

400V

400V

400V

400V

Electrical Characteristics (Note 4)

ESD Tolerance (Note 7)

Parameter	Conditions	Conditions LM741A/LM741E		LM741			LM741C			Units	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	T _A = 25°C										
	$R_S \le 10 \text{ k}\Omega$					1.0	5.0		2.0	6.0	mV
	$R_S \le 50\Omega$		0.8	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_S \le 50\Omega$			4.0							mV
	$R_S \le 10 \text{ k}\Omega$						6.0			7.5	mV
Average Input Offset				15							μV/°C
Voltage Drift											
Input Offset Voltage	$T_A = 25^{\circ}C, V_S = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	T _A = 25°C		30	80		80	500		80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			0.210			1.5			0.8	μΑ
Input Resistance	$T_A = 25^{\circ}C, V_S = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \le T_A \le T_{AMAX}$	0.5									MΩ
	V _S = ±20V										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

www.national.com

Electrical Characteristics (Note 4) (Continued)

Parameter	Conditions	Conditions LM741A/LM7		//741E	LM741			LM741C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	\perp
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 \text{ k}\Omega$										
	$V_S = \pm 20V, V_O = \pm 15V$	50									V/mV
	$V_S = \pm 15V, V_O = \pm 10V$				50	200		20	200		V/mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_L \ge 2 k\Omega$,										
	$V_S = \pm 20V, V_O = \pm 15V$	32									V/mV
	$V_S = \pm 15V, V_O = \pm 10V$				25			15			V/mV
	$V_S = \pm 5V, V_O = \pm 2V$	10									V/mV
Output Voltage Swing	V _S = ±20V										
	$R_L \ge 10 \text{ k}\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									V
	V _S = ±15V										
	$R_L \ge 10 \text{ k}\Omega$				±12	±14		±12	±14		V
	$R_L \ge 2 k\Omega$				±10	±13		±10	±13		V
Output Short Circuit	T _A = 25°C	10	25	35		25			25		mA
Current	$T_{AMIN} \le T_A \le T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \le T_A \le T_{AMAX}$										
Rejection Ratio	$R_S \le 10 \text{ k}\Omega, V_{CM} = \pm 12V$				70	90		70	90		dB
	$R_S \le 50\Omega$, $V_{CM} = \pm 12V$	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \le T_A \le T_{AMAX}$										
Ratio	$V_S = \pm 20V$ to $V_S = \pm 5V$										
	$R_S \le 50\Omega$	86	96								dB
	$R_S \le 10 \text{ k}\Omega$				77	96		77	96		dB
Transient Response	T _A = 25°C, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 5)	T _A = 25°C	0.437	1.5								MHz
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	T _A = 25°C					1.7	2.8		1.7	2.8	mA
Power Consumption	T _A = 25°C										
	$V_S = \pm 20V$		80	150							mW
	$V_S = \pm 15V$					50	85		50	85	mW
LM741A	V _S = ±20V										
	$T_A = T_{AMIN}$			165							mW
	$T_A = T_{AMAX}$			135							mW
LM741E	V _S = ±20V										
	$T_A = T_{AMIN}$			150							mW
	$T_A = T_{AMAX}$			150							mW
LM741	V _S = ±15V										
	$T_A = T_{AMIN}$					60	100				mW
	$T_A = T_{AMAX}$					45	75				mW

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

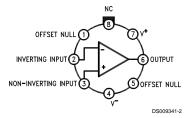
Electrical Characteristics (Note 4) (Continued)

Note 2: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_j max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$.

Thermal Resistance	Cerdip (J)	DIP (N)	HO8 (H)	SO-8 (M)
θ _{jA} (Junction to Ambient)	100°C/W	100°C/W	170°C/W	195°C/W
θ_{jC} (Junction to Case)	N/A	N/A	25°C/W	N/A

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

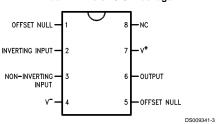
Note 4: Unless otherwise specified, these specifications apply for $V_S = \pm 15V, -55^{\circ}C \le T_A \le +125^{\circ}C$ (LM741/LM741A). For the LM741C/LM741E, these specifications tions are limited to $0^{\circ}C \le T_{A} \le +70^{\circ}C$.


Note 5: Calculated value from: BW (MHz) = 0.35/Rise Time(μ s).

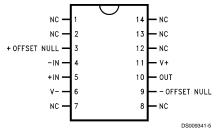
Note 6: For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

Note 7: Human body model, 1.5 k Ω in series with 100 pF.

Connection Diagram

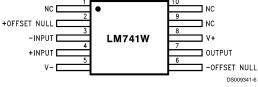

Metal Can Package

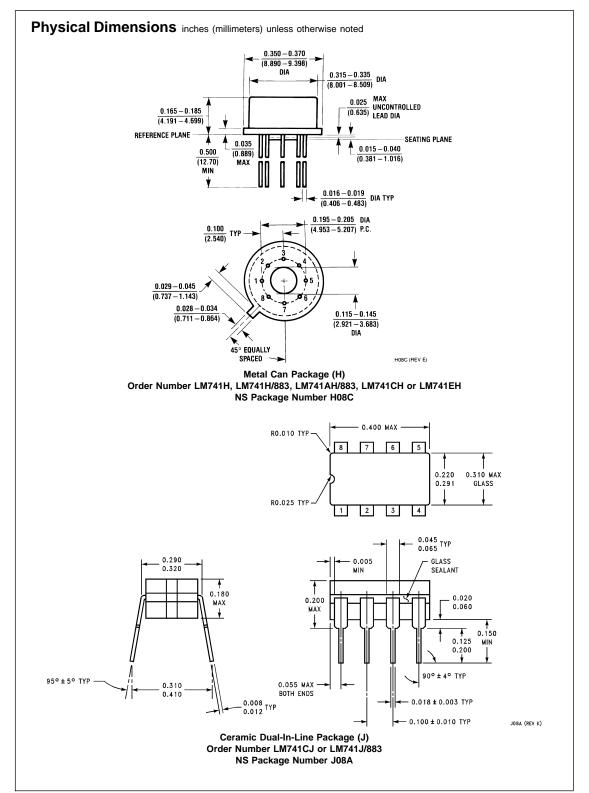
Note 8: LM741H is available per JM38510/10101


Order Number LM741H, LM741H/883 (Note 8), LM741AH/883 or LM741CH See NS Package Number H08C

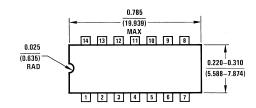
Dual-In-Line or S.O. Package

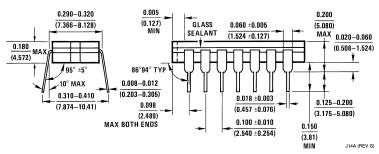
Order Number LM741J, LM741J/883, LM741CM, LM741CN or LM741EN See NS Package Number J08A, M08A or N08E


Ceramic Dual-In-Line Package

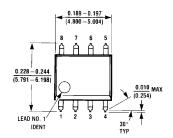

Note 9: also available per JM38510/10101 Note 10: also available per JM38510/10102

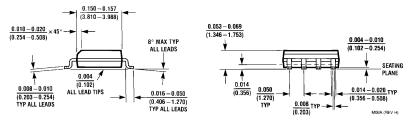
> Order Number LM741J-14/883 (Note 9), LM741AJ-14/883 (Note 10) See NS Package Number J14A

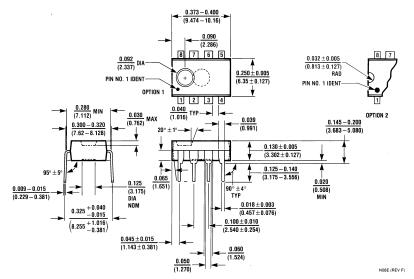

Ceramic Flatpak

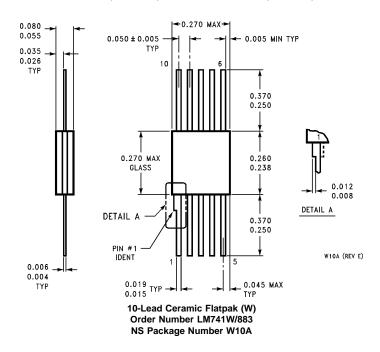


Order Number LM741W/883 See NS Package Number W10A




Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


Ceramic Dual-In-Line Package (J) Order Number LM741J-14/883 or LM741AJ-14/883 NS Package Number J14A


Small Outline Package (M) Order Number LM741CM NS Package Number M08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Dual-In-Line Package (N) Order Number LM741CN or LM741EN NS Package Number N08E

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Custo Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507