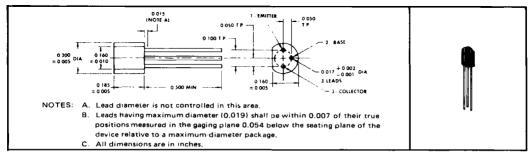
TYPE TIS125 N-P-N SILICON TRANSISTOR

BULLETIN NO. DL-S 7211738, MAY 1972


HIGH-FREQUENCY SILECT TRANSISTORS DESIGNED FOR COMMON-BASE VHF APPLICATIONS

- Low Feedback Capacitance, Cce.
- Specified Forward-AGC Characteristics

Rugged, One-Piece Construction with Standard TO-18 100-mil Pin Circle

mechanical data

This transistor is encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. This device exhibits stable characteristics under high-humidity conditions and is capable of meeting MIL-STD-202C, Method 106B. The transistor is insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-Base Voltage	 	 . , , . 40 V
Collector-Emitter Voltage (See Note 1)	 	 30 V
Emitter-Base Voltage	 	 4 V
Continuous Collector Current	 	 50 mA
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	 	 250 mW
Storage Temperature Range	 	-65°C to 150°C
Lead Temperature 1/16 Inch from Case for 10 Seconds	 	 260°C

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER V(BR)CBO Collector-Base Breakdown Voltage		TEST CONDITIONS			MAX	UNIT
		IC = 10 μA, IE = 0				
V(BR)CEO	Collector-Emitter Breakdown Voltage	Ic = 10 mA, IB = 0,	See Note 3	30		V
ICBO	Collector Cutoff Current	V _{CB} = 10 V, I _E = 0			50	nA
		V _{CB} = 10 V, I _E = 0,	TA = 85°C		5	μA
I _{EBO}	Emitter Cutoff Current	VEB = 4 V, IC = 0		1	10	μΑ
hFE	Static Forward Current Transfer Ratio	V _{CE} = 10 V, I _C = 4 mA		30		
VBE	Base-Emitter Voltage	V _{CE} = 10 V, I _C = 4 mA			0.8	V
hfe	Small-Signal Common-Emitter Forward Current Transfer Ratio	VCE = 10 V, IC = 4 mA,	f = 100 MHz	4.5		
C _{ce}	Collector-Emitter Capacitance	V _{CE} = 10 V, I _B = 0,	f = 1 MHz,	1	0.3	pF
		See Note 4		1		

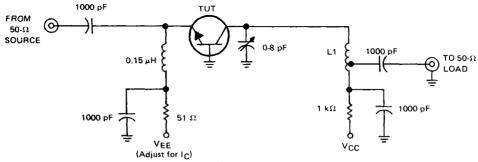
NOTES: 1. This value applies when the base emitter diode is open-circuited.

- 2. Derate linearly to 150°C free air temperature at the rate of 2 mW/°C.
- 3. This parameter must be measured using pulse techniques. t_W = 300 μs , duty cycle \leq 2%.
- C_{ce} measurement employs a three-terminal capacitance bridge incorporating a guard circuit. The base is connected to the guard terminal of the bridge.

[†]Trademark of Texas Instruments

‡U.S. Patent No. 3,439,238

USES CHIP N26


TYPE TIS125 N-P-N SILICON TRANSISTOR

operating characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
F	Spot Noise Figure	V_{CC} = 10 V, I_{C} = 3 mA, R_{G} = 50 Ω , f = 200 MHz, See Figure 1		3.5	dВ
Gpb	Unneutralized Small-Signal Common-Base Insertion Power Gain	V _{CC} = 10 V, I _C = 3 mA, f = 200 MHz, See Figure 1	17	23	dB
IC	Collector Current for 30-dB Gain Reduction	V_{CC} = 10 V, f = 200 MHz, ΔG_{pb} = -30 dB [†] , See Figure 1	5	7.5	mA

 $^{^{\}dagger}\Delta G_{ob}$ is defined as the change in G_{ob} from the value at $^{\dagger}C$ = 3 mA.

PARAMETER MEASUREMENT INFORMATION

L1: 6T #16, ¼ inch ID, tapped 3/4 turn from end nearer VCC.

FIGURE 1-200 MHz POWER GAIN, NOISE FIGURE, AND GAIN CONTROL TEST CIRCUIT

TYPICAL CHARACTERISTICS

SMALL-SIGNAL COMMON-BASE INSERTION POWER GAIN vs

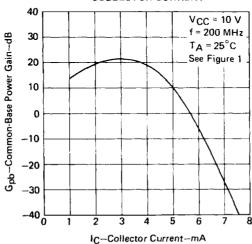


FIGURE 2

373