MIL-M-38510/208C 31 January 1984 SUPERSEDING MIL-M-38510/208B 16 August 1982 #### MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, 4096-BIT SCHOTTKY, BIPOLAR, PROGRAMMABLE READ-ONLY MEMORY (PROM), MONOLITHIC SILICON This specification is approved for use by all Departments and Agencies of the Department of Defense. #### 1. SCOPE - 1.1 Scope. This specification covers the detail requirements for monolithic silicon, PROM microcircuits which employ thin film nichrome resistors or titanium-tungsten as the fusible link or programming element. Three product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the part number. Special test requirements are included in this specification to evaluate the quality of the passivation layer (see group B water drop test of 4.4.2a) and to screen against devices which may contain excess moisture in the package materials or internal atmosphere (see freeze-out test of 4.2d). - 1.2 Part number. The part number shall be in accordance with MIL-M-38510, and as specified herein. - 1.2.1 Device type. The device type shall be as follows: | Device type | <u>Circuit</u> | |-------------|---| | 01 | 512 word/8 bits per word PROM with uncommitted collector | | 02 | 512 word/8 bits per word PROM with active pull-up and a
choice third high-impedance state output | | 03 | 512 word/8 bits per word PROM with active pull-up and a
third high-impedance state output | | 04 | 512 word/8 bits per word PROM with uncommitted collector | | 05 | 512 word/8 bits per word PROM with active pull-up and a
third high-impedance state output | - 1.2.2 Device class. The device class shall be the product assurance level as defined in MIL-M-38510. - 1.2.3 <u>Case outline.</u> The case outline shall be designated as follows: | Letter | Case outline (see MIL-M-38510, appendix C) | |--------|---| | J | D-3 (24-lead, 1/2" x 1-1/4"), dual-in-line package | | K | F-6 (24-lead, 3/8" x 5/8"), flat package
See figure 1 (24-lead, 3/8" x 3/8"), flat package | | Χ | | | Υ | See figure 2 (20-lead, 5/16" x 1.0"), dual-in-line package | | Z | C-3 (24 terminal, .400" x .400"), chip carrier package | #### 1.3 Absolute maximum ratings. ``` Supply voltage range – – – – – – – – – – – – – – 0.5 V dc to +7.0 V dc Input voltage range – – – – – – – – – – – – 1.5 V dc at –10 mA to +5.5 V dc Storage temperature range – – – – – – – – – – – 65 °C to +150 °C Lead temperature (soldering, 10 seconds) – – +300 °C ``` Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Rome Air Development Center (RBE-2), Griffiss AFB, NY 13441, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter. #### MIL-M-38510/208C #### 1.4 Recommended operating conditions. Supply voltage - - - - - - - - - - - 4.5 V dc minimum to 5.5 V dc maximum Minimum high-level input voltage - - - - 2.0 V dc Maximum low-level input voltage - - - - 0.8 V dc Normalized fanout (each output) - - - - - 8 mA $\frac{3}{t}$ Case operating temperature range - - - - - - 55°C $\frac{3}{t}$ 0 +125°C #### 2. APPLICABLE DOCUMENTS 2.1 <u>Government specifications and standards</u>. Unless otherwise specified, the following specifications and standards, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this specification to the extent specified herein. #### SPECIFICATION MILITARY MIL-M-38510 - Microcircuits, General Specification for. STANDARD MILITARY MIL-STD-883 - Test Methods and Procedures for Microelectronics. (Copies of specifications, standards, handbooks, drawings, and publications required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer.) 2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this specification shall take precedence. #### 3. REQUIREMENTS - $3.1~\underline{\text{Detail specification.}}$ The individual item requirements shall be in accordance with MIL-M-38510, and as specified herein. When manufacturer programmed devices are delivered to the user, an altered item drawing shall be prepared by the contracting activity to specify the required program configuration. - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein. - 3.2.1 $\underline{\text{Terminal connections.}}$ The terminal connections shall be as specified on figure 3. - 3.2.2 Truth table. - 1/ Heat sinking is recommended to reduce the junction temperature. - 2/ Must withstand the added PD due to short-circuit test (e.g., I_{OS}). - 3/ 16 mA for circuit F devices. ## MIL-M-38510/208C TABLE I. Electrical performance characteristics. | IABLE 1. | | at periormance char | | _ | | | |---|-----------------------------|---|--------------------|----------------|----------------|------------------------| | Toch | l Symbol | Conditions 1/2/ | Device
type | Lim | its
 Max | Unit | | Test | Symbol
 | | type | | 114 | Unit | | High-level output voltage | 1
 V _{OH}
 | V _{CC} = 4.5 V,
I _{OH} = -2 mA | 02,03,05 | 2.4 | | ٧ | | Low-level output voltage | !
! V _{OL}
! | $V_{CC} = 4.5 V,$ $V_{OL} = 8 \text{ mA } 3/$ | A11 |

 |
 0.5
 | V | | Input clamp voltage | V _{IC} | V _{CC} = 4.5 V,
 I _{IN} = -10 mA,
 T _C = 25 °C |
 All
 |
 |
 -1.5
 | Y | | Maximum collector cut-off
current | ICEX | V _{CC} = 5.5 V, | 01,04 | | 100 | μA | | High-impedance (off-state)
output high current | I OHZ | V _{CC} = 5.5 V, | 02,03,05 | |
 100
 |) µА | | High-impedance (off-state) output low current | IOLZ | V _{CC} = 5.5 V, |
 02,03,05
 | |
 -100
 |
 μΑ
 | | High-level input current | I I _{IH1} | V _{CC} = 5.5 V, V _{IN} = 5.5 V | A11
 | |
 50
 | !
 µА
 | | | I I _{IH2} I | V _{CC} = 5.5 V,
 V _{IN} = 4.5 V,
 special program-
 ming pin | A11
 |

 | 1100 |
 μΑ

 | | low-level input current | I IL1 | V _{CC} = 5.5 V,
 V _{IN} = 0.5 V |
 All
 | -1.0 |
 -250
 |
 μ A
 | | | I I _{IL2} | V _{CC} = 5.5 V,
 V _{IN} = 0.5 V,
 for CE ₃ and CE ₄ | 01,02 | 1-1.0 | -1000 | I μA | | Short circuit output current | 105 | $V_{CC} = 5.5 V,$ $V_{O} = 0.0 V 4/$ | 02,03,05 | -10 | -100 | l mA | | Supply current | Icc | V _{CC} = 5.5 V, | 01,02,03 | | 185 | l mA | | | | VIN = 0, out-
 puts = open | 04,05 |
 | 1155 |
 mA
 | | Propagation delay time, | tpHL1 | V _{CC} = 4.5 V and 15.5 V, | 01,02,03 | | 90 | ns | | high-to-low level logic, address to output |

 | 15.5 V,
 C _L = 30 pF
 (see figure 7) | 04,05 |
 |
 80
 | ns | | Propagation delay time,
low-to-high level logic, | t _{PLH1} | | 01,02,03 |
 | 90 | l ns | | address to output | 1 | | 04,05 | | T 80 | ns | See footnotes at end of table. TABLE I. Electrical performance characteristics - Continued. | Test |
 Symbol | Conditions $1/2/$ | Device
l type | Lim | its
 Max |
 Unit
 | |--|-------------------|---|------------------|--------|--------------|---------------| |
 Propagation delay time,
 high-to-low level logic, | t _{PHL2} | VCC = 4.5 V and 15.5 V. | 01,02,03 | | 50 | l ns | | enable to output | i
1 | C _L = 30 pF
 (see figure 7) | 04,05 |
 | 40
 | n s | |
 Propagation delay time,
 low-to-high level logic, |
 tpLH2
 | | 01,02,03 | |
 50
 | ns | | enable to output |
 | - | 04,05
I | i
i | i 40
I | ns | - 1/ Complete terminal conditions shall be as specified on table III. - For device type 03, the fusing pins FE_1 and FE_2 may be grounded or floating during operation. - $3/I_{01} = 16$ mA for circuit F devices. - 4/ Not more than one output shall be grounded at one time. Output shall be at high logic level prior to test. TABLE II. Electrical test requirements. | MIL-STD-883 test requirements | Subgr | oups (see ta | ble III) | |---|--------------------|-------------------------|--------------------| | 1 | Class S
devices | Class B
 devices | Class C
devices | |
 Interim electrical tests
 (pre burn-in) (method 5004)
 | 1 | 1 1 | None | |
 Final electrical tests (method 5004)
 for unprogrammed devices | 1*,2,3,7*, |
 1*,2,3,7*,
 8 | 1 1 | | Final electrical tests (method 5004)
 for programmed devices | 1*,2,3,7*, |
 1*,2,3,7*,
 8,9 | 1,7,9 | | Group A electrical tests
(method 5005) | 1,2,3,7,8, | 1,2,3,7,8,
19,10,11 | 11,2,3,7,8,9, | | Group B electrical tests
(method 5005, subgroup 5) | 1,2,3,7,8, | N/A | N/A | | Group C end-point electrical tests
(method 5005) | N/A | 1,2,3,7,8 | 1,2,3,7. | | Group D end-point electrical tests
(method 5005) | 1,2,3,7,8 | 11,2,3,7,8 | 1,2,3,7 | - * indicates PDA applies to subgroups 1 and 7 (see 4.2c). Any or all subgroups may be combined when using high-speed testers. Subgroups 7 and 8 shall consist of verifying the pattern specified. - 3.2.2.1 Unprogrammed devices. The truth table for unprogrammed devices for contracts involving no altered item drawing
shall be as specified on figure 4. When required in group A, B, or C inspection (see 4.4), the devices shall be programmed by the manufacturer prior to test in a checkerboard pattern (a minimum of 50 percent of the total number of bits programmed) or to any altered item drawing pattern which includes at least 25 percent of the total number of bits programmed. - 3.2.2.2 <u>Programmed devices</u>. The truth table for programmed devices shall be as specified by the altered item drawing. - 3.2.3 Logic diagrams. The logic diagrams shall be as specified on figure 5. - 3.2.4 Case outlines. The case outlines shall be as specified in 1.2.3. - 3.3 Lead material and finish. The lead material and finish shall be in accordance with MIL-M-38510 (see 6.5). - 3.4 Electrical performance characteristics. The electrical performance characteristics of table I apply over the full recommended case operating temperature range, unless otherwise specified. - 3.5 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be as indicated by the subgroups shown in table II and, where applicable, by the altered item drawing. The subgroup tests shall be as specified in table III. - 3.6 <u>Marking.</u> Marking shall be in accordance with MIL-M-38510. For programmed devices, the altered item drawing number shall be added to the marking by the programming activity. At the option of the manufacturer, marking of the country of origin may be omitted from the body of the microcircuit but shall be retained on the initial container. - 3.7 <u>Processing options</u>. Since the PROM is an unprogrammed device capable of being programmed by either the manufacturer or the user in a wide variety of configurations, two processing options are provided for selection in the contract, using an altered item drawing. - 3.7.1 Unprogrammed PROM delivered to the user. All testing shall be verified through group A testing as defined in 3.2.2.1 and tables II and III. It is recommended that users perform subgroups 7 and 9 after programming to verify the specific program configuration. - 3.7.2 Manufacturer-programmed PROM delivered to the user. All testing requirements and quality assurance provisions herein, including the requirements of the altered item drawing, shall be satisfied by the manufacturer prior to delivery. - 3.8 Microcircuit group assignment. The devices covered by this specification shall be in microcircuit group number 14 (see MIL-M-38510, appendix E). - 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-M-38510 and methods 5005 and 5007, as applicable, of MIL-STD-883, except as modified herein. - 4.2 <u>Screening.</u> Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to qualification and quality conformance inspections. The following additional criteria shall apply: - a. Interim and final electrical tests shall be as specified in table II; the interim electrical tests prior to burn-in are optional at the discretion of the manufacturer. - b. Burn-in test (method 1015 of MIL-STD-883, test condition D or E), using the circuit shown on figure 6 or equivalent. #### MIL-M-38510/208C - c. The percent defective allowable (PDA) shall be as specified in MIL-M-38510. - d. The freeze-out test shall be conducted as a 100-percent screen on all class S devices having nichrome as the fusible link. Within no more than 24 hours after completion of burn-in and prior to the final electrical test, all devices having nichrome as the fusing link shall be subjected to a freeze-out test. If more than 24 hours have elapsed subsequent to the 125°C burn-in exposure, devices shall be conditioned with at least 125°C for a minimum of 5 hours immediately prior to the freeze-out test. When the freeze-out test is performed, the 25°C final electrical tests shall be completed within 96 hours after the freeze-out test. The freeze-out test shall be conducted as follows: - Step 1. Connect devices in the electrical configuration of figure 9 or in the burn-in configuration of figure 6 with the bias cycled, 3 minutes on and 3 minutes off, throughout the duration of test. - Step 2. Reduce device temperature to $T_A = -10^{\circ} \text{C} \pm 2^{\circ} \text{C}$ with bias cycled and maintain at that temperature for a minimum of 5 hours. - Step 3. With the cycled bias maintained, allow T_A to go to room temperature (by removal from the cold chamber or termination of forced cooling but with no forced heating) and retain for a minimum of 19 hours subsequent to the completion of the 5-hour cold soak. T_A shall not exceed 35°C during this period. - Step 4. Remove bias and subject all devices to subgroup 1 final electrical tests to establish continuity of the nichrome resistors and remove all failed devices from the lot. Count them as screening rejects subject to the PDA requirements of 4.2c. - e. Class B devices processed to an altered item drawing may be programmed either before or after burn-in at the manufacturer's discretion. The required electrical testing shall include, as a minimum, the final electrical tests for programmed devices as specified in table II herein. Class S devices processed by the manufacturer to an altered item drawing shall be programmed prior to burn-in. - 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-M-38510. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4). Qualification data for subgroups 7 through 11 shall be by attributes only. - 4.3.1 Qualification extension. When authorized by the qualifying activity, for qualification inspection, if a manufacturer qualifies to a faster device type which is manufactured identically to a slower device type on this specification, then the slower device type may be part I qualified by conducting only group A electrical tests and any electricals specified as additional group C subgroups and submitting data in accordance with MIL-M-38510, appendix D (i.e. groups B, C, and D tests are not required). #### MIL-M-38510/208C - 4.4 Quality conformance inspection. Quality conformance inspection shall be in accordance with MIL-M-38510 and as specified herein. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4). - 4.4.1 <u>Group A inspection</u>. Group A inspection shall be in accordance with table I of method 5005 of MIL-STD-883 and as follows: - a. Electrical tests shall be as specified in table II herein. - b. Subgroups 4, 5, and 6 shall be omitted. - c. For unprogrammed devices, a sample shall be selected to satisfy the programmability requirements prior to performing subgroups 9, 10, and 11. Twelve devices shall be submitted to programming (see 3.2.2.1). If more than 2 devices fail to program, the lot shall be rejected. At the manufacturer's option, the sample may be increased to 24 total devices with no more than 4 total device failures allowed. - d. For unprogrammed devices, 10 devices from the programmability sample shall be subjected to the requirements of group A, subgroups 9, 10, and 11. If more than 2 total devices fail in all three subgroups, the lot shall be rejected. At the manufacturer's option, the sample may be increased to 20 total devices with no more than 4 total device failures allowed. - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of method 5005 of MIL-STD-883 and as follows: - a. Electrical tests shall be as specified in table II herein. Class S devices selected for testing in subgroup 5, table IIa of method 5005 of MIL-STD-883, shall be programmed in accordance with 3.2.2. - b. Steady state life test for class S devices shall be in accordance with subgroup 5, table IIa of method 5005 of MIL-STD-883, using a circuit submitted to the qualifying activity for approval. If the alternate burn-in conditions are used, the circuit on figure 6 or equivalent shall be used. - 4.4.3 <u>Group C inspection.</u> Group C inspection shall be in accordance with table III of method 5005 of MIL-SID-883 and as follows: - a. End-point electrical tests shall be as specified in table II herein. - b. Steady state life test (method 1005 of MIL-STD-883, test condition D or E), using the circuit shown on figure 6 or equivalent. - (1) $T_A = 125^{\circ}C$ minimum. - (2) Test duration = 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883. - c. For qualification inspection, at least 25 percent of the sample selected for testing in subgroup 1 shall be programmed (see 3.2.2). For quality conformance inspection, the programmability sample (see 4.4.1c) shall be included in the subgroup 1 tests. | | INC | HES | MILLI | METERS | | |----------------|--------|-------|--------|--------|-------| | SYMBOL. | MIN | MAX | MIN | MAX | NOTES | | A | .045 | . 090 | 1.14 | 2.29 | | | b | .015 | .019 | .38 | .48 | 5 | | С | .003 | .006 | .08 | .15 | 5 | | D | | .400 | | 10.16 | 3 | | E | .340 | .385 | 8.64 | 9.78 | | | Ε ₁ | | .400 | | 10.16 | 3 | | E ₂ | .125 | | 3.18 | | | | E ₃ | .030 | | .76 | | 14 | | е | .050 B | SC | 1.27 B | SC | 4,6 | | k | .008 | .015 | .20 | .38 | 10 | | L | .250 | .370 | 6.35 | 9.40 | | | Q | .010 | .040 | .25 | 1.02 | 2 | | Sı | .005 | | .13 | | 7,8 | | S ₂ | .005 | | .13 | | 11 | | α | 30° | 90° | 30° | 90° | 12,13 | FIGURE 1. Case outline X (24-lead, $3/8" \times 3/8"$). - 1. Index area; a notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternatively, a tab (dimension k) may be used to identify pin one. - 2. Dimension Q shall be measured at the point of exit of the
lead from the body. - This dimension allows for off-center lid, meniscus and glass overrun. - The basic pin spacing is .050 (1.25 mm) between centerlines. Each pin centerline shall be located within \pm .005 (.13 mm) of its exact longitudinal position relative to pins 1 and 24. - All leads Increase maximum limit by .003 (.08 mm) measured at the center of the flat, when lead finish A is applied. - 6. Twenty-two spaces. - 7. Applies to all four corners (leads number 3, 10, 15, and 22). - 8. Dimension S_1 may be .000 (.00 mm) if leads number 3, 10, 15, and 22 bend toward the cavity of the package within one lead width from the point of entry of the lead into the body or if the leads are brazed to the metallized ceramic body (see 40.3 of appendix C, MIL-M-38510). 9. Optional configuration; if this configuration is used, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads. - 10. Optional, see note 1. If a pin one identification mark is used in addition to this tab, the minimum limit of dimension k does not apply. - 11. Applies to leads number 2, 11, 14 and 23. - 12. Lead configuration is optional within dimension E except dimensions b and c apply (see 40.2 of appendix C, MIL-M-38510). - Applies to leads number 1, 2, 11, 12, 13, 14, 23, and 24. - 14. Applies to all edges. - 1. Index area; a notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. - The minimum limit for dimension b_1 may be .020 (.51 mm) for leads number 1, 10, 11, and 20 only. 2. - Dimension Q shall be measured from the seating plane to the base plane. - This dimension allows for off-center lid, meniscus and glass overrun. - 5. The basic pin spacing is .100 (2.54 mm) between centerlines. Each pin centerline shall be located within ±.010 (.25 mm) of its exact longitudinal position relative to pins 1 and 20. 6. Applies to all four corners (leads number 1, 10, 11, and 20) (see 40.5 of appendix C, MIL-M-38510). - 7. Lead center when α is 0°. E₁ shall be measured at the centerline of the leads (see 40.4 of appendix C, MIL-M-38510). - All leads Increase maximum limit by .003 (.08 mm) measured at the center of the flat, when lead finish A is applied. - Eighteen spaces. - 10. No organic or polymeric materials shall be molded to the bottom of the package. - il. Applies to all leads. FIGURE 2. Case outline Y (20-lead, $5/16" \times 1.0"$). Device types 01, 02 Cases J, K and X Device types 01, 02 Case Z OPTION A WITH ACTIVE TERMINALS ON PLANE 1. Device type 03 Cases J, K and X Device types 04 and 05 Case Y FIGURE 3. Terminal connections. Device types 01 and 02 | WORD | | ENAB | LE | | | | | Α | DDRE | SS | | | | DATA | | | | | | | | |-------|----|------|-----|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------|-----|-----|-----|-----|------|-----|-----| | NO. | CE | CE2 | CE3 | CE ₄ | A ₈ | A ₇ | A ₆ | A ₅ | A ₄ | A ₃ | A ₂ | A ₁ | A _O | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | | NA NA | μ. | ٦. | r | L | Χ | X | Χ. | Χ. | Х | X | Χ | Χ. | Χ | oc | Ö | QC. | ОC | oc | oc . | oc | OC. | | NA | Н | L | : L | | Χ | Χ | X | X | χ | χ | χ | χ | χ | 00 | OC | 00 | 00 | OC. | ОC | OC | 0C | | NA | L | н | : L | L | Х | Х | Х | χ | Х | X. | Х | Χ. | Х | OC. | OC | OC | OC | OC | oc | QC | OC. | | NA | Н | H | L | L | Χ | Χ | Х | Χ | Χ | χ | Χ | χ | χ | ò | OÇ. | OC | OÇ. | oc | OC. | ОC | ΟC | | NA | L | L | Н | | Χ | Χ | χ | χ | χ | Χ | Χ | χ | χ | OC | 00 | OC | OC | oc | OC | 00 | 00 | | NA | H. | L | Н | L | X. | X | X | χ | X | X | X | Х | X | 00 | 00 | 00 | 00 | 00 | 00 | OC. | 00 | | NA | L | Н | H | L | X | Х | Х | χ | χ | Χ | Χ | Χ | χ | 0¢ | 00 | 00 | 00 | 00 | 00 | 0C | 0Ç | | NA: | Н | H | H | ١ | X | X | X | X | Χ | X | χ | Х | X | OC | OC | OC | 00 | 00 | 00 | OC. | OC. | | NA. | L | L | L | H | Х | χ | X | X | X. | χ | X | χ | χ | QC | QC | OC. | OC. | OC | 0Ç | 00 | 00 | | NA | H | L | L | H: | Х | Х | X | Χ | Χ | X | X | χ | χ | 00 | 00 | 00 | OC. | 0Ç | 0¢ | 00 | 00 | | NA | L. | H | L | Н | Χ | Х | Х | χ | Χ | X | X | Х | χ | 00 | 00 | 00 | OC. | OC. | 00 | 00 | 00 | | NΑ | Ή | H | _ | H | χ. | X | X | X | X | X | χ | X | X | 00 | 00 | 00 | 00 | OC | 00 | 00 | 00 | | NA. | L | | Н | Н | Х | X | X | Χ | X | X | X | Χ | Χ | 4/ | 4/ | 4/ | 4/ | 4/ | 4/ | 4/ | 4/ | | NA | Н | L | Н | Н | X | X | X | X | X | X | X | X | Χ | <u>oc</u> | ŌC | NA | L | Н | Н | H | . Х | Х | Χ | Χ | X | X | Χ | Х | Χ | OC | 00 | 00 | 00 | 00 | 00 | OC. | 00 | | NA | Н | H | Н | H | X. | X | X: | X | Х | X | Х | X | Χ | oc | 00 | OC | OC. | oc | 0C | oc | 0C | #### Device type 03 | word | | ENAB | LE | | | | , | ADDRI | ESS | | | | | | | DA | TA | | | | |------|-------------|------|--------|------------------|----------------|----------------|----------------|-----------------|-----|----------------|---|----------------|----|-----|----------------------|----------------|------|----------|----|----| | NO. | <u>CE</u> 1 | CE2 | STROBE | . A ₈ | A ₇ | A ₆ | A ₅ | A' ₄ | A 3 | A ₂ | ۲ | A ₀ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | | NA | ٦ | L | H | Х | X: | X | χ | X | Х | χ | χ | Х | 00 | 00 | 00 | 00 | 00 | 00 | 00 | oc | | NA | H | L. | Н | χ | X. | X | Х | X | Х | Х | Χ | Х | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | | NA | L | H | H | χ | X | χ | X. | X | X | X | X | Χ | 4/ | 4/ | 4/ | 4/ | 4/ | 4/
0C | 4/ | 4/ | | NA | H | Н | Н | χ | X | χ | Х | X | X | Х | X | χ | ŌĊ | ŌC. | 4 /
0c | 0 C | σc | ŌC | ōc | ōc | | NA _ | L | H | L | Χ | X | X | X | X | X | X | X | Х | | Las | t da | ta i | s la | tche | ed | | #### Device types 04 and 05 | WORD | ENABLE | | | • | - | DDRE | SS | | | | | | | DA | TA | | | | |------|--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---|----------------|----|----|-----|----|----|----|----|----| | NO. | CE | A ₈ | A ₇ | A ₆ | A ₅ | A ₄ | A ₃ | A ₂ | A | A ₀ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 80 | | NA | Н | Х | Х | χ | X | Х | Х | χ | Х | χ | OC | 00 | OC. | oc | 0C | ОС | 0Ç | 0C | | NA | L | Χ | Х | Χ | X | χ | χ | Х | X | Х | 4/ | 4/ | 4/ | 4/ | 4/ | 4/ | 4/ | 4/ | - NO!ES: 1. NA = Not applicable. 2. X = Input may be high level, low level, or open circuit. 3. OC = Open circuit (high resistance output). 4. The outputs for an unprogrammed device shall be high for circuits A, B, D, and F, and low for circuits C and G. FIGURE 4. Truth table (unprogrammed). # LOGIC CIRCUIT A (Device types 01 and 02) FIGURE 5. Logic diagrams. # LOGIC CIRCUIT B (Device types 01, 02, 04, & 05) and LOGIC CIRCUIT F (Device type 05) FIGURE 5. Logic diagrams - Continued. # LOGIC CIRCUIT C (Device types 01 and 02) FIGURE 5. Logic diagrams - Continued. # LOGIC CIRCUIT C (Device type 03) FIGURE 5. Logic diagrams - Continued. LOGIC CIRCUIT D ## (Device types 01 and 02) 8 A 7 ^A6 4096 BIT CELL 10F64 A₅ DECODER 64 OF 64 4 MEMORY MATRIX Α3 -A₂ IOF 8 1 OF 8 10F8 I OF B 1 OF 8 I OF 8 LOF 8 1 OF 8 DECODER DECODER DECODER DECODER DECODER DECODER DECODER CE1 --CE4- FIGURE 5. Logic diagrams - Continued. FIGURE 5. Logic diagrams - Continued. #### LOGIC CIRCUIT G (Device type 02) FIGURE 5. Logic diagrams - Continued. #### LOGIC CIRCUIT G (Device types 04 and 05) FIGURE 5. Logic diagrams - Continued. ### Device types 01 and 02. - NOTES: 1. R = $560\Omega \pm 5\%$. All outputs shall have separate identical loads. 2. V_{CC} shall be high enough to insure 5.0 V at the device V_{CC} terminal. 3. All pulse generators have the following characteristics: $V_{IL} = -1.5$ V minimum to 0.8 V maximum; V_{1H} = 2.0 V minimum to 5.5 V maximum; 50% ±15% duty cycle; and input frequencies as follows: | Input | Frequency (±50%) | |-----------------|-------------------------------| | Q_0 | f ₀ = 100 kHz min. | | Q_{1}^{0} | $f_1 = 1/2 f_0$ | | Q_2 | $f_2 = 1/2 f_1$ | | Q_3 | $f_3 = 1/2 f_2$ | | Q_{4} | $f_4 = 1/2 f_3$ | | Q_{5} | $f_5 = 1/2 f_4$ | | Q_{6} | $f_6 = 1/2 f_5$ | | Q ₇ | $f_7 = 1/2 f_6$ | | Q_8 | $f_8 = 1/2 f_7$ | | Q_{9} | $f_9 = 1/2 f_8$ | | Q ₁₀ | $f_{10} = 1/2 f_9$ | | Q ₁₁ | $f_{11} = 1/2 f_{10}$ | | Q ₁₂ | $f_{12} = 1/2 f_{11}$ | FIGURE 6. Burn-in and steady state life test circuit. #### Device type 03 - 1. $R = 560\Omega$ ±5%. All outputs shall have separate identical loads. 2. All pulse generators have the following characteristics: $V_{IL} = -1.5 \text{ V}$ minimum to 0.8 V maximum; V_{111} = 2.0 V minimum to 5.5 V maximum; 50% ±15% duty cycle and frequencies as - specified in note 5. 3. V_{CC} shall be high enough to insure 5.0 V at the device V_{CC} terminal. - $-\tilde{E_1}$ and FE_2 should be GND or open. - Input frequencies are as follows: | Input | Frequency (±50%) | |-----------------|-------------------------------------| | Q_{0} | $f_0 = 100 \text{ kHz min.}$ | | Q_{1}^{-} | $f_1 = 1/2 f_0$ | | Q ₂ | $f_2 = 1/2 f_1$ | | Q_3 | $f_3 = 1/2 f_2$ | | Q_{4} | $f_4 = 1/2 f_3$ | | Q_{5} | f ₅ = 1/2 f ₄ | | Q ₆ | $f_6 = 1/2 f_5$ | | Q_{7} | $f_7 = 1/2 f_6$ | | Q_8 | $f_{8} = 1/2 f_{7}$ | | Q_{9} | $f_9 = 1/2 f_8$ | | Q ₁₀ | $f_{10} = 1/2 f_9$ | FIGURE 6. Burn-in and steady state life test circuit - Continued. - 1. R = 560Ω ±5%. All outputs shall have separate identical loads. 2. All pulse generators have the following characteristics: V_{IL} = -1.5 V minimum to 0.8 V maximum; V_{IH} = 2.0 V minimum to 5.5 V maximum; 50% $\pm 15\%$ duty cycle and frequencies as specified in note 4. 3. V_{CC} shall be high enough to insure 5.0 V at the device V_{CC} terminal. - 4. Input frequencies are as follows: | Input | Frequency (±50%) | |-----------------|------------------------------| | Q_0 | $f_0 = 100 \text{ kHz min.}$ | | Q | $f_1 = 1/2 f_0$ | | Q_2 | $f_2 = 1/2 f_1$ | |
q_3^- | $f_3 = 1/2 f_2$ | | Q_4 | $f_4 = 1/2 f_3$ | | Q ₅ | $f_5 = 1/2 f_4$ | | ^Q 6 | $f_6 = 1/2 f_5$ | | ^Q 7 | $f_7 = 1/2 f_6$ | | Q_8 | $f_8 = 1/2 f_7$ | | q_9 | $f_9 = 1/2 f_8$ | | Q ₁₀ | $f_{10} = 1/2 f_9$ | | Q_{11} | $f_{11} = 1/2 f_{10}$ | | ^Q 12 | $f_{12} = 1/2 f_{11}$ | | | | FIGURE 6. Burn-in and steady state life test circuit - Continued. - 1. Test table for devices programmed in accordance with an altered item drawing may be replaced by the equivalent tests which apply to the specific program configuration for the resulting read-only memory. 2. C_L = 30 pF minimum, including jig and probe capacitance; R₁ = 3300 ±25% and - $R_2^- = 680\Omega \pm 20\%$. - 3. Outputs may be under load simultaneously. FIGURE 7. Switching time test circuit. #### Device type 03 - Test table for devices programmed in accordance with an altered item drawing may be replaced by the equivalent tests which apply to the specific program configuration for the resulting read-only memory. C_L = 30 pF minimum, including jig and probe capacitance; R₁ = 3300 ±25% and - $R_2 = 680\Omega \pm 20\%$. - 3. Outputs may be under load simultaneously. FIGURE 7. Switching time test circuit - Continued. - Test table for devices programmed in accordance with an altered item drawing may be replaced by the equivalent tests which apply to the specific program configuration for the resulting read-only memory. - 2. $C_L = 30$ pF minimum, including jig and probe capacitance; $R_1 = 330\Omega \pm 25\%$ and $R_2 = 680\Omega \pm 20\%$. - 3. Outputs may be under load simultaneously. FIGURE 7. Switching time test circuit - Continued. - NOTES: 1. (*) Disregard for devices with no chip enable inputs. 2. All other waveform characteristics shall be as specified in table IVA. FIGURE 8a. Programming voltage waveforms during programming for circuit A. 1. Output load is 0.2 mA and 12 mA during 7.0 V and 4.0 V check, respectively. 2. All other waveform characteristics shall be as specified in IVB. 3. CE₁ is the programming pin for device types 04 and 05. FIGURE 8b. Programming voltage waveforms during programming for circuit B. ### Device types 01 and 02 #### Device type 03 NOTE: All other waveform characteristics shall be as specified in tabel IVC. FIGURE 8c. Programming voltage waveforms during programming for circuit C. NOTE: All other waveform characteristics shall be as specified in table IVD. FIGURE 8d. Programming voltage waveforms during programming for circuit D. - 1. Output load is 0.2 mA and 12 mA during 7.0 V and 4.0 V check, respectively. 2. All other waveform characteristics shall be as specified in table IVF. FIGURE 8e. Programming voltage waveforms during programming for circuit F. FIGURE 89. Programming voltage waveforms during programming for circuit G. - NOTES: 1. $R_1 = 4.7 \text{ k}\Omega \pm 5\%$. All bit outputs shall have separate identical loads. - 2. All Address inputs shall be either high, low, or open. 3. R_2 = 1 k Ω ±5%. - 4. Burn-in circuit may be used to perform this test. (see 4.2d). FIGURE 9. Freeze-out test bias configuration. - NOTES. 1. $R_1 = 4.7 \text{ k}\Omega \pm 5\%$. All bit outputs shall have spearate identical loads. 2. All Address inputs shall be either high, low, or open. 3. $R_2 = 1 \text{ k}\Omega \pm 5\%$. - 4. Burn-in circuit may be used to perform this test. (See 4.2d.) FIGURE 9. Freeze-out test bias configuration - Continued. #### Device types 04 and 05 - 1. R_1 = 4.7 k Ω ±5%. All bit outputs shall have separate identical loads. - 2. All Address inputs shall be either high, low, or open. 3. R_2 = 1 $k\Omega$ $\pm 5\%$. - 4. Burn-in circuit may be used to perform this test. (See 4.2d.) FIGURE 9. Freeze-out test bias configuration - Continued. TABLE III. <u>Group A inspection of device type 01.</u> Terminal conditions: Outputs not designated are open or resistive coupled to GND of voltage; inputs not designated are high ≥2.0 Y, low ≤0.8 Y, or open. | baroup | Symbol | i MIL-
ISTD-883
i method | Lases
 J.K.
 X.Z | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 . | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Measured
terminal | Test 1 | imits | Unit | |--------|--|--------------------------------|--|---------|----------------|----------------|---------|------------------|--|----------------|--|----------|----------------|------------------|--|---------------|------|--------------|------|------|--------------|-------------------|---------|--|--|--|----------------|--|--------|----------------|----------------| | | | method | l Yest | 1 A7 | A ₆ | A ₅ | A4 | I A ₃ | A ₂ | A ₁ | A _O | 01 | υ ₂ | l 0 ₃ | GND | 04 | 05 | 06 | 07 | 08 | CE4 | CE 3 | CE 2 | ČĒ, | NC | A8 | VCC | terminal] | Min | Max | | | 25*c | YIC | | 7 | 1-10 mA | -10 mA | 1-10 mA | -10 mA | 1-10 mA | -10 mA | -10 mA |
 -10 mA | | | | GND | | | | | | -10 mA |
 -
 -10 mA | 1-10 mA | -10 mA | | -10 mA | 4.5 Y | A7
A6
A5
A4
A2
A1
A2
CE4
CE3
CE2
CE1 | | -1.5 | Y | | | V _{OL} | 3007 | 1 14
1 15
1 16
1 17
1 18
1 19
1 20
1 21 | 1/2/ | 1/3/ | 1/ | 13/14/ | 13/14/ | 13/14/ | 13/14/ | | 8 mA
 | |
 | IN I | 8 mA |
 |
 |
 |
 | 2.4 V | 2-4 V | 0.5 ¥ | 0.5 ¥ | | 1/2/4/ | | 01
02
02
03
1 04
1 05
1 06
1 07
1 08 |
 | 0.5 | | | | 1 ₁ , 1
 1
 1
 1
 1
 1
 1 | 3009 | 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32 | 0.5 V | 0.5 V | 1 0.5 V | 1 0.5 V | 1 0.5 V | 1 0.5 Y | 1 0.5 V |

 0.5 V | | | | | | | |
 | | | |
 |
 | |

 | 5.5 V | A7
A6
A6
A5
A3
A2
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1 | -1.0 | -250 | A | | | IIL2 | : | 33 | | | | | | | 1 | | | | | : | † | | | | | 0.5 V | 0.5 V | | | 1 | | : | CE4
CE3 | : | -1000
-1000 | : | | | I _{IH1} | 3010 | 35
36
37
38
39
40
41
41
42
43
44
45 | 5.5 ¥ | 5.5 V | 1 5.5 ¥ | 1 5.5 V | 1 5.5 ¥ | 1 5.5 V | 1 5.5 Y |
 | | | | | | | | | | 5.5 ¥ | 5.5 V | |
 | | 5.5 V | | 1 A7 A6 A5 A4 A1 A2 A1 A2 A1 A1 A2 A1 A1 A2 A1 A1 A2 A1 | | 50 | | | | I IH2 | - | 47 | 1 | + | + | + | | | - | Ţ | - | ! | - | . | ╁ | + | | +- | 1 | | 1 | 4.5 ¥ | | | | - | TE ₂ | Ť | 100 | † . | See footnotes at end of table. TABLE III. Group £ inspection for device type 01 - Continued. Terminal conditions: Outputs not designated are open or resistive coupled to GND or voltage; inputs not designated are high ≥2.0 V. low ≤0.8 V. or open. | Subgroup |
 Symbol

 | NIL. | Cases
I J.K.
I X.Z | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 11 | 12 | 13
04 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
 Measured | Test 11 | mits |

 Unit | |----------------------------|---------------------------|---|--|----------------------|----------------------------|------------------------------------|----------------------------|------------------------------------|----------------------------|----------------------------|---------------------|------------|--|------------|-------------------|------------|-------|---------------------------------------|-----------------------|-------------------------------------|-----|--------------------------|-------------|-----------------|-------|--------------------------------------|--------------------------------------|--|--|----------------------|-----------------| | | | method | Test
no. | A7 | A ₆ | A ₅ |
1 14 | A ₃ | A2 | A ₁ | Ao | 01 | υ ₂ | U3 | GND | | 05 | 06 | 07 | 08 | CE4 | CE3 | CE 2 | TE ₁ | NC NC | A8 | Vcc | T terminal] | Min | | 1 | | 1
C = 25*C | ICEX | | 48
 49
 50
 51
 52
 53
 54
 55 | 15/ | 15/ | 15/ | 15/ | 15/ | 15/ | 15/ | 15/
1/
 | 5.2 V | 5.2 V | 5.2 V | GND | 5.2 ¥ | 5.2 V |

 5.2 Y |

 5.2 Y | 1
1
1
1
1
1
5.2 V | | | | | | 15/ | 5.5 V | 01
1 02
1 02
03
1 04
1 05
1 06
1 07
1 08 | | 100 | A | | | Icc |)
 3005
 | 56 | GND | }

 | | | i
I | 1 |
 | | | 5/ | 5/ | GND | GND | | GND | | Vcc | | 185 | n/ | | 2 | Same te | sts, termi | nal con | ditions, | and lim | its as f | or subgr | oup 1, e | xcept T _C | * 125°C | and VIC | tests a | re omitt | ed. | | | · | · | | | ·· | | | · | | | • | • | | | | | 3 | Same te | sts, termi | nal con | ditions, | and lim | its as f | or subgr | oup 1, e | xcept T _C | = -55°C | and V _{IC} | tests a | re omitt | .ed. | | | | | | | | | | | | | - | | | | _ | | C = 25 °C | Func-
 tional
 test | 3014 | 57 | <u>6</u> / | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | <u>6</u> / | 6/ | <u>6</u> / | GND | <u>6</u> / | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | 1 | 6/ | 6/ | Outputs | ;
 ;
 ; | <u>6</u> / | | | 8 | Same te | sts, termi | nal con | ditions, | and lim | its as f | or subgr | oup 7, e | xcept T ₍ | = 125°C | and T_{C} | = -55°C. | | · <u>·</u> | | <u>·</u> | | | | | | ' | | | | | | • | | | | | 9
F _C = 25°C | tpHL1 | IGALPAT
 IGALPAT
 IFIG. 7
 IGALPAT
 IFIG. 7
 ISequen-
 IFIG. 7
 ISequen-
 IFIG. 7 | 58
 59
 60
 61 | 7/
7/
8/
8/ | 2/
1 2/
1 8/
1 8/ | 7/
1 7/
1 7/
1 8/
1 8/ | 7/
1 7/
1 8/
1 8/ | 7/
1 7/
1 7/
1 8/
1 8/ | 7/
 7/
 2/
 8/ | 7/
 7/
 8/
 8/ | 1 | 9/ | 9/
 9/
 "
 "
 "
 " | 9/ | GND " " " | 9/ | 9/ | <u>9/</u>
 "
 "
 *
 * | 9/ | 1 | | 5.5 V
 5.5 V
 8/ | 1 | GND GND 6/ | | 1 7/
1 7/
1 7/
1 8/
1 8/ | 1 2/
1 2/
1 2/
1 8/
1 8/ | Outputs ' " ' " ' " | | 90
90
50
50 | | | 10 |
 Same te | sts, termi | nal con | ditions, | and lim | i
iits as f | or subgr | oup 9, e | xcept To | 1
:= 125°0 | | 1 | 1 | 1 | 1 | 1 | i | <u></u> | 1 | 1 : | 1 | 1 | ŀ | 1 | 1 | 1 | 1 | <u> </u> | <u> </u> | | | | 11 | 1 | sts, termi | · · · · · · | | | | | - | See footnotes at end of table. TABLE III. Group A inspection for device type 02. Terminal conditions: Outputs not designated are open or resistive coupled to GND of voltage; inputs not designated are high ≥2.0 v,. low <0.8 v, or open. |
 |
 | MIL-
 STD-883
 method | Cases
JJ,K, | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Measured | Test 1 | imits i | Uni | |------|---------------------------------------|--|--|----------|--------------|------------|----------|--|--|----------------------------|------------------------------|-------|----------------|-------|---------------------------------------|-------|-------|---------------------------|-------|--------|-------------|--------|-----------|--------|----|--------------------|-----------------|--|--------|---------|------------------| | 1 | | method | Test
no. | A7 | A6 | A5 | A4 | A3 | A ₂ | Ai | A 0 | 01 | 02 | 03 | GND | 04 | 05 | 06 | 07 | 08 | CE4 | CE3 | CE2 | ce, | NC | Ag | V _{CC} | terminal T | Min | Max | L | | *c | VIC | | 1 1 2 i 3 i 5 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 i 13 i i | i -10 mA | 1 10 -4 | -10 mA
 | i -10 mA | -10 mA | -10 mA | ~10 mA | -10 mA | | | | GND | | | | | |
 -10 mA | -10 mA | 1-10 mA 1 | -10 mA | | -10 mA | 4.5 ¥ | A7
A6
A5
A43
A22
A11
A0
CE4
CE2
CE1
A8 | , | -1.5 | | | | YOL | 3007 | 14
 15
 16
 17
 18
 19
 20
 21 | 1/2/ | 1/3/ | 16/ | 16/ | 1/ | 1/
1/
1/
1/
1/
1/
1/
1/
1/
1/ | 1/ | 1/2/
:
16/
:
13/ |
 | 8 mA | 8 mA | | | 8 mA |

 8 mA | |
 | 2.4 V | 2.4 V | 0.5 V | 0.5 V | | 1/4/
16/
13/ | | 01
02
03
04
05
06
07
08 | | 0.5 | | | | Y _{OH} | 3006 | 22
 23
 24
 25
 26
 27
 28
 29 | 17/ | 1/10/ | 1/ | 1/ | 17/ | 1/ | 1/ | 1/ | -2 mA | -2 mA | -2 mA | H H H H H H H H H H H H H H H H H H H | -2 mA | -2 mA | -2 mA | -2 mA | -2 104 | | | | | | 1/10/ | | 01
02
03
03
04
05
05
06
07 | 2.4 | | | | | I _{IL} 1 | 3009 | 30
 31
 32
 33
 34
 35
 36
 37
 38
 39 | 0.5 ¥ | 0.5 ¥ | 0.5 Y | 1 n.s v | LOEN | 1 0.5 V |

 0.5 Y | 0.5 Y | | | | | | | | | | | | 0.5 V | 0.5 V | | 0.5.Y | 5.5 V | A7
A6
A5
A4
A3
A2
A1
A0
CE2
CE1
A8 | -1.0 | -250 | | | • | I _{1L2} | : | 41 42 | | | | | | |

 | ;

 | |

 | | : |
 | | | | | 0.5 V | 0.5 V | | | | | | CE4
CE3 | : | -1000 | ו
ו
ו
נ | | | I I I I I I I I I I I I I I I I I I I | 3010 | 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54 | 5.5 V | 5.5 V | 5.5 Y | 1 5.5 V |

 5.5 ¥

 | 5.5 ¥ |
 |
 5.5 Y | | | | | | | | | | 5.5 | 5.5 | | 5.5 V | | 5.5 | | A7 A6 A5 A4 A5 A4 A6 | | 50 | | | • | 1 1 _{1H2} | |
 55 | - | - | - | 1 | 1 | 1 | | ! | - | | | <u> </u> . | 1 - | + | + | + | - | + | + | 4.5 V | 1 | 1 | Ť | | TE2 | | 100 | , ¬ | TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions: Outputs not designated are open for resistive coupled to GMO or voltage; inputs not designated are nigh 22.0 V, low <0.8 V, or open. | Subgroup |
 Symbol |
 MJL-
 STD-883 | Cases :
 J.K.
 X.Z. | 1 | 1 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Measurea | l
 Test 1fi
 | mits | Unit | |----------------------------|----------------------------|--|--|----------------------------|----------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------|----------------------------|---------|--|---------------------|--|-------------|------------|----------------|--------------------|----------|---------------------------------|----------------------|-------------|----------------|-------|----------------------|----------------------------|--|---------------------|-------------------|-------------------------------------| | • |
 | l method | Test | A7 | I 46 | Ag | A4 | A ₃ | A ₂ | A | Α _U | c_1 | 02 | 03 | GND | 04 | 05 | D ₆ | -07 | 08 | CE4 | ι υΕς
Ι | <u>ce</u> 5 | Œ₁ | NC NC | Ab | Ycc | terminal | Min i | Max | | | 1
= 25°C | I OHZ | 1 | 56 57 58 59 60 61 62 63 | | | | | | | | | 5.2 V | 1 5.2 V i | 5.2 V | GND | 5.2 Y | 5.2 v | 1 5.2 V | 1 5.2 V 1 | 5.2 ¥ | GND | GND | 5.5 Y | 5.5 Y | | | 1 5.5 ¥ | 01
 02
 03
 03
 04
 05
 05
 07
 08 | | 100 | ш А | | | l l oL z | 1 | 64
65
66
66
67
68
69
70 | | | | | | | |
 | 0.5 V |
 0.5 V

 | 0.5 ¥ | 10
10
10
10
10
10
10
10
10 | 0.5 ¥ |
 |
 |
 | 0.5 V | 0
10
40
17
11
10 | | | |
 | | | 01
02
1 03
1 04
1 05
1 06
1 07
1 08 | | -100 | ** ** ** ** ** ** ** ** ** ** ** ** | | | Icc | 3005 | 72 | GND | <u> </u> | | * | i
I | <u> </u> | i | i
i | i | 5/ | 5/ | GND | GND | | GND | | Vcc | | 185 | mA | | | Ios | 3011 | 73
74
75
76
77
78
79 | 1/ | 1/10/ | 1/ | 1/ | 1/ | 1/ | 1/ | 18/ | GND | GND | GND | H H H H H H H H H H | GND | GND | GND | I
I
I
GND |]
 | 5.5 V | 5.5 V | H | | | 1/10/ | | 01
02
03
04
05
06
07 | -10 | -100 | | | 2 | Same te | sts, term | inal con | ditions, | and Ifm | its as f | or subgr | oup 1, e | xcept T _C | = 125°C | and V _{IC} | tests a | re omitt | ed. | | • | 1 . | .! | | <u> </u> | | | | <u>-</u> | | | • | <u> </u> | | | | | 3 | Same te | sts, term | inal con | ditions, | , and lim | its as f | or subgr | oup 1, e | xcept T _C | = -55°C | and V _{IC} | tests a | re omitt | ed. | | | | | | | | | | | | | | | | | | | 7
C = 25*C | ifunc-
itional
itest | 3014 | 81 | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | <u>6</u> / | <u>b</u> / | 6/ | <u>6</u> / | 6/ | I GND | 6/ | <u>6</u> / | <u>6</u> / | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | | <u>6</u> / | <u>6</u> / | Outputs | | <u>6</u> / | ns | | 8 | Same to | ests, term | ina) con | ditions | and lim | nits as f | or subgr | oup 7, e | xcept T _C | = 125°C | and $T_{\mathbb{C}}$ | * -55*C | | | | | • | | | - | | | | | | | | | | | | | 9
T _C = 25°C | t _{PLH2} | IGALPAT
IFig. 7
IGALPAT
IFig. 7
ISequen-
Itial
IFig. 7
ISequen-
Itial
IFig. 7 | 82 83 84 84 | 2/
 7/
 8/
 8/ | 7/
7/
8/
8/ | 7/
 7/
 8/
 8/ | 7/
 7/
 7/
 8/ | 7/
 7/
 8/
 8/ | 7/
 7/
 2/
 8/ | | 7/
7/
8/
8/
8/ | 9/ | 9/ | <u>9/</u> " " | GND | 9/ | 9/ | 9/ | 9/ | 9/ | į. | 5.5 V
5.5 V
8/ | 1 | GND GND 8/ | | 2/
2/
8/
8/ | 7/
 7/
 8/
 8/
| Outputs | | 90 90 50 50 | ns | | 10 | Same to | ests, term | inal con | ditions | , and lis | nits as i | or subg | roup 9, 6 | xcept T _C | * 125°0 | . ' | <u></u> | 1 | | <u> </u> | | 1 | | • | | | · | · | | | - | | | | | | | 11 | | ests, t <i>er</i> m | inal con | ditions | , and lim | nits as | for subgi | roup 9, e | except To | = -55*(| · · | TABLE III. Group A inspection for device type 03. | OUD. | Sumbo l |
 M1L-
 STD-883 | Cases
J,K,X | 1 | 2 | 3 | 4 | j 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
 Measured
 terminal | Test 11 | mits | Unit | |-------|------------------|------------------------|--|--------------|---------|------------------|----------------|---------------------------------|---|-------------------------------|--|-------|------|---------------------------------------|-----|-----------------|-------|-------|------------|--|---|---------|---|----------------|-------------|---------|-------|--|---------|----------------------|------| | oup ! | | method | Test
no. | A3 | A4 | i A ₅ | A ₆ | l A ₇ | A ₈ | 01 | 02 | 03 | 04 | FE ₂ | GND | FE ₁ | 05 | 06 | 07 | 08 | Strobe | CE2 | Œ ₁ | A ₀ | A1 | A2 | VCC |
 | Min | - | | | **c | Vic | | | i
i-10 mA | -10 mA | -10 mA | | | -10 mA | | | | | -10 mA | GND | | | | | | -10 mA
 -10 mA | 1 17 | 10 mA | -10 mA |
 -10 mA |
 | 4.5 V | A3 A4 A5 A6 A7 A8 FE2 FE1 Strobe CE1 A0 A1 A2 | | 1.5 | Y | | | Va. | 3007 | 1 15
1 16
1 17
1 18
1 19
1 20
2 21
2 22 | 1 1/ | 1/ | 1 1/ | 1 1/1 | 1 1/ | 1/ | 1 8 mA | 8 mA | 8 mA |
 | GND | | GND | 8 mA |
 |
 |

 | 2.4 V | 2.4 V | 0.5 V | 1/ | 1/ | 1/ | H | 01
02
03
04
05
06
07
08 | | 0.5 | | | | Von | 3006 | i 23
 24
 25
 26
 27
 26
 29 | | | | | | 1/10/ | -2 mA

 -2 mA

 | | -2 mA | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | -2 mA | -2 mA |
 -2 ma | A -2 m ^A | 1 | | # H H H H H H H H H H H H H H H H H H H | | | | | 01
02
03
04
05
06
07 | 2.4 | | | | | | 3009 | 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44 | 0.5 Y | 0.5 Y | 1 0.5 V | 1 0.5 V | 1 0.5 V | | | | | |

 0.5 V | | 0.5 V | | | | | 0.5 | v i 0.5 | V 0.5 | 0.5 | V 0.5 | V 0.5 | 5.5 | A5
 A6
 A7
 A8
 FE2
 Strot
 CE2
 UE1
 A0 | -1.0 | 1.00
1.00
1.00 | ١. | | | I _{IH1} | 3010 | 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 55 | 5.5 V | 1 5.5 ¥ | 1 5.5 V | 5.5 Y |

 5.5 Y |

 5.5 V | | 1
1
1
1
1
1
1
1
1
1 | | | | | | | | | | 5.5 | V 5.5 | ¥ 5.5 | V 5.5 | V | V 5.5 | 5 Y | A3
A4
A6
A6
A7
A8
CE2
CE1
A0
A1
A2 | | 50 | | IABLE III. Group A inspection for device type 03 - Continued. Terminal conditions: Outputs not designated are upon or resistive coupled to SND or voltage: inputs not designated are high >2.0 %, lim <0.8 %, or open. | Subgroup |
 Symbol | MIL- | J,k,x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
 16
 | 1 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | Measured | Test | inits | Unit | |--|---|--|--|----------------------------------|--------------------------|------------------------|--------------|--------------------|---------------------------|----------------------|-------------------------------------|------------------------|-----------|------------------|---------------------------------------|-----------------|-------|----------------|--------------------------------------|------------------|-------------|---|-----------------|------------------------------------|------------------------|-------------------------------------|--------------------------|--|------|---------|--| | | !
!
! | method | Test
no. | A3 | F.4 | A ₅ | A6 | A; | 48 | 01 | 02 | 03 | 04 | FE2 | GND | FE ₁ | 05 | υ ₆ | 07 | 08 |
 Strobe | Œ | CE 1 | A _O | Al | A2 | Vcc | termina?] | Min | Max | | | rc = 25°C | I _{OH2} | | 57
 58
 59
 60
 61
 62
 63
 64 | | | | | | | 5.2 V | 5.2 ¥ | 5.2 V | 5.2 ¥ | | GND | | 5.2 V | 5.2 V | 5.2 ¥ |
 | | 2.4 V | 0.5 ¥ | | | | 5.5 V | 01
02
03
04
05
06
07
08 | | 100 | ## # # # # # # # # # # # # # # # # # # | | | i a. z | | 65
 66
 67
 68
 69
 70
 71
 72 | | | | | | | 0.5 V |
 0.5 ¥

 | 0.5 ¥ | 0.5 ¥ | | # # # # # # # # # # # # # # # # # # # | | 0.5 ¥ | | 1 0.5 V |

 0.5 ¥ | | *************************************** | | | | | # H | 01
02
03
04
05
06
07 | | -100 | | | | 1cc | 3005 | 73 | GND | GND | GND | GND | GNU | GND | | | i | | GND | " | GND | | | | | GND | i GND | GND | | | | • | VCC | | 185 | mA. | | | Ios | 3011 | 74
75
76
76
77
78
79
80
81 | 1/ | 1/ | 1/ | 1/ | 1/ | 1/10/ | GND | GND | | GND | | | 1 |
 | GAND | i
i
i
i
i
i
i
i | GND | | 5.5 V | | 1/ | 1/10/ | 1/ | | 01
02
03
04
05
06
07
| -10 | -100 | # # # # | | 2 | Same te | sts, termi | nal con | ditions, | and lim | its as f | or subgr | oup 1, e | xcept T _C | = 125°C | and VIC | tests a | re omitte | ed. | • | • | | • | | | | | • | | | | | | | | _ | | To approximate the control of co | 7
T _C * 25°C | tional | 3014 | 82 | 6/ | 6/ | 6/ | <u>6</u> / | 6/ | 6/ |
 <u>6</u> /
 | 6/ | 6/ | 6/ | 6/ | GND | <u>6</u> / | 6/ | 6/ | 6/ | <u>6</u> / | 6/ | 6/ | 6/ | <u>6</u> / | | 6/ | 6/ | Outputs

 | | 6/ | | | 8 | The content of | 9
T _C = 25°C | tpHL1 | iFig. 7
IGALPAT
IFig. 7
ISequen-
Itial
IFig. 7
ISequen-
Itial |
 84
 85 |]
 <u>7/</u>
 <u>8</u> / | <u>7</u> /
<u>8</u> / | <u>2/</u>
<u>8/</u> | <u>7</u> / | 7/
1 <u>8</u> / | <u>7/</u>
 <u>8</u> / | 9/ | | "
 "
 "
 " | | :
:
:
: | * | | 9/ | | | | 1 |
 "
 " | "
 "
 " |
 <u>7/</u>
 <u>8/</u>
 | <u>7/</u>
<u>8/</u> | <u>1</u> <u>7</u> /
 <u>8</u> / | <u>7</u> /
<u>8</u> / | 41
1 | | 90 |
 "
 " | | 10 | Same te | sts, termi | inal con | ditions | and lim | ifts as f | or subgr | oup 9, e | xcept T _C | = 125°C | | 1 | 1 | ! | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | · _ · | 1 | | <u></u> | | | 11 |
 Same te | sts. termi | inal con | dítions | and lim | its as 1 | or subar | oup 9. e | xcept Tr | * -55°C | | | _ | | | | | | | | | | | | | | | | | | _ | TABLE III. Group A inspection for device type 04. Terminal conditions: Outputs not designated are open or resistive coupled to GND or voltage; inputs not designated may be high \$\geq 2.0 \text{ Y, low } \leq 0.8 \text{ Y, or open.} | iubgroup | Symbol |
 MIL-STD-883
 method | Lase | 1 1 | 7 | | 3 | 4 | 5 | 6 | 7 | i 8 | 9 | 10 | 11 | 12 | 13 | 1 14 | 15 | 16 | 17 | 1 16 | 19 | 20 | Managera | Test | | T that | |-------------|------------------|-------------------------------|--|----------|----------------|---------|---------------------|---------|---------|--------|----------|----------------------------------|-------|-----|----------|-------------------------------|--------------------------------|-------|-----------------|----------------|----------------|---|----------------|-------|--|------------|------|--------| | İ | | method | Test
no. | 40 | A ₁ | 1 | A ₂ | A3 | A4 | 01 | 02 | 03 | 04 | GND | 05 | 06 | 07 | 08 | CE ₁ | A ₅ | A ₆ | A7 | A ₈ | VCC | Measured
 terminal
 | i
I Min | T | Unit | | 1
= 25°C | YIC | | 1 2 3 4 4 1 5 1 6 6 7 1 8 1 9 1 10 1 | | 1-10 m | mA -1 | 10 mA | -10 mA | -10 mA | | | 1
 |
 | GAD | | | | | |
 | |
 | -10 mA | 4.5 V | AO A1 A2 A3 A6 A5 A6 A7 A8 | | -1.5 | Y | | | Y _{OL} | 3007 | 11
 12
 13
 14
 15
 16
 17
 18 | 2.4 v | 1/3/ | | 1/
"
"
19/ | 1/
| 1/
| 8 mA | 8 mA
 |
 8 m/A

 1
 1 | | | 8 mA |

 8 mA
 |

 & mA |
 | 0.5 v | 1/ | 1/ | 1/ | 1/ | 19/ | 0 ₁
0 ₂
0 ₃
0 ₄
0 ₅
0 ₆
0 ₇ | | 0.5 | | | | IIL | 3009 | 19
20
21
22
23
24
25
26
27
28 | i | 0.5 | V . | 0.5 ¥ | 0.5 Y | 0.5 Y |
 |
 |
 | | | !
 |
 |
 | 1
 | 0.5 V | 0.5 V | 1 n s v | 0.5 Y | 0.5 V | 5.5 V | A0
A1
A2
A3
A4
CE1
A5
A6
A7 | -1.0 | -250 | μA | | | IIHI | 3010 | 29
30
31
32
33
34
35
36
37 | 1 5.5 V | 5.5 | V : 5 | 5.5 V | 5 5 V | 5.5 Y | | #
 |
 | | | | | | | | 5.5 Y | 5.5 ¥ | 5.5 V | 5.5 ¥ | # H | A0
A1
A2
A3
A4
A5
A6
A7
A8 | | 50 | | | | I _{1H2} | i * | 38 | <u>i</u> | <u> </u> | i | | | | i
i | | | | • | <u> </u> | | | | 4.5 V | | | | | | CE1 | | 100 | | | | ICEX |
 | 39
 40
 41
 42
 43
 44
 45
 46 | | | 1 | | | | 5.2 ¥ | 1 5.2 V | 1 5.2 V | 5.2 V | | 5.2 ¥ | 5.2 V | 5.2 ¥ | 5.2 Y | 5.5 V | | | | | | 01 02 03 04 05 06 07 08 08 | | : | | | | Icc | 3005 | 47 | GND | GNE | D | GND | GND | GND |
 | | 1 | 1 | • | | | | | GND | GND | GND | GND | GND | . ; | YCC | | 155 | mA. | TABLE III. Group A inspectic n for device type 04 - Continued. Terminal conditions: butputs not designated are open or resistive coupled to SND (r voltage; inputs not designated may be high >2.0 v. low <0.8 V, or open. | Subgroup 1 | Symbol . | MIL-STD-883 | Case Y | 1 | 7 2 | 7 3 | 1 | 5 | 6 | 1 7 | T 8 | 7 9 | 10 | 11 | 12 | T 13 | 14 | 1 15 | 16 | 17 | 18 | 19 | 1 20 | Measured | Test II | | Unit | |----------------------------|-------------------|--------------------------------------|-----------------|----------------|-----------------------------|--|----------------|---------------------------|-----------------|----------------------|-----------|-----------------|---------------|----------------|-------------|------|----|--------------|------------------------------|-------------------------|---------------------------|------------------|---------------------------|----------|---------|--------------------|----------| | i | • | method | Test | A _Q | A1 | A ₂ | A ₃ | A4 | 01 | 02 | 03 | U4 | GND | u ₅ | 06 | 07 | 08 | CEL | A ₅ | A ₆ |
 A ₇ | I A _B | V _C C | terminal | Min | Max | <u> </u> | | 2 | Same tests | , terminal con | ditions | , and li | mits as f | er subgro | up l, exce | pt ic = 1 | 125°C and | V _{IC} test | s are omi | ttea. | | - | | | | | | | | _ | | | | | | | 3 | Same tests | , terminal con | dicions | , and li | mits as f | or subgro | up 1, exce | pt T _C = | -55°C and | V _{IC} test | s are omi | tteg. | | • | | | | | | | | | | | | | | | rc = 25°C | | 3014

 | 45 | 6/ | 1 <u>6</u> / | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | GND | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | <u>b</u> / | 6/ | Outputs | | 6/ | 1 | | 8 | Same tests | , terminal con | ditions | , anu li | mits as f | or subgro | шр 7, εχιε | pt ۱ _{6 = .} | 125°C and | T _C = -55 | ·c. | - i- | | | | | | | <u></u> | | | | | | | | | | 9
T _C * 25°C | tplH1 |
 GALPAT
 Fig. 7 | 49 | 1 - | 1/ | 1/ | 1/ | 1 2/ | 9/ | 9/ | 9/ | 9/ | GND | 9/ | 9/ | 9/ | 9/ | GNU | 7/ | 1/ | 1/ | 1 2/ | 1 1/ | Outputs | 1 | 80
 80
 80 | ns. | | | t _{PHL1} | i GAĽPAT
I Fig. 7
I Seguential | 50

 51 | 1 - |) <u>7/</u>
 <u>8</u> / | <u>1</u> <u>7</u> /
<u>1</u> <u>8</u> / | 2/
8/ | <u>1/</u>
! <u>8</u> / | " | " | | | "

 " | "
 " | " | | | GNI)
 8/ | 1 <u>1</u> /
 <u>8</u> / | <u>//</u>
<u>B</u> / | <u>//</u>
 <u>8</u> / | 87 | <u>//</u>
 <u>8</u> / | | | 50 | - | | | tpHL2 | Fig. 7
 Sequential
 Fig. 7 | 52 | <u>8</u> / | 8/ | <u>B</u> / | 8/ | 8/ | • | | | 1 " | | | | | | <u>B</u> / | <u>5</u> / | 8/ | 8/ | 8/ | <u>8</u> / | , "
 | | 1 50 | " | | 10 | Same tests | , terminal cor | ditions | , and li | mits as f | or subgro | oup 9, exce | ept Tc = . | 125°C. | 1 | | 1 | | 1 | | · | | | ' | | | | | | | | | | 11 | Same tests | , terminal cor | ditions | , and li | mits as f | or subgro | oup 9, exce | ept T _C = | -55 ° C, | , | or open. | | | | | | | |----------------------------|------------------|-------------------------------|--|-------|-------|----------------|----------------|----------|---|--|---|---------------------|--------------------------|-----
-------|----------------------------------|------|--|-----------------------|---|---------------------------------------|---------------------------------------|-------------|----------------------------------|--|----------|-------|---------------------------------------| | Subgroup | Symbol |
 MIL-STD-883
 method | \top | + | 1 | 2 | 3 | 4 | 5 | | | 8
 | 9 | 10 | 111 | 12 | 13 | 14 | 1 15 | 16 | 17
 | 18 | 19 | 20 |
 Measured
 termina) | i Test I | imits | Unit | | i | | | Test | t i . | A0 | A ₁ | A ₂ | A3 | 4 | 01 | 02 | 03 | 04 | GND | 05 | 06 | 07 | l ug | CE1 | A ₅ | A ₆ | A7 | Ag | VCC | termina) | Min | Max | | | 1
T _C = 25°C | ¥1C | 1
 | 1
2
3
4
5
6
7
8
9 | | .0 mA | -10 mA | -10 mA | -10 mA |
 -10 mA
 | | | | 1
 | GNU | T | | |)
;;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
; | -10 mA |
 | -10 mA | : : : : : : : : : : : : : : : : : : : |
 -10 mA | 4.5 V | A0
41
A2
A3
LE1
A3
LE1
A3
A4
A3
A4
A5
A5
A5
A5
A5
A5
A5
A5
A5
A5
A5
A5
A5 | | -1.5 | ¥ | | | ¥oL | 3007 | 11
 12
 13
 14
 15
 16
 17
 18 | i | | 1/3/ | 1/11/ | 1/11/ | 1/ | 12/ |
 <u>12</u> /

 | 12/ | 1 12/ | |
 |

 <u>12</u> / | 12/ | 1 12/ | 0.5 V | 1/
fr
 | 1/
 "
 "
 "
 "
 " | 1/ | 20/ | 11
14
16
16
16
17 | 01
02
03
04
05
06
07
08 | | 0.5 | | | | VOH | 3006 | 19
 20
 21
 22
 23
 24
 25
 26 | | 1/ | 1/*** | 1/ | 1/ | 1/ 1/ 1/ 1 1 | -2 mA |
 -2 mA

 |
 -2 mA
 -2 i |
 -2 mA

 | | -2 mA | -2 mA |
 |
 -2 mA | | 1/ | 1/ | 1/ | 1/ | 14
16
16
16
17 | 01
02
03
04
05
06
07
08 | 2.4 | | W W W W W W W W W W W W W W W W W W W | | | 11L | 3009 | 27
 28
 29
 30
 31
 32
 33
 34
 35 | | D.5 V | 0.5 Y | I 0.5 V | 1 D.5 V | 0.5 V | ;
1
;
1
;
1
;
1
;
1
;
1
;
1
;
1
;
1
;
1 | | | | | | | | |

 0.5 Y | 0.5 V | 0.5 V | 1 0.5 V | 0.5 Y | 5.5 V | AU
A1
A2
A3
A4
CE1
A5
A6
A7 | -1.0 | -250 | uA. | | | I IIHI | 3010 | 37
38
39
40
41
42
43
44
45 | | 5.5 V | 5.5 V | 1 5 5 V | 1 |

 5.5 ¥

 | i

 |
 | :

 |
 | | | | | | | 5.5 ¥ | 5.5 Y | 5.5 ¥ | 5.5 Y | | A0 | | 50 | | | !
 | I _{IH2} | • | 46 | i |
 | | <u> </u> | i
I | | • | | | | | 4.5 ¥ | | 1 | | | • | CE ₁ | | 100 | | TABLE III. Group A inspection for device type 05. Continued. Terminal conditions: Outputs not designated are open or resistive coupled to GND or voltage; inputs not designated may be high \$2.0 %, low \$0.8 %, or open. | Subgroup : | Symbol | MIL-STD-883 | Tase T | | 5 | 3 | 4 | 7 5 | 6 | 7 | 8 | 9 | 10 | TI | 12 | 1 13 . | 14 | 15 | 16 | 17 | 18 | 19 | 75 | | l Test I | mits | (
j Unit | |----------------------------|--------------------------------|---|--|------------------------------------|----------------------|------------------------------------|---|----------------------|-----------|--|-------|--|-----|--------------|-----------------------|--------|--|----------------------|----------------------------|----------------|----------------------------|----------------------------|----------------------|--|----------|------------------------------------|---| | i
! | | methou | Test
no. | A ₀ | Aı | AZ | A3 | A4 | 01 | 02 | 03 | 04 | CHE | 05 | 06 | 07 | 08 | CE1 | A5 | A ₆ | A7 | A8 | VCC | ! Measured
T terminal | Min | Max | Ť | | 1
C = 25°C | ¹ ohZ | | 47
 48
 49
 50
 51
 52
 53
 54 | | | | | | 5.2 V |
 5.2 V

 | 5.2 Y | 1
1
1
1
1
1
1
1
1
1
1
1 | GND | 5.2 ¥ | 5.2 Y | 5.2 ¥ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5.5 ¥ | | | ;
;
;
;
;
; | | 5-5 ¥ | 01
1 02
1 03
1 04
1 05
1 06
1 07
1 08 | | 100 | uA. | | Ī | ¹oLZ | | 55
 56
 57
 58
 59
 60
 61
 62 | | | | 1 | | 0.5 V | 0.5 V | 0.5 ¥ | 0.5 Y | | 0.5 ¥ |

 0.5 Y | 0.5 Y | 1
1
1
1
1
1
1
0.5 Y | | | | | | | 01
1 02
1 02
1 03
1 04
1 05
1 06
1 07
1 08 |
 | -100 | | | | l lcc | 3005 | 63 | GND | GND | GND | GND | GND | 1 | 1 | | | | | İ | | i
i | GNED | GND | i GND | I GND | GND | " | Vcc | -10 |
 -100 | mA | | 1 | 1 I _{OS} | 3011 | 64
 65
 66
 67
 68
 69
 70 | 1/ | 1/ | 1/ | 1/ | 1/ | GND | GND | GMD | I GND | | GND | GND | GND | L | 0.5 Y | 22/ | 1/ | 1/ | 22/ | | 01
02
03
03
04
05
06
07 | | | * | | | } | , terminal co | | | | | | | | | | | | _ | | | - | • | | | | | | | | | | | Tr. = 25°C |
 Func-
 tional
 test | 3014 | 72 | 6/ | <u>6</u> / | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | 6/ | GND | 6/ | <u>6</u> / | 6/ | 6/ | GND | 6/ | 6/ | 6/ | 6/ | 6/ | Outputs |
 | 6/ | | | 8 | Same tests | , terminal co | nditions | , and Iti | nits as fo | or subgro | ıp 7, exce | ept T _C = | 125°C and | T _C = -55 | c. | | | | | | | | | - | | | | | | | | | 9
T _C = 25°C | tpHL1 tpHL1 tpHL2 | GALPAT Fig. 7 GALPAT Fig. 7 Sequential Fig. 7 Sequential Fig. 7 | 73
74
75
1 76 | 7/
 7/
 7/
 8/
 8/ | 7/
7/
8/
8/ | 7/
 7/
 7/
 8/
 8/ | 7/
1 7/
1 7/
1 8/ | 7/
2/
8/
8/ | 9/ | 9/ | 9/ | <u>9/</u>
 " | GND | 9/ | 9/ | 9/ | 9/ | GMD
 GMD
 8/ | 7/
1 7/
1 8/
1 8/ | 1 | 1 | 7/
7/
8/
8/
8/ | 7/
7/
8/
8/ | Outputs | | 80
 80
 80
 40
 40 | ns
H | | 10 | | , terminal co | nditions | , and li | mits as fo | or subgro | up 9, exc | ept T _C = | 125°C. | ·· <u>-</u> | · | <u></u> | | - | • | | | | | - | | | · · · · · · · · · | | | | | | 11 | <u> </u> | , terminal co | | 14 | -44 4 | | | | rc*0 | | | | | | | | | | | | | | | | | | | - 1/ For unprogrammed devices, select an appropriate address to acquire the desired output state. - 2/ For unprogrammed devices (circuit D), apply 12.0 V on pin 8 (A_0) and pin 1 (A_7). - For unprogrammed device types 01 and 02 (circuit B), apply 12.0 V on pin 2 (A_6); for unprogrammed device types 04 and 05 (circuit B), apply 12.0 V on pin 2 (A_1). - For unprogrammed devices (circuit A), apply 11.0 V on pin 23 (Ag). - 5/ CEA and CE3 may be "GND" or "2.4 V". - The functional test shall verify that no fuses are blown for unprogrammed devices or that the altered item drawing pattern exists for programmed devices (see table II and 3.2.2.2). All bits shall be tested. The functional tests shall be performed with V_{CC} = 4.5 V and V_{CC} = 5.5 V. Terminal conditions shall be as follows: - a. Inputs: H = 3.0 V, L = 0.0 V. - b. Outputs: OUtput voltage shall be either: - (1) H = 2.4 V minimum and L = 0.5 V maximum when using a high-speed checker double comparator, or - (2) H > 1.0 V and L < 1.0 V when using a high-speed checker single comparator. - 7/ GALPAT (PROGRAMMED PROM). This program will test all bits in the array, the
addressing and interaction between bits for ac performance, tp_{LH1} and tp_{HL1} . Each bit in the pattern is fixed by being programmed with an "H" or "L". The GALPAT tests shall be performed with v_{CC} = 4.5 V and 5.5 V. ## Description: - Word O is read. Step 1. - Step 2. Word 1 is read. - Step 3. Word O is read. Step 4. Word 2 is read. - Step 5. Word O is read. - The reading procedure continues back and forth between word 0 and the next higher Step 6. numbered word until word 511 is reached, then increments to the next word and reads back and forth as in Step 1 through Step 6 and shall include all words. Step 7. Pass execution time = $(n^2 + n)$ x cycle time. n = 512. - 8/ SEQUENTIAL (PROGRAMMED PROM). This program will test all bits in the array for t_{PHL2} and t_{PLH2} . The sequential tests shall be performed with $V_{CC} = 4.5 \text{ V}$ and 5.5 V. ## Description: - Step 1. Each word in the pattern is tested from the enable lines to the output lines for recovery. - Word O is addressed. Enable line is pulled high to low and low to high. tpH12 - and t_{PLH2} are read. Word 1 is addressed. Same enable sequence as above. - Step 4. The reading procedure continues until word 511 is reached. - Step 5. Pass execution time = 512 x cycle time. - 9/ The outputs are loaded per figure 7. - $\frac{10}{}$ For unprogrammed device types 01 and 02 (circuit C), apply 10.0 V on pin 23 (Ag); 0.5 V on pin 2 (A₆); and 5.0 V on all other address pins. For unprogrammed device type 03 (circuit C), apply 10.0 V on pin 6 (Ag); 0.5 V on pin 22 (A₁); and 5.0 V on all other address pins. - 11/ For unprogrammed devices (circuit F), apply 12.0 V on pin 3 (A2) and 0.0 V on pin 4 (A3). - 12/ I_{OL} = 8 mA for circuit B devices; I_{OL} = 16 mA for circuit F devices. - $\overline{13/}$ For unprogrammed device types 01, 02, 04, and 05 (circuit G) select an appropriate address to obtain the desired output state. - 14/ For programmed device type 02 (circuit G) apply 4.5 V to pin 24; 10.5 V to pin 1; 3.0 V to pins 23, 19, 18, 8, 7, 6, 4, 3 and 2; and 0.0 V to pins 21, 20, 12, and 5. - 15/ For unprogrammed device type 01 (circuit G) apply 10.5 V to pins 6 and 1; 5.5 V to pin 24; 3.0 V to pins 23, 19, 18, 8, 7, 4, 3, and 2; 0.0 V to pins 21, 20, 12, and 5. - $\frac{16}{}$ For programmed device type 02 (circuit G) apply 10.5 V to pin 1; 4.5 V to pin 24; 3.0 V to pins 23, 19, 18, 8, 7, 6, 4, 3, and 2; 0.0 V to pins 21, 20, 5, and 12. - 17/ For unprogrammed device type 02 (circuit G) apply 10.5 V to pins 6 and 1; 4.5 V to pin 24; 3.0 V to pins 23, 19, 18, 8, 7, 4, and 2; 2.0 V to pin 3; 0.0 V to pins 21, 20, 12, and 5. - 18/ For unprogrammed device type 02 (circuit G) apply 10.5 V to pins 1 and 6; 5.5 V to pin 24; 3.0 V to pins 23, 19, 18, 8, 7, 4, 3 and 2; 0.0 V to pins 5, 12, 20, and 21. - 19/ For programmed device type 04 (circuit G) apply 10.5 V to pin 16; 4.5 V to pin 20; 3.0 V to pins 1, 2, 3, 4, 5, 18, and 19; 0.0 V to pins 10 and 15. - 20/ For programmed device type 05 (circuit G) apply 10.5 Y to pin 16; 4.5 Y to pin 20; 3.0 Y to pins 1, 2, 3, 4, 5, 18, and 19; 0.0 Y to pins 10 and 15. - 21/ For unprogrammed device type 05 (circuit G) apply 10.5 V to pins 17 and 3; 4.5 V to pin 20; 3.0 V to pins 2, 4, 5, 16, 18, and 19; 0.0 V to pins 1, 10, and 15. - 22/ For unprogrammed device type 05 (circuit G) apply 10.5 V to pins 3 and 17; 5.5 V to pin 20; 3.0 V to pins 2, 4, 5, 16, 18, and 19; 0.0 V to pins 1, 10, and 15. - At the manufacturer's option, this may be prepared with V_{IH} = 5.5 and test limits of 50 μ A maximum. - 24/ At the manufacturer's option, this may be performed with V_{I0} = 0.5 V and test limits of -1 μ A minimum to -250 μ A maximum. - 4.4.4 Group D inspection. Group D inspection shall be in accordance with table IV of method $50\overline{05}$ of MIL-SID-883 and as follows: - a. End-point electrical tests shall be as specified in table II herein. - b. Subgroup 2 shall be omitted for devices in package Z. - c. For moisture resistance and salt atmosphere of subgroups 3 and 5, omit initial conditioning for devices in package Z. - 4.5 Methods of inspection. Methods of inspection shall be as specified in the appropriate tables and as specified herein. - 4.5.1 <u>Voltage and current</u>. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal. TABLE IVA. Programming characteristics for circuit A. | Characteristic | 7 | T | Limits 1/ | | | |---|--------------------------------------|-------------------|-----------------|-------|----------| | | Symbol | Min | Recommended | Max | Unit | | Address input voltage 2/ | AIL | 0.0 | 5.0 | 5.0 | V | | V _{CC} required during programming | I V _{PH} | 12.0 | 12.0 | 12.5 | V
V | | Programming input low current | IILP | | - 300 | -600 | μA | | Programming voltage transition time | t _{TLH}
t _{THL} | † <u>1</u>
 1 | 1 1 | 10 | μS
μS | | Programming delay | t _D | 10 | 10 | 1100 | μS | | Programming pulse width | t _p | 90 | 100 | 1110 | μS | | Programming duty cycle | D.C. | | 50 | 90 | 8 | | Output voltage
Enable 3/
Disable 4/ | V _{OPE}
V _{OPD} | 10.5 | 1 10.5
 5.0 | 111.0 | V
 V | | Output voltage enable current | IOPE | † | | 10 | m A | - $1/T_{A} = 25^{\circ}C.$ - $\underline{2}/$ Address and chip enable shall not be left open for $V_{IH}.$ - 3/ V_{OPE} supply shall be capable of sourcing 10 mA. - 4/ Disable condition can be met with output open circuit. - 4.6 Programming procedure identification. The programming procedure to be utilized shall be identified by the manufacturer's circuit designator. The circuit designtor is cross referenced in 6.6 herein with the manufacturer's symbol or FSCM number. - 4.7 <u>Programming procedures for circuit A.</u> The waveforms on figure 8a, the programming characteristics of table IVA, and the following procedures shall apply: - a. Connect the device in the electrical configuration for programming. - b. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL compatible. - c. Disable the chip by applying V_{IH} to the \widetilde{CE}_1 and \widetilde{CE}_2 inputs and V_{IL} to the CE_3 and CE_4 inputs. The CE inputs are TTL compatible. - d. Disable the programming circuitry by applying V_{OPD} to the outputs of the PROM. - e. Raise V_{CC} to V_{PH} as specified on the waveforms on figure 8a. - f. After a delay of to, apply only one Vope pulse with duration of to the output selected for programming. Note that the PROM is supplied with fuses generating a high-level logic output. Programming a fuse will cause the output to go to a low-level logic in the verify mode. - g. Other bits in the same word may be programmed sequentially while the V_{CC} input is at the V_{PH} level by applying V_{QPE} pulses to each output to be programmed allowing a delay of t_D between pulses as shown on figure 8a. - h. Repeat 4.7b through 4.7g for all other bits to be programmed. - i. Lower $\nu_{C\,C}$ to 4.5 volts following a delay of t_D from the last programming pulse applied to an output. - j. Enable the chip by applying V_{1L} to the \overline{CE}_1 and \overline{CE}_2 inputs and V_{1H} to the \overline{CE}_3 and \overline{CE}_4 inputs and verify the program. - k. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject. For class C devices, if any bit does not verify as programmed, repeat 4.7b through 4.7i one time only. Bits which fail to program the second time shall be considered programming rejects. - 4.8 Programming procedures for circuit B. The waveforms on figure 8b, the programming characteristics of table IVB, and the following procedures shall apply: - a. Connect the device in the electrical configuration for programming. - b. Raise VCC to 5.5 volts. - c. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL compatible. - d. Disable the chip by applying V $_{IH}$ to the $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ and V_{IL} to the CE $_3$ and CE $_4$ inputs (device types 01 and 02) or V $_{IH}$ to the CE input (device types 04 and 05). The CE input is TTL compatible. - e. Apply the Vpp pulse to the programming pin $\overline{\text{CE}}_2$ (device types 01 and 02) or $\overline{\text{CE}}$ (device types 04 and 05). In order to insure that the output transistor is off before increasing the voltage on the output pin, the programming pin's voltage pulse shall precede the output pin's programming pulse by T_{D1} and leave after the output pin's programming pulse by T_{D2} (see figure 8b). - f. Apply only one Vour pulse with duration of tp to the output selected for programming. The outputs shall be programmed one output at a time, since internal decoding circuitry is capable of sinking only one unit of programming current at a time. Note that the PROM is supplied with fuses generating a high-level logic output. Programming a fuse will cause the output to go to a low-level logic in the verify mode. TABLE IVB. Programming characteristics for circuit B. | Characteristic | Symbol |
 Conditions
 |
 Min
 | Limits
 Recom-
 mended | 1/
 Max
 | l
TUnit
I | |---|---------------------------------|--|----------------------------|------------------------------|----------------------------|-----------------------------| | V _{CC} required during programming | V _{CCP} | 1 | 15.4 |
 5.5
 | 15.6 |
 V
 | | Rise time of programming pulse to data out or programming pin | tTLH | | 0.34 | 0.40 | 0.46 |
 V /μs

 | | Programming voltage
on programming pin | V _P P | | 32.5 | 33 | 33.5 |]
 V
 | | Output programming voltage | YOUT | | 25.5 |]
 26
 | 26.5 |]
 V
 | | Programmi <u>ng</u> pin pulse
width (CE ₂) <u>2</u> / | tpp |
 Chip disabled,
 V _{CC} = 5.5 V | | 100 | 180 | l ns | | Pulse width of programming voltage | t _P |
 Chip disabled,
 Y _{CC} = 5.5 Y | 1 1 | | 40 |] μS | | Required current limit of power supply feeding programming pin and output during programming | I I L | | 240

 |

 |
 | mA

 | | Required time delay between disabling memory output and application of output programming pulse | T _{D1} |
 Measured at 10% levels

 -
 -
 - | 70
 10
 10
 10 | 80

 | 90

 | μS | | Required time delay
between removal of
programming pulse and
enabling memory output | !
 т _{D2}

 | | 100 | 1 | | ns | | Output current during verification | IOLVI | Chip enabled,
 V _{CC} = 4.0 V | 11 | 12 | 13 | l mA | | • | I _{OLV2} | Chip enabled, VCC = 7.0 V | 0.19 | 0.2 | 0.21 | m A | | Address input voltage | V _{IH} | | 2.4 | 5.0 | 5.5 |) V | | | VIL | 1 | 10.0 | 0.4 | 10.8 | i v | | Maximum duty cycle during
automatic programming
of programming pin
and output pin | D.C. | t _F /t _C | 1 1 | |
 25

 | 7 | $\frac{1}{Z}$ $\frac{7}{CE_1}$ is the programming pin for device types 04 and 05. - g. Other bits in the same word may be programmed sequentially by applying ν pulses appeach output to be programmed. - h. Repeat 4.8c through 4.8q for all other bits to be programmed. - i. Enable the chip by applying V_{IL} to the \overline{CE}_1 and \overline{CE}_2 and V_{IH} to the CE_3 and CE_4 inputs (device types 01 and 02) or V_{IL} to the \overline{CE} inputs (device types 04 and 05) and verify the program. Verification may check for a low output by requiring the device to sink 12 mA at V_{CC} = 4.0 V and 0.2 mA at V_{CC} = 7.0 V at T_A = 25°C. - j. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject. For class C devices, if any bit does not verify as programmed, repeat 4.8c through 4.8i one time only. Bits which fail to program the second time shall be considered programming rejects. - 4.9 <u>Programming procedures for circuit C.</u> The waveforms on figure 8c, the programming characteristics of table IVC, and the following procedures shall apply: ## 4.9.1 Device types 01 and 02. - a. Connect the device in the electrical configuration for programming. - b. Terminate all device outputs with a 10-k Ω resistor to V_{CC} . Apply \overline{CE}_1 = V_{1H} , \overline{CE}_2 = V_{1L} , CE_3 = V_{1H} , and CE_4 = V_{1H} . - c. Address the PROM with the binary address of the selected word to be programmed. Raise $V_{\rm CC}$ to $V_{\rm CCP}$ - d. After a t_D delay (10 μs), apply only one V_{OUT} pulse to the output to be programmed. Program one output at a time. - e. After a t_{0} delay (10 $\mu s), pulse CE <math display="inline">_{1}$ input to logic "0" for a duration of $t_{p}.$ - f. After a t_D delay (10 μs), remove the V_{OUT} pulse from the programmed output. Programming a fuse will cause the output to go to a high-level logic in the verify mode. - g. Other bits in the same word may be programmed sequentially while the v_{CC} input is at the v_{CC} level by applying v_{OUT} pulses to each output to be programmed allowing a delay of t_D between pulses as shown on figure 8c. - h. Repeat 4.9.1c through 4.9.1g for all other bits to be programmed. - i. To verify programming after a tp (10 μs) delay, lower VCC to VCCH and apply a logic "O" level to both CE1 and CE2 inputs. The programmed output should remain in the "1" state. Again, lower VCC to VCCL and verify that the programmed output remains in the "1" state. - j. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject. For class C devices, if any bit does not verify as programmed, repeat 4.9.1c through 4.9.1i one time only. Bits which fail to program the second time shall be considered programming rejects. # 4.9.2 Device type 03. - a. Connect the device in the electrical configuration for programming. - b. Terminate all device outputs with a 10-k Ω resistor to V_{CC} . Apply $\overline{CE}_1 = V_{11}$, $\overline{CE}_2 = V_{1H}$, and strobe = V_{1H} . - c. Address the PROM with the binary address of the selected word to be programmed. Raise V_{CC} to V_{CCP} . TABLE IVC. Programming characteristics for circuit C. | | Γ | <u> </u> | 1 | Limits | | · · · · · · | |--|------------------------------|---|---------|-------------------|---------------|--------------| | Characteristic | Symbol
 | Conditions
 | Min | Recom-
 mended | Max | Unit
 | | Programming voltage to VCC |
 V _{CCP} 1/
 | I _{CCP} = 375 ±75 mA,
 transient or steady state | 8.5 | 8.75

 | 19.0 | γ | | Verification upper limit | I V _{CCH} | | 15.3 |
 5.5
 |
 5.7
 | V | | Verification lower limit | V _{CCL} | | 14.3 | 4.5 | 14.7 | V | | Verify threshold | V _{s 2} / | | 1.4 | 1.5 | 1.6 | V 1 | | Programming supply current |
 I _{CCP}
 | V _{CCP} = 8.75 ±.25 V | 300
 | |
 450
 | mA | | Input voltage, high level | I
I A ^{IH} | | 2.4 |
 |
 5.5
 | V | | Input voltage, low level | NIL | | 0 | 0.4 | 10.8 | V [| | Input current | IIH | V _{IH} = 5.5 V | 1 | i -
I
I | 50 | μА | | Input current | I IIL | V _{IL} = 0.4 V | 1 |]
 |
 -500 | lμA | | Output programming
voltage | V _{OUT} 3/ |
 I _{OUT} = 200 ±20 mA,
 transient or steady state
 | 16 | 17 |
 18
 | V | | Output programming current | I IOUT | V _{OUT} = 17 *1 V | 1180 | 200 | 220 | mA | | Programming voltage
transition time |
 t _{TLH}
 |
 | 10 | | 50 |
 μς
 | | CE programming pulse
width | tp | | 300 | 400 | 500 | μS | | Pulse sequence delay | l t _D | | 1 10 | | 1 | μS | $[\]underline{1}/$ Bypass v_{CC} to GND with a 0.01 μF capacitor to reduce voltage spikes. $^{2/\ \}mbox{V}_{S}$ is the sensing threshold of the PROM output voltage for a programmed bit. It normally constitutes the reference voltage applied to a comparator circuit to verify a successful fusing attempt. $[\]frac{3}{}$ Care should be taken to insure the 17 ±1 output voltage is maintained during the entire fusing cycle. The recommended supply is a constant current source clamped at the specified voltage limit. - d. After a t_D delay (10 μs), apply to FE $_1$ (pin 13) a voltage source of +5.0 ±0.5 V, with 10 mA sourcing current capability. - e. After a t_D delay (10 μs), apply only one V_{OUT} pulse to the output to be programmed. Program one output at a time. - f. After a t_D delay (10 $\mu s), raise FE2 (pin 11) from GND to +5.0 ±0.5 V for 1 ms, and return to GND.$ - g. After a t_D delay (10 μs), remove the V_{OUT} pulse from the programmed output. - h. Programming a fuse will cause the output to go to a high level logic in the verify mode. Other bits in the same word may be programmed sequentially while the v_{CC} input is at the v_{CCP} level by applying v_{OUT} pulses to each output to be programmed allowing a delay to t_D between pulses as shown on figure 8c. - i. Repeat 4.9.2c through 4.9.2h for all other bits to be programmed. - j. To verify programming after a t_D (10 μs) delay, return FE $_1$ to GND. Raise V $_{CC}$ to V $_{CCH}$. The programmed output should remain in the high state. Again lower V $_{CC}$ to V $_{CCL}$ and verify that the programmed output remains in the high state. - k. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject. For class C devices, if any bit does not verify as programmed, repeat 4.9.2c through 4.9.2i one time only. Bits which fail to program the second time shall be considered programming rejects. - 4.10 Programming procedures for circuit D. The waveforms on figure 8d, the programming characteristics of table IVD, and the following procedures shall apply: - a. Connect the device in the electrical configuration for programming. - b. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL compatible. - c. Disable the chip by applying V_{IH} to the $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ inputs and V_{II} to the CE_3 and CE_4 inputs. The chip enable input is TTL compatible. - d. After a delay of t_D , apply only one V_{OUT} pulse with a duration of t_D to the output selected for programming. The other outputs may be left open or tied to V_{IH} . The outputs shall be programmed one output at a time. Note that the PROM is supplied with fuses generating a high-level logic output. Programming a fuse will cause the output to go to a low-level logic in the verify mode. - e. Other bits in the same word may be programmed sequentially by applying $\nu_{\rm OHT}$ pulses to each output to be programmed. - f. Repeat 4.10b through 4.10e for all other bits to be programmed. - g. Enable the chip by applying V $_{IL}$ to the $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ inputs and V $_{IH}$ to the CE $_3$ and CE $_4$ inputs and verify the program. - h. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject. For class C devices, if any bit does not verify as programmed, repeat 4.10b through 4.10g one time only; Bits which fail to program the second time shall be considered programming rejects. TABLE IVD. Programming characteristics for circuit D. | | | 1 | <u> </u> | Limits | | <u>
</u> | |--|-------------------------------|--|------------------------------|-------------------------------|------|----------------| | Characteristic | Symbol

 | Conditions $\frac{1}{2}$ | | Recom-
mended | Max | TUnit
! | | V _{CC} required during programming | V _{CCP} | | 14.75 | 5.0 | 5.25 |
 V
 | | Verification V _{CC} read | V _{CCL} |
 Programming read verify | 14.2 | 4.4 | 5.0 | V | | Input voltage, high level | NIH | Do not leave inputs open | 2.4 | 5.0 | 15.0 | V | | Input voltage, low level | VIL | Do not leave inputs open | 0 | 0 | 0.4 |
 V
 | | Output programming voltage | V _{OUT} | Applied to output to be programmed | 20 | 20.5 | 21 | !
! v
! | | Output programming current | I I _{OUT} | I
IIf pulse generator is used,
Iset current limit to the
Imaximum value |
 |
 -
 -
 | 100 | mA
 mA
 | | Programming voltage transition time | it _{TLH} | | 0.5 | 1.0 | 3.0 | l μS | | Programming pulse width | l t _P | | 50 | 100 | 180 | μS | | Programming duty cycle | D.C. | l
 Maximum duty cycle to
 maintain T _A <85°C | †
†
† |
 20
 | 20 |]
 %
 | | Required delay between disabling memory output and application of output programming pulse |
 t _D

 | |]
 30

 |

 | | ns
l | $[\]underline{1}/T_A = 25^{\circ}C$ (recommended); $T_A = 85^{\circ}C$ (maximum). - 4.11 Programming procedures for circuit F. The waveforms on figure 8b, the programming characteristics of table IVE, and the following procedures shall apply: - a. Connect the device in the electrical configuration for programming. - b. Raise Vcc to 5.5 volts. - c. Address the PROM with the binary address of the selected word to be programmed. Address inputs are TTL compatible. - d. Disable the chip by applying V_{IH} to the \overline{CE} inputs and V_{IL} to the CE inputs. The chip enable inputs are TTL compatible. - e. Apply the Vpp pulse to the programming pin $\overline{\text{CE}}_2$. In order to insure that the output transistor is off before increasing voltage on the output pin, the programming pin's voltage pulse shall precede the output pin's programming pulse by T_{D1} and leave after the programming pin's programming pulse by T_{D2} (see figure 8b). - f. Apply only one Vour pulse with duration of tp to the output selected for programming. The outputs shall be programmed one output at a time, since internal decoding circuitry is capable of sinking only one unit of programming current at a time. Note that the PROM is supplied with fuses generating a high-level logic output. Programming a fuse will cause the output to go to a low-level logic in the verify mode. - g. Other bits in the same word may be programmed sequentially by applying v_{OUT} pulses to each output to be programmed. - h. Repeat 4.11c through 4.11g for all other bits to be programmed. - i. Enable the chip by applying V_{IL} to the \overline{CE} inputs and V_{IH} to the CE inputs, and verify the program. Verification may check for a low output by requiring the device to sink 12 mA at V_{CC} = 4.0 V and 0.2 mA at V_{CC} = 7.0 V at T_A = 25°C. - j. For class S and B devices, if any bit does not verify as programmed, it shall be considered a programming reject. For class C devices, if any bit does not verify as programmed, repeat 4.11c through 4.11i one time only. Bits which fail to program the second time shall be considered programming rejects. TABLE IVE. Programming characteristics for circuit F. | Characteristic | [
 Symbol
 | Conditions | | Limits
 Recom-
 mended | | Unit | |--|-------------------|--|------|------------------------------|------------------|--------------| | V _{CC} required during programming | V _{CCP} | | 15.4 | 5.5 | 5.6 | V . | | Rise time of programming
pulse to data out or
programming pin | t _{TLH} | | 0.34 | 0.40 | 0.46 | V /μs | | Programming voltage on programming pin | l V _{PP} | | 32.5 | 33 | 33.5 | V | | Output programming voltage | Vout | | 25.5 | 26 | 26.5 | ٧ | | Programming pin pulse
width (CE) | tpp
 | Chip disabled,
 V _{CC} = 5.5 Y | | 100 | 180 | ns | | Pulse width of programming voltage | l tp |
 Chip disabled,
 V _{CC} = 5.5 V | 1 | | 40 | μS | | Required current limit
of power supply feeding
programming pin and
output during
programming | I
I
I | V _{PP} = 33 V, V _{OUT} = 26 V, V _{CC} = 5.5 V | 240 | | 1
1
1
1 | mΑ | | Recuired time delay between disabling memory output and application of output programming pulse | T _{D1} |
 Measured at 10% levels

 | 70 | 80 | 90 | μS | | Required time delay
between removal of
programming pulse and
enabling memory output | т _{D2} |
 Measured at 10% levels

 | 100 | | | ns | | Output current during verification | I _{OLV1} |
 Chip enabled,
 V _{CC} = 4.0 V | 11 | 12 | 13 | m A | | 7 | I _{OLV2} | Chip enabled, | 0.19 | 0.2 | 0.21 | m A | | Address input voltage | AIH | | 2.4 | 5.0 | 15.5 | ٧ | | | AIF | | 0.0 | 0.4 | 10.8 | V | | Maximum duty cycle during
automatic programming
of programming pin
and output pin | D.C. | tp/tc | | | 25 | 8 | $[\]underline{1}/T_A = 25^{\circ}C.$ - 4.12 Programming procedure for circuit G. The programming characteristics on table IV G and the following procedures shall be used for programming: - a. Connect the device in the electrical configuration for programming. The waveforms on figure 8G and the programming characteristics of table IVG shall apply to these procedures. - b. Select the desired word by applying high or low levels to the appropriate address inputs. Disable the device by applying a high level to one or more 'active low' chip Enable inputs. NOTE: Address and enable inputs must be driven with TTL logic levels during programming and verification. - c. Increase V_{CC} from nominal to V_{CCP} (10.5 ±0.5 V) with a slew rate limit of I_{RR} (1.0 to 10.0 v/µs). Since V_{CC} is the source of the current required to program the fuse as well as the I_{CC} for the device at the programming voltage, it must be capable of supplying 750 mA at 11.0 volts. - d. Select the output where a logical high is desired by raising that output voltage to Vop (10.5 ±0.5 V). Limit the slew rate to IRR (1.0 to 10.0 v/ μ s). This voltage change may occur simultaneously with the VCC increase to VCCP, but must not precede it. It is critical that only one output at a time be programmed since the internal circuits can only supply programming current to one bit at a time. Outputs not being programmed must be left open or connected to a high impedance source of 20 kiliohms minimum (remember that the outputs of the device are disabled at this time). - e. Enable the device by taking the chip Enable(s) to a low level. This is done with a pulse PWE for $10~\mu s$. The $10~\mu s$ duration refers to the time that the circuit (device) is enabled. Normal input levels are used and rise and fall times are not critical. - f. Verify that the bit has been programmed by first removing the programming voltage from the output and then reducing VCC to 5.0 (±0.25 V). The device must be Enabled to sense the state of the outputs. During verification, the loading of the output must be within specified $I_{\mbox{OL}}$ and $I_{\mbox{OH}}$ limits. - g. If the device is not to be tested for V_{OH} over the entire operating range subsequent to programming, the verification of Step f. is to be performed at a V_{CC} level of 4.0 volts (±0.2 V). V_{OH} , during the 4 volt verification, must be at least 2.0 volts. The 4 volt V_{CC} verification assures minimum V_{OH} levels over the entire operating range. - h. Repeat steps 4.12b thru 4.12f for each bit to be programmed to a high level. If the procedure is performed on an automatic programmer, the duty cycle of V_{CC} at the programming voltage must be limited to a maximum of 25 percent. This is necessary to minimize device junction temperatures. After all selected bits are programmed, the entire contents of the memory should be verified. - i. For class S and B devices, if any bit does not verify as programmed it shall be considered a programming reject. For class C devices, if any bit does not verify as programmed, repeat 4.12b through 4.12f, one time only. Bits which fail to program the second time shall be considered programming rejects. ## 5. PACKAGING 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510. TABLE IVG. Programming characteristics for circuit G. | | | 1 | | Limits | | | |---|---------------------------|-------------------------|-------|------------------|----------------|---------------| | Characteristic | Symbol | Conditions | | Recom-
mended | Max | Unit | | Required V _{CC} for programming | V _{CCP} | , | 10.0 | 10.5 |
 11.0
 | v | | I _{CC} during programming | ICCP | V _{CC} = 11 V | | | 750 | m A | | Required output voltage
for programming |
 V _{OP}
 | | 110.0 | 10.5 |
 11.0
 | ۷ | | Output current while programming | IOP | V _{OUT} = 11 V | | | 20 | mA | | Rate of voltage change
of V _{CC} or output | IRR |
 | 1.0 | | 10.0 | V/μ5 | | Programming pulse width
(Enabled) | PWE | | 9 | 10 | 111 | μS | | Rquired V _{CC} for verification | VCCV | | 3.8 | 4.0 | 1 4.2 |
 V
 | | Maximum duty cycle for
V _{CC} at V _{CCP} | MDC | | | 25 | 25 | % | |
 Address set-up time | t ₁ | i | 100 |
 |]
]
 | ns | | V
_{CCP} set-up time | t ₂ | 2/ | 5 | | 1 | ļ
ļμS | | V _{CCP} hold time |
 t ₅ | | 100 | | 1 | ns | |
 V _{OP} set-up time | t ₃ | | 100 | | 1 | l ns | | V _{OP} hold time | t4 | I | 100 | | | ns | $^{1/}T_A = 25^{\circ}C$. ^{2/} v_{CCP} set-up time may be greater than 0 if v_{CCP} rises at the same rate or faster than $v_{OP}.$ - 6. NOTES - 6.1 Notes. The notes specified in MIL-M-38510 are applicable to this specification. - 6.2 Intended use. Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment. - 6.3 Ordering data. The contract or purchase order should specify the following: - a. Complete part number (see 1.2). - b. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable. - c. Requirements for certificate of compliance, if applicable. - d. Requirements for notification of change of product or process to the contracting activity in addition to notification to the qualifying activity, if applicable. - Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable. - f. Requirements for product assurance options. - g. Requirements for special carriers, lead lengths, or lead forming, if applicable. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government. - h. Requirements for programming the device, including processing option. - i. Requirements for "JAN" marking. - 6.4 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-M-38510, MIL-STD-1331, and as follows: | GND | _ | - | - | _ | - | - | - | - | - | - | - | - | - | Electrical ground (common terminal). | |-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | IIN | - | - | - | - | - | - | | - | - | - | - | - | - | Current flowing into an input terminal. | | | | | | | | | | | | | | | | Input clamp voltage. | | VIN | - | - | - | - | - | - | - | - | - | - | - | - | - | Voltage level at an input terminal. | - 6.5 Logistic support. Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2) and lead finish C (see 3.3). Longer length leads and lead forming shall not affect the part number. It is intended that spare devices for logistic support be acquired in the unprogrammed condition (see 3.7.1) and programmed by the maintenance activity, except where use quantities for devices with a specific program or pattern justify stocking of preprogrammed devices. - 6.6 <u>Substitutability</u>. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-M-38510. | Military
device type | Generic-industry
type/manufacturer | Circuit
designator | Fusible
<u>link</u> | Symbol/
FSCM no. | |-------------------------|---------------------------------------|-----------------------|------------------------|---------------------| | 01 | 7640/Harris Corporation | Α | NiCr | CDW0/34371 | | 01 | 5340-1/Monolithic Memories, Inc. | В | NiCr | CECD/50364 | | 01 | 82S14O/Signetics Corporation | C | NiCr | CDKB/18324 | | 01 | 93438/Fairchild Corporation | D | NiCr | CFJ/07263 | | 01 | 54S475/National Semiconductor | G | TiW | CCXP/27014 | | 02 | 7641/Harris Corporation | Α | NiCr | | | 02 | 5341-1/Monolithic Memories, Inc. | В | NiCr | | | 02 | 82S141/Signetics Corporation | С | NiCr | | | 02 | 93448/Fairchild Corporation | D | NiCr | | | 02 | 54S474/National Semiconductor | G | TiW | | | 03 | 82S115/Signetics Corporation | Ĉ | NiCr | | | 04 | 5348-1/Monolithic Memories, Inc. | В | NiCr | | | 04 | 54S473/National Semiconductor | Ğ | TiW | | | 0.5 | 5349-1/Monolithic Memories, Inc. | В | NiCr | | | 05 | 29621/Raytheon Company | F | NiCr | CRP/07933 | | 05 | 54S472/National Semiconductor | G | TiW | | 6.7 <u>Changes from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes. Custodians: Army - ER Navy - EC Air Force - 17 Preparing activity: Air Force - 17 (Project 5962-0528) Review activities: Army - AR, MI Navy - OS, SH Air Force - 11, 19, 85, 99 DLA - ES User activities: Army - SM Navy - AS, CG, MC Agent: DLA - ES | STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL | | |--|--| | INSTRUCTIONS: This form is provided to solicit beneficial comments which menhance its use. DoD contractors, government activities, manufacturers, vendors the document are invited to submit comments to the government. Pold on lines and send to preparing activity. Attach any pertinent data which may be of use in there are additional papers, attach to form and place both in an envelope address response will be provided to the submitter, when name and address is provided, with 1426 was received and when any appropriate action on it will be completed. NOTE: This form shall not be used to submit requests for waivers, deviations or requirements on current contracts. Comments submitted on this form do not co to waive any portion of the referenced document(s) or to amend contractual requirements. | or other prospective users of on reverse side, staple in corner, improving this document. If ed to preparing activity. A within 30 days indicating that clarification of specification institute or imply authorization uirements. | | DOCUMENT IDENTIFIER (Number) AND TITLE MIL-M-38510/2080 MICROCIF | | | SCHOTTKY, BIPOLAR, PROGRAMMABLE READ-ONLY MEMORY (PROM), | MONOLITHIC SILICON | | VENDOR USER MANUFACTURER | | | 1. HAS ANY PART OF THE DOCUMENT CREATED PROBLEMS OR REQUIRED IN | TERPRETATION IN PROCUREMENT | | USE? IS ANY PART OF IT TOO RIGID, RESTRICTIVE, LOOSE OR AMBIGUOU | S7 PLEASE EXPLAIN BELOW. | | A. GIVE PARAGRAPH NUMBER AND WORDING | | | | • | | | | | | | | | | | B. RECOMMENDED WORDING CHANGE | | | | | | | | | | | | | | | | | | C. REASON FOR RECOMMENDED CHANGE(S) | | | | | | | | | | | | | | | 2. REMARKS | - | SUBMITTED BY (Printed or typed name and address - Optional) | TELEPHONE NO. | | | | | | DATE | RADC Griffiss AFB. NY 13441 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 POSTAGE AND FEES PAID DEFENSE LOGISTICS AGENCY D=0-304 Rome Air Development Center RBE-2 Griffiss AFB, NY 13441