P54/74FCT841AT/BT/CT— P54/74FCT843AT/BT/CT—P54/74FCT845AT/BT/CT BUS INTERFACE LATCHES # # FEATURES - Function, Pinout and Drive Compatible with the FCT, F and AM29841/843/845 Logic - FCT-C speed at 5.5ns max. (Com'l) FCT-B speed at 6.5ns max. (Com'l) - Reduced V_{OH} (typically = 3.3V) versions of Equivalent FCT functions - Edge-rate Control Circuitry for Significantly Improved Noise Characteristics - ESD protection exceeds 2000V - Power-off disable feature - Matched Rise and Fall times - Fully Compatible with TTL Input and Output Logic Levels - 64 mA Sink Current (Com'i), 32 mA (Mii) 15 mA Source Current (Com'i), 12 mA (Mii) - **■** Buffered Common Clear and Preset Input - High Speed Parallel Latches - Buffered Common Latch Enable Input - Manufactured in 0.7 micron PACE Technology™ ## DESCRIPTION The 'FCT840T series bus interface latches are designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity. The 'FCT841T is a buffered 10-bit wide version of the 'FCT373 function. The 'FCT843T is a 9-bit wide buffered latch with Preset (\overline{PRE}) and Clear (\overline{CLR}) controls making it ideal for parity bus interfacing in high-performance systems. The 'FCT845T is an inverting 8-bit buffered latch with all the 'FCT843T controls plus multiple enables (\overline{OE}_1 , \overline{OE}_2 , \overline{OE}_3) to allow multiusers control of the interface, e.g., \overline{CS} , DMA, and RD/ \overline{WR} . They are ideal for use as an output port requiring high I_{OH}/I_{OH} . The 'FCT800T high performance interface family is designed for high-capacitance load drive capability while providing low-capacitance bus loading at both inputs and outputs. All inputs have clamp diodes and all outputs are designed for low-capacitance bus loading in the high impedance state. The 'FCT840T interface family are manufactured using PACETechnology which is Performance Advanced CMOS Engineered to use 0.7 micron effective channel lengths giving 400 picosecond loaded* internal gate delays. PACE Technology includes two-level metal and epitaxial substrates. In addition to very high performance and very high density, the technology features latch-up protection, single event upset protection, and is supported by a Class 1 environment volume production facility. * For a fan-in/fan-out of 4, at 85°C junction temperature and 5.0V. # FUNCTIONAL BLOCK DIAGRAM Means Quality, Service and Speed #### LOGIC SYMBOLS PIN CONFIGURATIONS 'FCT841T (10-Bit Latch) D₇ D₈ D₅ NC D₄ D₅ D₂ 11 10 9 8 7 6 5 INDEX Œ 1 24 Vcc 23 Yo D₀ 2 4 D, D. 12 22 Yı D₁ 3 D₂ 4 21 Y2 3 Do D. 13 D - 194 D 20 Y₃ D₃ 5 ō H. 2 Œ GND 14 D4 6 19 Y₄ LΕ NC 15 1 NC D₅ 7 18 Y 6 LE D₆ 8 17 Y6 Œ LE 116 28 Vcc D7 9 16 Y₇ 27 Yo Y, 17 D. 10 15 Ya 14 Y, Y. 18 26 Y, D. 11 13 LE GND TI 20 21 22 23 24 25 19 Y5 NC Y_4 DIP (D4.P4) SOIC (S4) 1719 02 LCC (L5-1) 'FCT843T (9-Bit Latch) D₇ D₆ D₅ NC D₄ D₅ D₂ 11 10 9 6 7 6 5 INDEX 24 Vcc 23 Yo 22 Yo Œ T D₀ 2 D₈ 12 4 D, D, 3 21 Y₂ 20 Y₃ D₂ 4 CLA 13 3 D. ā D₃ 5 GND 14 2 0€ LE PRE CLR 19 Y. D4 6 LE NC 15 1 NC D₆ 7 18 Y 6 PRE D₆ 8 17 Ys LE 16 28 Vcc CLR 16 Y₇ D, 9 ÖΕ PAE 17 27 Yo Da 10 15 Ya Ya 18 26 Y 14 PRE CLR 11 13 LE GND 12 21 22 23 24 25 20 NC ٧. Y. Y5 Y3 DIP (D4,P4) SOIC (S4) LCC (L5-1) 1719 03 'FCT845T (8-Bit Latch) INDEX OE, 1 24 Vcc OE₂ 2 23 ŌĒ₃ 취၀ 0, 12 4 Do D₀ 3 22 Yo ã D₁ 4 21 Yı CLA 13 3 0€₂ LE PRE CLR 20 Y 2 D₂ 5 LE GND 14 2 Œ1 19 Y₃ D₃ 6 PRE NC 15 1 NC D4 7 18 Y. CLR 17 Y 6 D₅ B LE 16 28 Vcc ŌĒ₁ D₆ 9 16 Ye PAE 17 27 Œ, OE2 D₇ 10 15 Y7 ٧, [18] 26 Yo CLR 11 14 PRE ŌĒ3 GND 12 13 LE 19 20 21 22 23 24 25 Y4 NC Y3 Y2 Y, DIP (D4,P4) SOIC (S4) LCC (L5-1) 1719 04 ## PIN DESCRIPTION | Name | I/O | Description | |----------------|-----|--| | CLR | - | When CLR is low, the outputs are LOW if OE is LOW. When CLR is HIGH, data can be entered into the latch. | | D ₁ | ı | The latch data inputs. | | LE | - | The latch enable input. The latches are transparent when LE is HIGH. Input data is latched on the HIGH-to-LOW transition. | | Yı | 0 | The three-state latch outputs. | | ŌĒ | 1 | The output enable control. When \overline{OE} is LOW, the outputs are enabled. When \overline{OE} is HIGH, the outputs Y, are in the high-impedance (off) state. | | PRE | I | Preset line. When PRE is LOW, the outputs are HIGH if OE is LOW. Preset overrides CLR. | 1719 Tbl 01 # FUNCTION TABLES[§] 'FCT841T/843T/845T | | | Inputs | | - | Internal | Outputs | Function | |-----|-----|--------|----|----------------|----------|---------|------------------| | CLR | PRE | ŌĒ | LE | D ₁ | 0, | Y, | Function | | Н | Н | Н | Х | Х | Х | Z | High Z | | Н | Н | Н | Н | L | L | Z | High Z | | Н | Н | Н | Н | Н | Н | Z | HighZ | | Н | Н | Н | L | Х | NC | Z | Latched (High Z) | | Н | Н | L | Н | L | L | L | Transparent | | Н | Н | L | Н | н | Н | Н | Transparent | | Н | Н | L | L | Х | NC | NC | Latched | | Н | L | L | Х | X | Н | Н | Preset | | L | Н | L | Х | Х | L | L | Clear | | L | L | L | Х | Х | Н | Н | Preset | | L | Н | Н | L | Х | L | Z | Latched (High Z) | | Н | L | I | L | х | Н | Z | Latched (High Z) | [§] H = HIGH, L = LOW, X = Don't care, NC = No Change, Z = High Impedance. 1719 Tbl 02 7-85 2/13/92 - 3 ## **ABSOLUTE MAXIMUM RATINGS^{1,2}** | Symbol | Parameter | Value | Unit | |------------------|-------------------------------------|--------------|------| | T _{STG} | Storage Temperature | -65 to +150 | °C | | TA | Ambient Temperature
Under Bias | -65 to +135 | ç | | V _{cc} | V _{cc} Potential to Ground | -0.5 to +7.0 | ٧ | | P _T | Power Dissipation | 0.5 | W | 1719 Tbl 03 Notes: Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range. | Symbol | Parameter | Value | Unit | |---------------------|---------------------------|--------------|------| | I _{OUTPUT} | Current Applied to Output | 120 | mA | | V _{IN} | Input Voltage | -0.5 to +7.0 | V | | V _{out} | Voltage Applied to Output | -0.5 to +7.0 | V | 1719 Tbl 04 2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either $\rm V_{cc}$ or ground. # RECOMMENDED OPERATING CONDITIONS | Free Air Ambient Temperature | Min | Max | |------------------------------|-------|--------| | Military | -55°C | +125°C | | Commercial | 0°C | +70°C | 1719 Tbl 05 | Supply Voltage (V _{cc}) | Min | Max | |-----------------------------------|--------|--------| | Military | +4.5V | +5.5V | | Commercial | +4.75V | +5.25V | 1719 Tbl 06 # DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions) | Symbol | Paran | neter | Min | Typ¹ | Max | Units | V _{cc} | Conditions | |------------------|--|---------------|-------------------|-------------------|-------------|-------------------|--|-----------------------------------| | V _{IH} | Input HIGH Voltage | | 2.0 | | | V | - | | | V _{IL} | Input LOW Voltage | | 1 | 0.8 | V | _ | | | | V _H | Hysteresis | | | 0.2 | | V | | All inputs | | V _{IK} | Input Clamp Diode Voltage | - | | -0.7 | -1.2 | V | MIN | <u> </u> | | V _{OH} | Output HIGH
Voltage | 2.4
2.4 | 3.3
3.3 | | V | MIN | I _{OH} = -12mA | | | V _{OL} | Output LOW
Voltage | | 0.3
0.3
0.3 | 0.5
0.5
0.5 | >
>
> | MIN
MIN
MIN | I _{OL} = 32mA
I _{OL} = 48mA | | | I, | Input HIGH Current | | | | 20 | μА | MAX | V _{IN} = V _{CC} | | I _{tH} | Input HIGH Current | | | | 5 | μА | | V _{IN} = 2.7V | | I _{IL} | Input LOW Current | | | | -5 | μА | | V _{IN} = 0.5V | | l _{ozh} | Off State I _{out} HIGH-Level Ou | utput Current | | | 10 | μА | | V _{OUT} = 2.7V | | l _{ozL} | Off State I _{OUT} LOW-Level Ou | tput Current | | | -10 | μА | MAX | | | los | Output Short Circuit Current | 2 | 60 | -120 | -225 | mA | MAX | | | I _{OFF} | Power-off Disable | | | 100 | μА | ٥٧ | V _{OUT} = 4.5V | | | C _{IN} | Input Capacitance ³ | | 5 | 10 | pF | MAX | | | | Соит | Output Capacitance ³ | | 9 | 12 | pF | MAX | | | | l _{cc} | Quiescent Power Supply Cur | rrent | | 0.2 | 1.5 | mA | MAX | | 1719 Tbl 07 #### Notes: - 1. Typical limits are at V_{cc} = 3.3V, T_A = +25°C ambient. - 2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect - operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, l_{os} tests should be performed last. - 3. This parameter is guaranteed but not tested. ## DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.) | Symbol | Parameter | Typ¹ | Max | Units | Conditions | |------------------|--|------|-------|------------|--| | Δl _{cc} | Quiescent Power Supply
Current (TTL inputs) | 0.5 | 2.0 | mA | $V_{CC} = MAX, V_{IN} = 2.7V^2,$
$f_1 = 0$, Outputs Open | | I _{CCD} | Dynamic Power Supply Current ³ | 0.15 | 0.25 | mA/
mHz | V_{CC} = MAX, One Input Toggling,
50% Duty Cycle, Outputs Open,
\overline{OE} = GND, LE = V_{CC} ,
$V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$ | | | | 1.7 | 4.0 | mA | $V_{\rm CC}$ = MAX,
50% Duty Cycle, Outputs Open,
One Bit Toggling at f_1 = 10MHz,
$\overline{\rm OE}$ = GND, LE = $V_{\rm CC}$,
$V_{\rm IN} \le 0.2 {\rm V}$ or $V_{\rm IN} \ge V_{\rm CC} - 0.2 {\rm V}$ | | l _c | Total Power Supply Current⁵ | 2.0 | 5.0 | mA | $V_{\rm CC}$ = MAX,
50% Duty Cycle, Outputs Open,
One Bit Toggling at f ₁ = 10mHz,
$\overline{\rm OE}$ = GND, LE = $V_{\rm CC}$,
$V_{\rm IN}$ = 3.4V or $V_{\rm IN}$ = GND | | | | 3.2 | 6.54 | mA | $\begin{array}{c} V_{\text{CC}} = \text{MAX}, \\ 50\% \text{ Duty Cycle, Outputs Open,} \\ \text{Eight Bits Toggling at } f_1 = 2.5\text{MHz}, \\ \overline{\text{OE}} = \text{GND, LE} = V_{\text{CC}}, \\ V_{\text{IN}} \leq 0.2\text{V or } V_{\text{IN}} \geq V_{\text{CC}} - 0.2\text{V} \end{array}$ | | | | 5.2 | 14.54 | mA | $V_{\rm CC} = {\rm MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at f ₁ = 2.5MHz, $\overline{\rm OE} = {\rm GND}, {\rm LE} = {\rm V}_{\rm CC},$ ${\rm V}_{\rm IN} = 3.4{\rm V}$ or ${\rm V}_{\rm IN} = {\rm GND}$ | #### Notes: - 1. Typical values are at V_{cc} = 3.3V, +25°C ambient. 2. Per TTL driven input (V_N = 2.7V); all other inputs at V_{cc} or GND. 3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations. - 4. Values for these conditions are examples of the $I_{\rm cc}$ formula. These limits are guaranteed but not tested. $(V_{**} = 2.7V)$ D_{H} = Duty Cycle for TTL Inputs High N_{τ}^{n} = Number of TTL Inputs at D_{H} I_{cc0} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL) = Clock Frequency for Register Devices (Zero for Non-Register Devices) = Input Frequency = Number of Inputs at f, All currents are in milliamps and all frequencies are in megahertz. # SWITCHING CHARACTERISTICS OVER OPERATING RANGE | | | | | FCT841AT/843AT/845AT FCT841BT/843BT/845BT FCT841CT/843CT/845CT | | | | | | | | | | | | | |------------------|--|------------|--|--|------|-------|-------|-------|------|-------|-------|-------|------|-------|-------|-------| | Sym. | Parameter | | Test | MIL | | | COM'L | | MIL | | COM'L | | MIL | | COM'L | | | | | | Conditions ¹ | Min. ² | Max. | Min.2 | Max. | Min.² | Max. | Min.2 | Мах. | Min.2 | Max. | Min,² | Max. | Units | | t _{PLH} | Propagation Delay | _ | C _L = 50pF
R _L = 500Ω | | 10.0 | | 9.0 | | 7.5 | | 6.5 | | 6.3 | | 5.5 | ns | | t _{PHL} | D, to Y,
(LE = HIGH) | | C _L = 300pF ³
R _L = 500Ω | | 15.0 | · | 13.0 | | 15.0 | | 13.0 | | 15.0 | | 13.0 | ns | | t _{s∪} | Data to LE Set-up T | ime | C _L = 50pF | 2.5 | | 2.5 | | 2.5 | | 2.5 | | 2.5 | | 2.5 | | ns | | ţ, | Data to LE Hold Tin | ne | $R_L = 500\Omega$ | 3.0 | | 2.5 | | 2.5 | | 2.5 | | 2.5 | | 2.5 | | ns | | t _{ech} | Propagation Delay | | $C_L = 50pF$
$R_L = 500\Omega$ | | 13.0 | | 12.0 | | 10.5 | | 8.0 | | 6.8 | | 6.4 | ns | | t _{PHL} | LE to Y, | | $C_L = 300 pF^3$
$R_L = 500 \Omega$ | | 20.0 | | 16.0 | | 18.0 | | 15.5 | | 16.0 | | 15.0 | ns | | t _{PLH} | Propagation Delay
PRE to Y ₁ | | | | 14.0 | | 12.0 | | 10.0 | | 8.0 | | 9.0 | | 7.0 | ns | | t _{rem} | Recovery Time
PRE to Y | | | | 17.0 | | 14.0 | | 13.0 | | 10.0 | | 12.0 | | 9.0 | ns | | t _{PHL} | Propagation Delay
CLR to Y _i | _ | $C_L = 50pF$
$R_L = 500\Omega$ | | 14.0 | | 13.0 | | 11.0 | | 10.0 | | 10.0 | | 9.0 | ns | | t _{REM} | Recovery Time
CLR to Y | | | | 17.0 | | 14.0 | | 10.0 | | 10.0 | | 9.0 | | 9.0 | ns | | t _w | LE Pulse Width ³ | HIGH | | 5.0 | | 4.0 | | 4.0 | | 4.0 | | 4.0 | | 4.0 | | ns | | t _w | PRE Pulse Width ³ | LOW | | 7.0 | | 5.0 | | 4.0 | _ | 4.0 | | 4.0 | ~ | 4.0 | | ns | | t _w | CLR Pulse Width ³ | LOW | | 5.0 | | 4.0 | | 4.0 | | 4.0 | | 4.0 | | 4.0 | | ns | | t _{PZH} | Output Enable Time | , | $C_{L} = 50pF$ $R_{L} = 500\Omega$ $C_{L} = 300pF^{3}$ | | 13.0 | | 11.5 | | 8.5 | | 8.0 | | 7.3 | | 6.5 | ns | | t _{PZL} | OE to Y, | ŌĒ to Y, | | | 25.0 | | 23.0 | | 15.0 | | 14.0 | | 13.0 | | 12.0 | ns | | t _{pHZ} | Output Disable Time | - - | $C_L = 5pF^3$
$R_L = 500\Omega$ | | 9.0 | , " | 7.0 | | 6.5 | | 6.0 | | 6.0 | | 5.7 | ns | | t _{PLZ} | OE to Y, | | $C_L = 50pF$
$R_L = 500\Omega$ | | 10.0 | | 8.0 | | 7.5 | | 7.0 | | 6.3 | | 6.0 | ns | Notes: 1719 Tbl 09 ^{1.} See test circuit and waveforms. ^{2.} Minimum limits are guaranteed but not tested on Propagation Delays. ^{3.} This parameters are guaranteed but not tested. # 7 ## **ORDERING INFORMATION** 1719 05 AE1719-2