Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Low Voltage Micropower Quad Operational Amplifier

FEATURES

Single/Dual-Supply Operation
1.6 V to 36 V
$\pm 0.8 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
True Single-Supply Operation; Input and Output Voltage Ranges Include Ground
Low Supply Current: $80 \mu \mathrm{~A}$ Max
High Output Drive: 5 mA Min
Low Offset Voltage: 0.5 mA Max
High Open-Loop Gain: $700 \mathrm{~V} / \mathrm{mV}$ Min
Outstanding PSRR: $5.6 \mathrm{mV} / \mathrm{V}$ Min
Industry Standard Quad Pinouts
Available in Die Form

GENERAL DESCRIPTION

The OP490 is a high-performance micropower quad op amp that operates from a single supply of 1.6 V to 36 V or from dual supplies of $\pm 0.8 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Input voltage range includes the negative rail allowing the OP490 to accommodate input signals down to ground in single-supply operation. The OP490's output swing also includes ground when operating from a single supply, enabling "zero-in, zero-out" operation.
The quad OP490 draws less than $20 \mu \mathrm{~A}$ of quiescent supply current per amplifier, but each amplifier is able to deliver over 5 mA of output current to a load. Input offset voltage is under 0.5 mV with offset drift below $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ over the military temperature range. Gain exceeds over 700,000 and CMR is better than 100 dB . A PSRR of under $5.6 \mu \mathrm{~V} / \mathrm{V}$ minimizes offset voltage changes experienced in battery-powered systems.
The quad OP490 combines high performance with the space and cost savings of quad amplifiers. The minimal voltage and current requirements of the OP490 make it ideal for batteryand solar-powered applications, such as portable instruments and remote sensors.

PIN CONNECTION

14-Lead Hermetic DIP
 (Y Suffix)

14-Lead Plastic DIP (P Suffix)

16-Lead SOIC (S Suffix)

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

OP490-SPECIFICATIONS

Parameter	Symbol	Conditions	OP490E			OP490F			OP490G			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{V}_{\text {Os }}$			0.2	0.5		0.4	0.75		0.6	1.0	mV
Input Offset Current	$\mathrm{I}_{\text {OS }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		0.4	3.0		0.4	5		0.4	5	nA
Input Bias Current	I_{B}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		4.2	15.0		4.2	20		4.2	25	nA
Large Signal Voltage Gain	$\mathrm{A}_{\text {vo }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & 1 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 700 \\ & 350 \\ & 125 \\ & \\ & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 1,200 \\ & 600 \\ & 250 \\ & \\ & 400 \\ & 180 \end{aligned}$		$\begin{aligned} & 500 \\ & 250 \\ & 100 \\ & \\ & 125 \\ & 75 \end{aligned}$	$\begin{aligned} & 1,000 \\ & 500 \\ & 200 \\ & \\ & 300 \\ & 140 \end{aligned}$		400 200 100 100 70	800 400 200 250 140		V / mV V / mV V / mV V / mV V / mV
Input Voltage Range	IVR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}^{1} \end{aligned}$	$\begin{aligned} & 0 / 4 \\ & -15 /+1 \end{aligned}$			$\begin{aligned} & 0 / 4 \\ & -15 /+1 \end{aligned}$			$\begin{aligned} & 0 / 4 \\ & -15 /+1 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 10.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \pm 14.2 \\ & \pm 11.5 \\ & 4.2 \\ & \\ & 100 \end{aligned}$	500	$\begin{aligned} & \pm 13.5 \\ & \pm 10.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \pm 14.2 \\ & \pm 11.5 \\ & 4.2 \\ & \\ & 100 \end{aligned}$	500	$\begin{aligned} & \pm 13.5 \\ & \pm 10.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \pm 14.2 \\ & \pm 11.5 \\ & 4.2 \\ & \\ & 100 \end{aligned}$	500	V V V $\mu \mathrm{V}$
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \\ & -15 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 90 \\ & 100 \end{aligned}$	$\begin{aligned} & 110 \\ & 130 \end{aligned}$		$\begin{aligned} & 80 \\ & 90 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		$\begin{aligned} & 800 \\ & 90 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		dB dB
Power Supply Rejection Ratio	PSRR			1.0	5.6		3.2	10		3.2	10	$\mu \mathrm{V} / \mathrm{V}$
Slew Rate	SR	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	5	12		5	12		5	12		V / ms
Supply Current (All Amplifiers)	$\mathrm{I}_{\text {SY }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}, \text { No Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \text { No Load } \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Capacitive Load Stability		$\mathrm{A}_{\mathrm{V}}=1$		650			650			650		pF
Input Noise Voltage	$\mathrm{e}_{\mathrm{n}} \mathrm{p}-\mathrm{p}$	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		3			3			3		$\mu \mathrm{V}$ p-p
Input Resistance Differential Mode	R_{IN}	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		30			30			30		$\mathrm{M} \Omega$
Input Resistance Common-Mode	$\mathrm{R}_{\text {INCM }}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		20			20			20		G Ω
Gain Bandwidth Product	GBWP	$\mathrm{A}_{\mathrm{V}}=1$		20			20			20		kHz
Channel Separation	CS	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}^{2} \end{aligned}$	120	150		120	150		120	150		dB

NOTES

${ }^{1}$ Guaranteed by CMRR test.
${ }^{2}$ Guaranteed but not 100% tested.
Specifications subject to change without notice

Parameter	Symbol	Conditions	OP490E			OP490F			OP490G			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{V}_{\text {Os }}$			0.32	0.8		0.6	1.35		0.8	1.5	mV
Average Input Offset Voltage Drift	$\mathrm{TCV}_{\text {OS }}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2	5		4			4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	IOS	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		0.8	3		1.0	5		1.3	7	nA
Input Bias Current	I_{B}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		4.4	15		4.4	20		4.4	25	nA
Large Signal Voltage Gain	A_{Vo}	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & 1 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \\ & 100 \\ & \\ & 150 \\ & 75 \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & 200 \\ & \\ & 280 \\ & 140 \end{aligned}$		$\begin{aligned} & 350 \\ & 175 \\ & 75 \\ & \\ & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 700 \\ & 250 \\ & 150 \\ & \\ & 220 \\ & 110 \end{aligned}$		$\begin{aligned} & 300 \\ & 150 \\ & 75 \\ & \\ & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & 600 \\ & 250 \\ & 125 \\ & \\ & 160 \\ & 90 \end{aligned}$		V / mV V / mV V / mV V / mV V / mV
Input Voltage Range	IVR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}^{*} \end{aligned}$	$\begin{aligned} & 0.3 / 5 \\ & -15 /+ \end{aligned}$			$\begin{aligned} & 0.3 / 5 \\ & -15 /+ \end{aligned}$			$\begin{aligned} & 0.3 / 5 \\ & -15 /+ \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 10 \\ & 3.9 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 11 \\ & 4.1 \\ & \\ & 100 \\ & \hline \end{aligned}$	500	$\begin{gathered} \pm 13 \\ \pm 10 \\ 3.9 \end{gathered}$	$\begin{aligned} & \pm 14 \\ & \pm 11 \\ & 4.1 \\ & \\ & 100 \\ & \hline \end{aligned}$	500	$\begin{aligned} & \pm 13 \\ & \pm 10 \\ & 3.9 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 11 \\ & \\ & 4.1 \\ & \\ & 100 \end{aligned}$	500	V V V $\mu \mathrm{V}$
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \\ & -15 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 90 \\ & 100 \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \end{aligned}$		$\begin{aligned} & 80 \\ & 90 \end{aligned}$	$\begin{aligned} & 100 \\ & 110 \end{aligned}$			$\begin{aligned} & 100 \\ & 110 \end{aligned}$		dB dB
Power Supply Rejection Ratio	PSRR			1.0	5.6		3.2	10		5.6	17.8	$\mu \mathrm{V} / \mathrm{V}$
Supply Current (All Amplifiers)	$\mathrm{I}_{\text {SY }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}, \text { No Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \text { No Load } \end{aligned}$		$\begin{aligned} & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		$\begin{aligned} & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		$\begin{aligned} & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

NOTE

*Guaranteed by CMRR test.
Specifications subject to change without notice

OP490

WAFER TEST LIMITS ($\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Conditions	Limits	Unit
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$		0.75	mV max
Input Offset Current	$\mathrm{I}_{\text {OS }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	5	$n A$ max
Input Bias Current	I_{B}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	20	$n A$ max
Large Signal Voltage Gain	A_{vo}	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	500	V / mV min
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	250	V / mV min
		$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & 1 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	125	V / mV min
Input Voltage Range	IVR	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	0/4	V min
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}^{*}$	-15/+13.5	V min
Output Voltage Swing	V_{O}	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13.5	V min
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10.5	V min
	V_{OH}	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	4.0	V min
	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	500	$\mu \mathrm{V}$ max
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<4 \mathrm{~V}$	80	dB min
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-15 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+13.5 \mathrm{~V}$	90	dB min
Power Supply Rejection Ratio	PSRR		10	$\mu \mathrm{V} / \mathrm{V}$ max
Supply Current (All Amplifiers)	$\mathrm{I}_{\text {SY }}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, No Load	80	$\mu \mathrm{A}$ max

NOTE

*Guaranteed by CMRR test.
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

Figure 1. Simplified Schematic

ABSOLUTE MAXIMUM RATINGS*

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}{ }^{\boldsymbol{*}}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	Unit
14-Pin Hermetic DIP (Y)	99	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Plastic DIP (P)	76	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin SOL (S)	92	27	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{*} \theta_{\mathrm{JA}}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for CERDIP and PDIP packages; θ_{JA} is specified for device soldered to printed circuit board for SOL package

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
OP490EY*	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Lead CERDIP	Y-14
OP490FY*	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Lead CERDIP	$\mathrm{Y}-14$
OP490GP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Lead Plastic DIP	P-14
OP490GS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead SOIC	S-14

*Not recommended for new designs. Obsolete April 2002.
For Military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/programs/milspec/default.asp

SMD Part Number	ADI Equivalent
$5962-89670013 A^{*}$	OP490ATCMDA
$5962-8967001$ CA* *	OP490AYMDA

*Not recommended for new designs. Obsolete April 2002.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP490 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OP490-Typical Performance Characteristics

TPC 1. Input Offset Voltage vs. Temperature

TPC 2. Input Offset Current vs. Temperature

TPC 3. Input Bias Current vs. Temperature

TPC 4. Total Supply Current vs. Temperature

TPC 5. Open-Loop Gain vs. Single-Supply Voltage

TPC 6. Open-Loop Gain and Phase Shift vs. Frequency

TPC 7. Closed-Loop Gain vs. Frequency

TPC 8. Output Voltage Swing vs. Load Resistance

TPC 9. Output Voltage Swing vs. Load Resistance

TPC 10. Power Supply Rejection vs. Frequency

TPC 11. Common-Mode Rejection vs. Frequency

TPC 12. Noise Voltage Density vs. Frequency

TPC 13. Current Noise Density vs. Frequency

TIME - 100 $\mu \mathrm{s} / \mathrm{DIV}$
TPC 14. Small-Signal Transient Response

(20

TPC 15. Large-Signal Transient Response

Figure 2. Burn-In Circuit

Figure 3. Channel Separation Test Circuit

APPLICATIONS INFORMATION

Battery-Powered Applications

The OP490 can be operated on a minimum supply voltage of 1.6 V , or with dual supplies of $\pm 0.8 \mathrm{~V}$, and draws only $60 \mu \mathrm{~A}$ of supply current. In many battery-powered circuits, the OP490 can be continuously operated for hundreds of hours before requiring battery replacement, reducing equipment downtime, and operating costs.
High performance portable equipment and instruments frequently use lithium cells because of their long shelf-life, light weight, and high energy density relative to older primary cells. Most lithium cells have a nominal output voltage of 3 V and are noted for a flat discharge characteristic. The low supply current

Figure 4. Lithium-Sulphur Dioxide Cell Discharge Characteristic with OP490 and $100 \mathrm{k} \Omega$ Loads
requirement of the OP490, combined with the flat discharge characteristic of the lithium cell, indicates that the OP490 can be operated over the entire useful life of the cell. Figure 4 shows the typical discharge characteristic of a 1 Ah lithium cell powering an OP490 with each amplifier, in turn, driving full output swing into a $100 \mathrm{k} \Omega$ load.

Single-Supply Output Voltage Range

In single-supply operation the OP490's input and output ranges include ground. This allows true "zero-in, zero-out" operation. The output stage provides an active pull-down to around 0.8 V above ground. Below this level, a load resistance of up to $1 \mathrm{M} \Omega$ to ground is required to pull the output down to zero.
In the region from ground to 0.8 V , the OP490 has voltage gain equal to the data sheet specification. Output current source capability is maintained over the entire voltage range including ground.

Input Voltage Protection

The OP490 uses a PNP input stage with protection resistors in series with the inverting and noninverting inputs. The high breakdown of the PNP transistors coupled with the protection resistors provides a large amount of input protection, allowing the inputs to be taken 20 V beyond either supply without damaging the amplifier.

OP490

Micropower Voltage-Controlled Oscillator

An OP490 in combination with an inexpensive quad CMOS switch comprise the precision V_{CO} of Figure 5. This circuit provides triangle and square wave outputs and draws only $75 \mu \mathrm{~A}$ from a 5 V supply. A acts as an integrator; S 1 switches the charging current symmetrically to yield positive and negative ramps. The integrator is bounded by B which acts as a Schmitt trigger with a precise hysteresis of 1.67 V , set by resistors R5, R6, and R7, and associated CMOS switches. The resulting
output of A is a triangle wave with upper and lower levels of 3.33 V and 1.67 V . The output of B is a square wave with almost rail-to-rail swing. With the components shown, frequency of operation is given by the equation:

$$
f_{\text {OUT }}=V_{\text {CONTROL }}(\text { Volts }) \times 10 \mathrm{~Hz} / \mathrm{V}
$$

but this is easily changed by varying C 1 . The circuit operates well up to a few hundred hertz.

Figure 5. Micropower Voltage Controlled Oscillator

Micropower Single-Supply Quad Voltage-Output 8-Bit DAC
The circuit of Figure 6 uses the DAC8408 CMOS quad 8-bit DAC, and the OP490 to form a single-supply quad voltage-output DAC with a supply drain of only $140 \mu \mathrm{~A}$. The DAC8408 is used in voltage switching mode and each DAC has an output resistance
($\approx 10 \mathrm{k} \Omega$) independent of the digital input code. The output amplifiers act as buffers to avoid loading the DACs. The $100 \mathrm{k} \Omega$ resistors ensure that the OP490 outputs will swing below 0.8 V when required.

Figure 6. Micropower Single-Supply Quad Voltage Output 8-Bit DAC

Figure 7. High Output Amplifier

High Output Amplifier

The amplifier shown in Figure 7 is capable of driving 25 V p-p into a $1 \mathrm{k} \Omega$ load. Design of the amplifier is based on a bridge configuration. A amplifies the input signal and drives the load with the help of B . Amplifier C is a unity-gain inverter which drives the load with help from D . Gain of the high output amplifier with the component values shown is 10 , but can easily be changed by varying R1 or R2.

Single-Supply Micropower Quad Programmable Gain Amplifier

 The combination of quad OP490 and the DAC8408 quad 8-bit CMOS DAC, creates a quad programmable-gain amplifier with a quiescent supply drain of only $140 \mu \mathrm{~A}$. The digital code present at the DAC, which is easily set by a microprocessor, determines the ratio between the fixed DAC feedback resistor and the resistance of the DAC ladder presents to the op amp feedback loop. Gain of each amplifier is:$$
\frac{V_{O U T}}{V_{I N}}=-\frac{256}{n}
$$

where n equals the decimal equivalent of the 8-bit digital code present at the DAC. If the digital code present at the DAC consists of all zeros, the feedback loop will be open causing the op amp output to saturate. The $10 \mathrm{M} \Omega$ resistors placed in parallel with the DAC feedback loop eliminates this problem with a very small reduction in gain accuracy. The 2.5 V reference biases the amplifiers to the center of the linear region providing maximum output swing.

Figure 8. Single-Supply Micropower Quad Programmable Gain Amplifier

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

Revision History

Location

Page

Data Sheet changed from REV. B to REV. C.
Deleted 28-Pin LCC (TC-Suffix) PIN CONNECTION DIAGRAM . 1
Deleted ELECTRICAL CHARACTERISTICS . 3
Edits to ABSOLUTE MAXIMUM RATINGS . 5
Edits to ORDERING GUIDE . 5

REV. C

