

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

February 1994 Revised May 2005

74LCX16245

Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs and Outputs

General Description

The LCX16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The device is byte controlled. Each byte has separate control inputs which could be shorted together for full 16-bit operation. The T/\overline{R} inputs determine the direction of data flow through the device. The \overline{OE} inputs disable both the A and B ports by placing them in a high impedance state.

The LCX16245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

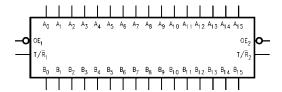
- 5V tolerant inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- \blacksquare 4.5 ns t_{PD} max (V $_{CC}$ = 3.3V), 20 μA I_{CC} max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- \pm 24 mA output drive ($V_{CC} = 3.0V$)
- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V

Machine model > 200V

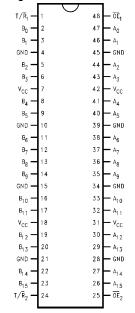
Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

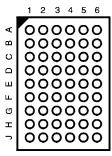

Ordering Code:

Order Number	Package Number	Package Description
74LCX16245G (Note 2)(Note 3)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74LCX16245MEA (Note 3)	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LCX16245MTD (Note 3)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Note 2: Ordering code "G" indicates Trays.


Note 3: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol



Connection Diagrams

Pin Assignment for SSOP and TSSOP

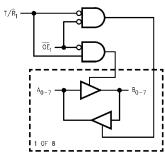
Pin Assignment for FBGA

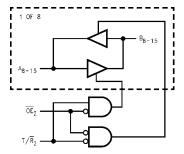
(Top Thru View)

Pin Descriptions

Pin Names	Description
OE n	Output Enable Input
	Transmit/Receive Input
A ₀ -A ₁₅ B ₀ -B ₁₅	Side A Inputs or 3-STATE Outputs
B ₀ -B ₁₅	Side B Inputs or 3-STATE Outputs
NC	No Connect

FBGA Pin Assignments


_		1	2	3	4	5	6
	Α	B ₀	NC	T/R ₁	OE ₁	NC	A ₀
Ī	В	B ₂	B ₁	NC	NC	A ₁	A ₂
	С	B ₄	B ₃	V _{CC}	V _{CC}	A ₃	A ₄
	D	B ₆	B ₅	GND	GND	A ₅	A ₆
ſ	E	B ₈	B ₇	GND	GND	A ₇	A ₈
ſ	F	B ₁₀	B ₉	GND	GND	A ₉	A ₁₀
ſ	G	B ₁₂	B ₁₁	V _{CC}	V _{CC}	A ₁₁	A ₁₂
	Н	B ₁₄	B ₁₃	NC	NC	A ₁₃	A ₁₄
	J	B ₁₅	NC	T/\overline{R}_2	OE ₂	NC	A ₁₅


Truth Tables

Inp	outs	0.1.1.		
OE ₁	T/R ₁	Outputs		
L	L	Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇		
L	Н	Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇		
Н	Х	HIGH Z State on A ₀ -A ₇ , B ₀ -B ₇		

Inp	outs	Outrot		
OE ₂	T/R ₂	Outputs		
L	L	Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅		
L	Н	Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅		
Н	Χ	Bus B_8-B_{15} Data to Bus A_8-A_{15} Bus A_8-A_{15} Data to Bus B_8-B_{15} HIGH Z State on A_8-A_{15} , B_8-B_{15}		

Logic Diagrams

Note: Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

L = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = High Impedance

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 5)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	IIIA
Io	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 6)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage Operation		2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: I_O Absolute Maximum Rating must be observed.

Note 6: Unused inputs or I/O's must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
	i arameter	Conditions	(V)	Min	Max	Ullits
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 - 3.6	2.0		ľ
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 - 3.6		8.0	ľ
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
ı	Input Leakage Current	$0 \leq V_I \leq 5.5V$	2.3 - 3.6		±5.0	μА
OZ	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	
		$V_I = V_{IH}$ or V_{IL}				μА
OFF	Power-Off Leakage Current	V _I or V _O = 5.5V	0		10	μА

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
- Cymbol	T diameter	Conditions	(V)	Min	Max	Omio
Icc	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3-3.6		20	μА
		$3.6V \le V_I, V_O \le 5.5V \text{ (Note 7)}$	2.3-3.6		±20	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	V _{IH} = V _{CC} -0.6V	2.3-3.6		500	μА

Note 7: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

		$T_A = -40^{\circ}\text{C to} + 85^{\circ}\text{C}, R_L = 500\Omega$						
Symbol	Parameter	$V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$		V _{CC} = 2.7V C _L = 50 pF		$V_{CC} = 2.5V \pm 0.2V$ $C_L = 30 \text{ pF}$		Units
	Farameter							
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	4.5	1.5	5.2	1.5	5.4	
t _{PLH}	A_n to B_n or B_n to A_n	1.5	4.5	1.5	5.2	1.5	5.4	ns
t _{PZL}	Output Enable Time	1.5	6.5	1.5	7.2	1.5	8.5	ns
t_{PZH}		1.5	6.5	1.5	7.2	1.5	8.5	115
t _{PLZ}	Output Disable Time	1.5	6.4	1.5	6.9	1.5	7.7	
t_{PHZ}		1.5	6.4	1.5	6.9	1.5	7.7	ns
toshl	Output to Output Skew		1.0					
toslh	(Note 8)		1.0					ns

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	v _{cc} (v)	T _A = 25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_{I} = 0V$ or V_{CC} , $f = 10$ MHz	20	pF

AC LOADING and WAVEFORMS Generic for LCX Family

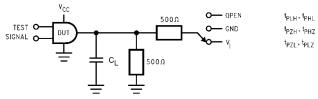
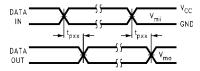
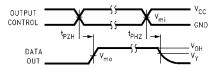
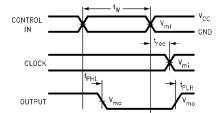
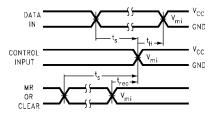
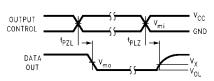




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch	
t _{PLH} , t _{PHL}	Open	
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 \pm 0.3V V_{CC} x 2 at V_{CC} = 2.5 \pm 0.2V	
t _{PZH} ,t _{PHZ}	GND	

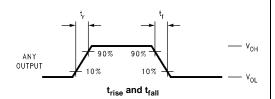
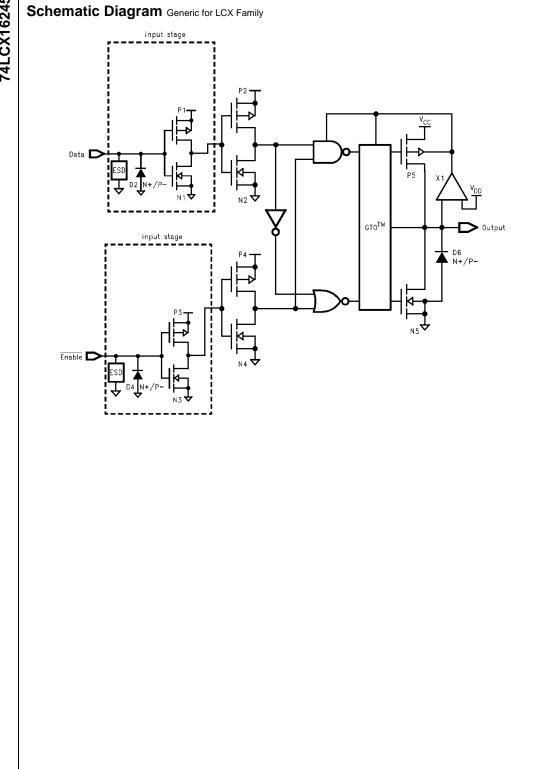
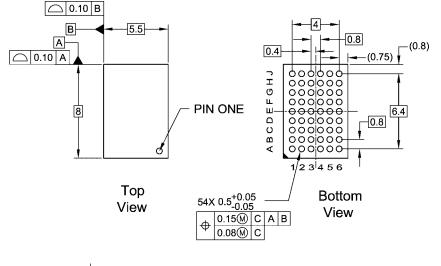

Waveform for Inverting and Non-Inverting Functions

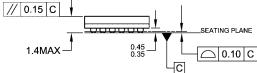

3-STATE Output High Enable and Disable Times for Logic

Propagation Delay. Pulse Width and $t_{\rm rec}$ Waveforms

Setup Time, Hold Time and Recovery Time for Logic

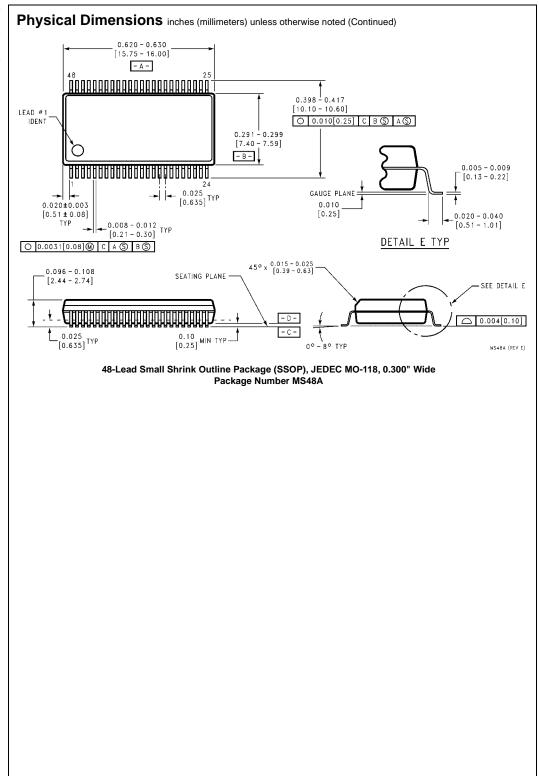
3-STATE Output Low Enable and Disable Times for Logic

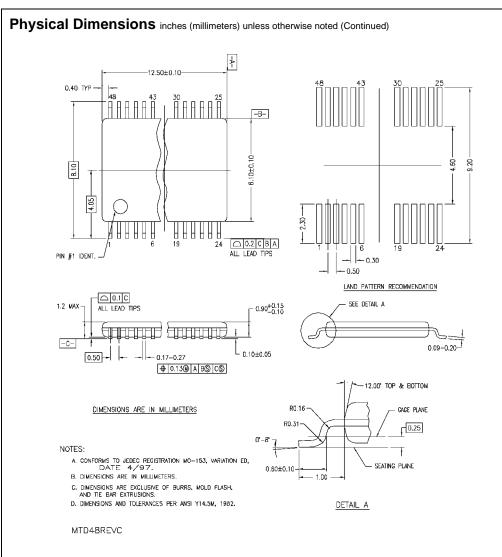





FIGURE 2. Waveforms (Input Characteristics; f =1MHz, $t_r = t_f = 3ns$)

Symbol	V _{CC}		
	3.3V ± 0.3V	2.7V	2.5V ± 0.2V
V_{mi}	1.5V	1.5V	V _{CC} /2
V_{mo}	1.5V	1.5V	V _{CC} /2
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V
V _v	V _{OH} – 0.3V	$V_{OH} - 0.3V$	V _{OH} – 0.15V

Physical Dimensions inches (millimeters) unless otherwise noted




NOTES:

- A. THIS PACKAGE CONFORMS TO JEDEC M0-205
- **B. ALL DIMENSIONS IN MILLIMETERS**
- C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
 .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
 D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com