Precision, Single-Supply SPST Analog Switch

Features

\rightarrow Low On-Resistance (33-ohm typ.) Minimizes Distortion and Error Voltages
\rightarrow Low Glitching Reduces Step Errors in Sample-and-Holds. Charge Injection, 2pC typ.
\rightarrow Single-Supply Operation (+2.5 V to +16 V)
\rightarrow Improved Second Sources for MAX323/MAX324/MAX325
\rightarrow On-Resistance Matching Between Channels, <2-ohm
\rightarrow On-Resistance Flatness, <6-ohm max.
\rightarrow Low Off-Channel Leakage, $<5 \mathrm{nA} @+85^{\circ} \mathrm{C}$
\rightarrow TTL/CMOS Logic Compatible
\rightarrow Fast Switching Speed, ton <150 ns, eliminates momentary crosstalk
\rightarrow Rail-to-Rail Analog Signal Dynamic Range
\rightarrow Low Power Consumption, $<5 \mathrm{~mW}$
\rightarrow Packaging (Pb -free \& Green):

$$
\begin{aligned}
& \text { - 8-pin SOIC (W) } \\
& \text { - 8-pin MOSP (U) }
\end{aligned}
$$

Applications

\rightarrow Audio Switching and Routing
\rightarrow Portable Instruments
\rightarrow Data Acquisition Systems
\rightarrow Sample-and-Holds
\rightarrow Telecommunication Systems
\rightarrow Battery-Powered Systems

Description

The PS323 is a improved high-precision, medium- voltage ana\log switches designed to operate with single power supplies. The decive is a dual, single-pole single-throw (SPST), normally open (NO) switch. The switch conducts current equally well in either direction when on. In the off state, each switch blocks voltages up to the power-supply rail.
With a +5 V power supply, PS323 guarantees $<60-$ ohm On-Resistance. On-Resistance matching between channels is within 2 -ohm. On-Resistance flatness is less than 6 -ohm over the specified range. All three devices guarantee low leakage currents (<100 $\mathrm{pA} @ 25 \mathrm{oC},<10 \mathrm{nA} @+85 \mathrm{oC}$) and fast switching speeds (tON <150 ns). Break-before-make switching action protects against momentary crosstalk.

Block Diagram, Pin Configuration, and Truth Table

PS323	
Logic	Switch
0	OFF
1	ON

Switches shown for logic "0" input

Absolute Maximum Ratings

Parameter	Min.	Max.	Units
Voltages Referenced to GND			
V+	-0.3	17	V
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}{ }^{(1)}$	-2	(V+) +2 V	
Current (any terminal)		30	mA
Peak Current, COM, NO, NC (pulsed at 1ms, 10\% duty cycle)		100	
ESD per Method 3015.7	>2000		V
Continuous Power Dissipation			
Plastic DIP (derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)		500	mW
Narrow SO (derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)		450	
MSOP (derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)		330	
Storage Temperature	-65	150	${ }^{\circ} \mathrm{C}$
Operating Temperature	0	70	
Lead Temperature (soldering, 10s)		300	

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
Note 1: Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30 mA maximum.
Electrical Specifications - Single +5V Supply ($\mathrm{V}+=5 \mathrm{~V}+10 \%, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathbb{N H}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathbb{N L}}=0.8 \mathrm{~V}$)

Parameters	Symbol	Conditions	$\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right)$	Min ${ }^{(1)}$	Typ ${ }^{(2)}$	$\mathbf{M a x}{ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	VANALOG			0		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+3.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} \end{aligned}$	25		20	35	ohm
			Full		30	60	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+3 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA}, \\ & \mathrm{~V}+=5 \mathrm{~V} \end{aligned}$	25		0.8	2	
			Full			4	
On-Resisatance Flatness ${ }^{(5)}$	$\mathrm{R}_{\text {Flat(ON) }}$	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3 \mathrm{~V} \end{aligned}$	25		2	6	
			Full			8	
NO or NC Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\mathrm{NO}(\text { Off })}$ or $\mathrm{I}_{\mathrm{NC} \text { (OFF) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \end{aligned}$	25	-0.1	-0.01	0.1	nA
			Full	-5		5	
COM Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {COM (OFF) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \\ & \hline \end{aligned}$	25	-0.1	-0.01	0.1	
			Full	-5		5	
COM On Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {Com(ON) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=5 \mathrm{~V} \end{aligned}$	25	-0.2	-0.04	0.2	
			Full	-10		10	

Logic Input							
Input Current with Input Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, all others $=$ 0.8 V	Full	-0.05	0.005	0.5	
Input Current with Input Voltage High	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, all others $=$ 2.4 V		-0.05	0.005	0.5	
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$			2.4			T
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$					0.8	
Dynamic							
Turn-On Time ${ }^{(3)}$	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$, Figure 2	25		30	75	ns
			Full		60	150	
Turn-Off Time ${ }^{(3)}$	toff		25		25	50	
			Full		50	100	
Break-Before-Make Time Delay ${ }^{(3)}$	$t_{\text {D }}$	$\mathrm{R}_{\mathrm{L}}=300 \text {-ohm, } \mathrm{C}_{\mathrm{L}}=$ $35 \mathrm{pF} \text {, Figure } 3$	25	2	5		
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=\operatorname{lnF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \text {-ohm, Figure } 4 \end{aligned}$			1	5	pC
Off Isolation ${ }^{(7)}$	OIRR	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500-\text { ohm }, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=1 \mathrm{MHz}, \text { Figure } 5 \end{aligned}$			-72		B
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & R_{L}=500-\text { ohm }, C_{L}=5 \mathrm{pF}, \\ & f=1 \mathrm{MHz}, \text { Figure } 6 \end{aligned}$			-84		
NC or NO Off Capacitance	$\mathrm{C}_{\text {(OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$, Figure 7			9		pF
COM Off Capacitance	$\mathrm{C}_{\text {COM (OFF) }}$				9		
COM Off Capacitance	$\mathrm{C}_{\text {COM }}$ (ON)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 8			22		
Supply							
Power-Supply Range	V+			2.7		16	V
Positive Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or }$ $\mathrm{V}+$, all channels on or off	Full	-1		1	$\mu \mathrm{A}$

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design
4. $\mathrm{DR}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$
5. Flatness is defined as the difference between the maximum and minimum value of ON-resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NC}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NO}}\right)\right]$. See Figure 5 .

Electrical Specifications - Single +3.3V Supply ($\mathrm{V}+=3.3 \mathrm{~V}+10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$)

Parameters	Symbol	Conditions	Temp (${ }^{\circ} \mathrm{C}$)	$\mathbf{M i n}{ }^{(1)}$	Typ ${ }^{(2)}$	Max ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	$\mathrm{V}_{\text {ANALOG }}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	25		40	70	ohm
			Full		50	80	
Dynamic							
Turn-On Time ${ }^{(3)}$	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 2	25		50	125	ns
			Full		100	250	
Turn-Off Time ${ }^{(3)}$	toff		25		30	75	
			Full		60	150	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \text {-ohm, Figure } 4 \end{aligned}$	25		1	5	pC
Supply							
Positive Supply Current	I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or }$ $\mathrm{V}+$, all channels on or off	Full	-1	0.01	1	$\mu \mathrm{A}$

Electrical Specifications - Single +12V Supply ($\mathrm{V}+=12 \mathrm{~V}+10 \%, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N H}}=4 \mathrm{~V}, \mathrm{~V}_{\mathbb{N L}}=0.8 \mathrm{~V}$)

Parameters	Symbol	Conditions	Temp (${ }^{\circ} \mathrm{C}$)	$\mathbf{M i n}{ }^{(1)}$	Typ ${ }^{(2)}$	$\mathbf{M a x}{ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	Vanalog			0		V+	V
On-Resistance	RON	$\begin{aligned} & \mathrm{V}+=10.8 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=110 \mathrm{~V} \end{aligned}$	25		15	25	ohm
			Full		20	40	
Dynamic							
Turn-On Time ${ }^{(3)}$	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, Figure 2	25		25	50	ns
			Full		50	100	
Turn-Off Time ${ }^{(3)}$	toff		25		20	40	
			Full		40	75	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \text {-ohm, Figure } 4 \end{aligned}$	25		1	5	pC
Supply							
Positive Supply Current	I+	$\mathrm{V}+=13 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or }$ $\mathrm{V}+$, all channels on or off	Full	-1	0.01	1	$\mu \mathrm{A}$

Application Information

The PS323 dual analog switch precisely switches inputs with a single 2.7 V to 12 V supply, low On-Resistance ($30-\mathrm{ohm}$) and high speed operation ($\mathrm{t}_{\mathrm{ON}}=85 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}=25 \mathrm{~ns}$). The devices are suited to portable battery powered equipment due to a low supply voltage (2.7 V), low power consumption (5 mW), and low leakage currents (0.1 nA). High frequency applications benefit from the high bandwidth, high off isolation, and low crosstalk.

Proper Power Supply Sequencing \& Over-voltage

Protection With any CMOS device, proper power supply sequencing is needed to protect the device from excessive input currents, which may permanently damage the IC. All I/O pins contain ESD protection diodes from the pin to $\mathrm{V}+$ and to GND (see Figure 9 below). To prevent forward biasing of these diodes, V+ must be applied before any input signals, and input signals must swing between $\mathrm{V}+$ and GND. If these conditions cannot be guaranteed, then one of two suggested protection methods must be employed. Protect the logic inputs by adding a 1 k -ohm resistor in series with the input (see Figure 9). The resistor limits the currents below the threshold that can cause permanent damage to sub-micro Amp levels. This reduced input current produces an insignificant voltage drop during normal operation. A series resistor is not desirable, but small-signal diodes can be added in series with the supply pins to provide over-voltage protection for the IC. The diodes limit the analog signal from 1V below V+ to 1 V above GND. The leakage current will remain low, but the switch resistance may increase at low supply voltages.

Figure 1. Overvoltage Protection

Power-Supply Considerations

The PS323 construction is typical of most CMOS analog switches, except that they have voltage supply pins: V+ and GND. These pins power the internal CMOS switches and set the analog voltage limits. Unlike switches with a 12 V maximum supply voltage, the PS323 is made from a 17 V -supply voltage technology that provides room for $10-20 \%$ tolerance on 12 V supplies. This technology gives room for overshoot and noise spikes. While the minimum recommended supply voltage is 2.7 V , it is important to note that the input signalrange, switching times, and on-resistance degrade at lower supply voltages. Refer to the electrical specifications for details. V+ and GND also power the internal logic drivers (turn the switch on \& off). These switches can be operated with bipolar supplies if the voltage range from V - (at the GND pin) to $\mathrm{V}+$ does not exceed a total of 12 V .

Logic-Level Thresholds

The switch logic is TTL compatible ($0.8 \mathrm{~V} \& 2.4 \mathrm{~V}$) over a supply range of 3 V to 11 V . At 12 V the VIH level is about 2.5 V . This is below the TTL guaranteed high output minimum level of 2.8 V , but noise margin is reduced. For best results with a 12 V supply, use logic drive that provides a VOH greater than 3 V . The digital input stages draw supply current whenever the digital input voltage is not at one of the supply rails. Driving the digital input signals from GND to V+ with a fast transition time minimizes power dissipation.

High-Frequency Signal Passing/Isolation

In 50 -ohm systems, signal response is flat even past 300 MHz . An OFF switch is like a capacitor and passes high frequencies with low attenuation, resulting in signal passing from the switch input to output. OFF Isolation is the resistance to passing signals while the switch is OFF, while Crosstalk indicates the amount of signal noise that crosses over from one switch to another. The OFF Isolation is about 50 dB in 50 -ohm systems. Larger load impedances reduce Off Isolation and Crosstalk due to the voltage divider action of the switch OFF impedance and the load.

Leakage Current

Reverse ESD protection diodes are internally connected between each analog-signal pin and both V+ and GND. One of these diodes conducts if any analog signal exceeds V+ or GND.
Most of the analog leakage current comes from the ESD diodes to V+ or GND. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Either V+ or GND and the analog signal bias each diode. Hence, leakage currents will vary as the signal varies. The difference in the diode leakage currents to the $\mathrm{V}+$ and GND pins creates the analog signal-path leakage current. Also, analog leakage currents flow between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity. There is no connection between the analog-signal paths and V+ or GND.

Test Circuits/Timing Diagrams

C_{L} INCLUDES FIXTURE AND STRAY CAPACITANCE

$$
v_{\text {OUT }}=v_{\operatorname{COM}}\left(\frac{R_{L}}{R_{L+} R_{\text {ON }}}\right)
$$

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE OPPOSITE LOGIC

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval (PS325 only)

$\mathrm{Q}=\left(\Delta \mathrm{V}_{\text {OUT }}\right)\left(\mathrm{C}_{\mathrm{L}}\right)$
IN POLARITY DEPENDS ON NO OR NC SWITCH FUNCTION
Figure 4. Charge Injection

Figure 5. Off Isolation

Figure 7. Channel-Off Capacitance

Figure 6. Crosstalk

Figure 8. Channel-On Capacitance

Typical Performance Curves $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Figure 9. On Resistance vs. Supply Voltage

Figure 10. On Resistance vs. Switch Voltage, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Figure 11. On Resistance vs. Switch Voltage, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Figure 12. On Resistance vs. Switch Voltage, $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$

Figure 13. Charge Injection vs. Switch Voltage

Figure 14. Digital Switching point vs. Supply Voltage

Packaging Mechanical: 8-Pin SOIC (W)

Packaging Mechanical: 8-Pin MSOP (U)

Ordering Information

Ordering Code	Package Code	Package Type
PS323ESAE	W	Pb-free \& Green, 8-pin SOIC
PS323CUAE	U	Pb-free \& Green, 8-pin MSOP

[^0]
[^0]: 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
