International IOR Rectifier

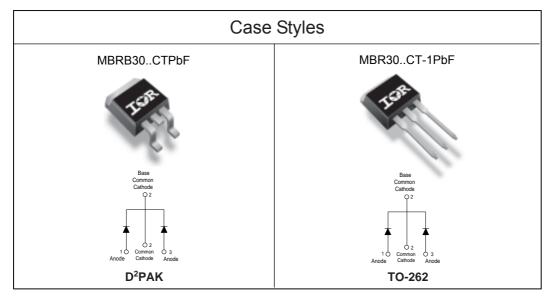
MBRB30..CTPbF MBR30..CT-1PbF

SCHOTTKY RECTIFIER

30 Amp

$$I_{F(AV)} = 30 Amp$$

 $V_R = 35 - 45 V$


Major Ratings and Characteristics

Cha	racteristics	Values	Units
I _{F(AV)}	Rectangular waveform (Per Device)	30	А
I _{FRM}	@T _C =123°C (PerLeg)	30	А
V _{RRM}		35-45	V
I _{FSM}	@ tp=5 µs sine	1020	А
V _F	@ 20 Apk, T _J = 125°C	0.6	V
Т	range	-65 to 150	°C

Description/ Features

This center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 150° C T , operation
- Center tap TO-220, D²Pak and TO-262 packages
- Low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- High frequency operation
- Guard ring for enhanced ruggedness and long term
- Lead-Free ("PbF" suffix)

Document Number: 94310

MBRB30..CTPbF, MBR30..CT-1PbF Series

Bulletin PD-21046 rev. A 07/06

International

TOR Rectifier

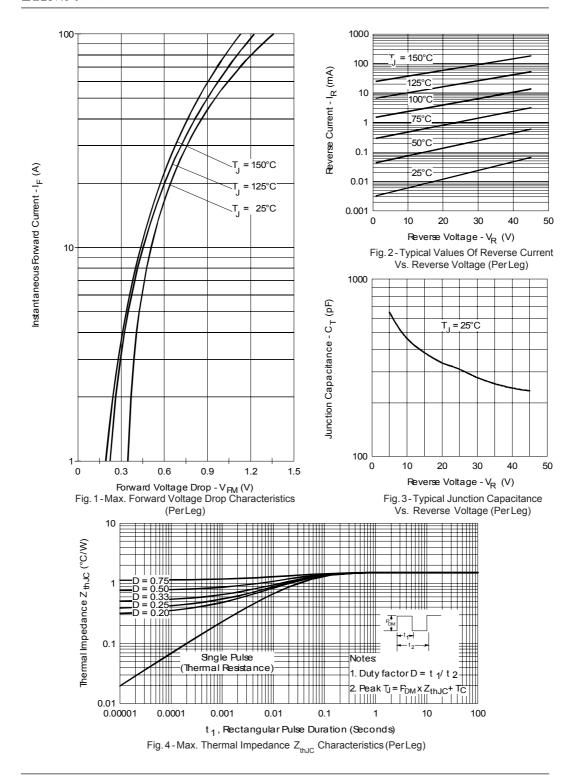
Voltage Ratings

Parameters	MBRB3035CTPbF MBR3035CT-1PbF	MBRB3045CTPbF MBR3045CT-1PbF	
V _R Max. DC Reverse Voltage (V)	25	45	
V _{RW} Max. Whing Peak Reverse Voltage (V)	35	45	

Absolute Maximum Ratings

	Parameters		blits	Conditions	
I _{F(AV)}	Max. Average Forward (PerLeg)	15	Α	$@T_C = 123^{\circ}C, (Rated V_R)$	
. (***)	Current (Per Device)	30			
I _{FRM}	Peak Repetitive Forward	30	Α	Rated V _R , square wave, 20kHz	
	Current (Per Leg)			T _C =123°C	
I _{ESM}	Nn Repetitive Peak	1020		5μs Sine or 3μs	Following any rated load condition and with rated V _{RRM} applied
1 OW	Surge Current		A	Rect. pulse	tion and with rated V _{RRM} applied
		200		Surge applied at single phase, 60l	rated load conditions halfwave, Hz
E _{AS}	Nn-Repetitive Avalanche Energy	10	mJ (PerLeg)T _J = 25°	C, I _{AS} =2Amps,L=5mH
I _{AR}	Repetitive Avalanche Current	2	Α	Current decaying I	inearly to zero in 1 µsec
(Per Leg)				Frequency limited	by T _J max. V _A =1.5 x V _R typical

Electrical Specifications


Parameters		Values	blits	Conditions	
V_{FM}	Max. Forward Voltage Drop	0.76	V	@ 30A	T _J = 25 °C
	(1)	0.6	V	@ 20A	T 407.00
		0.72	V	@ 30A	T _J = 125 °C
I _{RM}	Max. Instantaneus Reverse Current	1	mA	T _J = 25 °C	Rated DC voltage
	(1)	100	mA	T _J = 125 °C	Rated DC Voltage
V _{F(TO)}	Threshold Voltage	0.29	V	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance	13.6	mΩ		
C _T Max. Junction Capacitance		8 0	pF	$V_R = 5V_{DC}$ (test signal range 100Khz to 1Mhz) 25°C	
L _S Typical Series Inductance		80	nH	Measured from top of terminal to mounting plane	
dv/dt Max. Voltage Rate of Change		10000	V/ µs	(Rated V _R)	

Thermal-Mechanical Specifications

(1) Pulse With ≺300 µs, Duty Cycle 23%

	Parameters		Values	blits	Conditions
T _J	Max. Junction Temperature Range		-65 to 15	0 °C	
T _{stg}	Max. Storage Temperature Range		-65 to 17	5 °C	
R _{thJC}	Max. Thermal Resistance Junction to Case (Per L	eg)	1.5	°C/\	VDC operation
R _{thCS}	Typical Thermal Resistance Case to Heatsink		0.50	°C/\	Wounting surface, smooth and greased Only for TO-220
R _{thJA}	A Max. Thermal Resistance Junction to Ambient		50	°C/\	VDC operation For D ² Pak and TO-262
wt	Approximate Wght		2 (0.07)	g (oz	.)
Т	Mounting Torque	Min.	6(5)		m bh-lubricated threads
		Max.	12(10)	(lbf-	n)
	Device Marking		MBRB30CT		Case style D ² Pak
			MBR30CT-1		Case style TO-262

Document Number: 94310

Bulletin PD-21046 rev. A 07/06

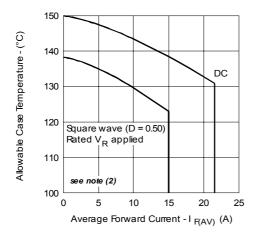


Fig. 5-Max. Allowable Case Temperature Vs. Average Forward Current (PerLeg)

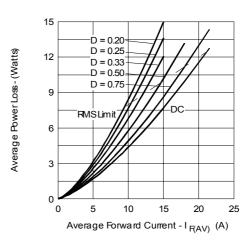
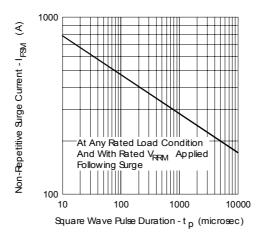
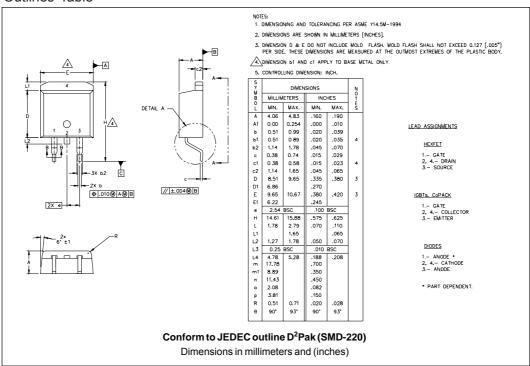
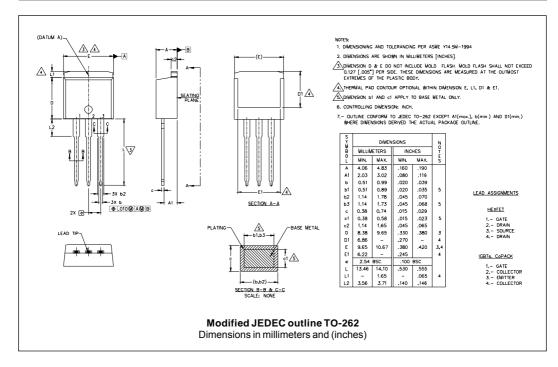


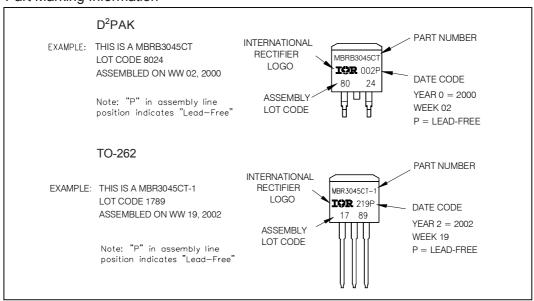
Fig. 6-Forward Power Loss Characteristics (PerLeg)

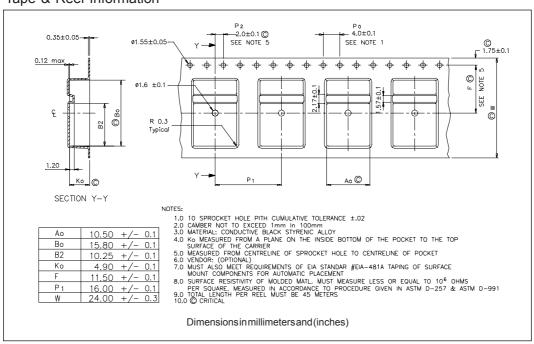




Fig. 7-Max. Non-Repetitive Surge Current (PerLeg)

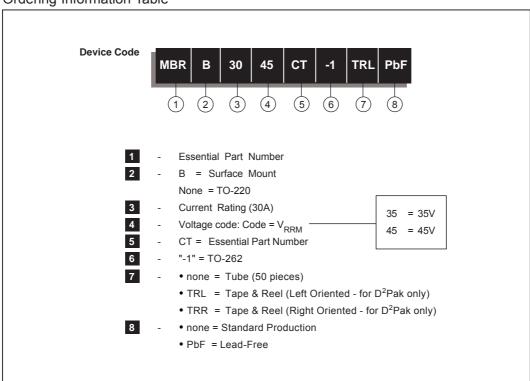
(2) Formula used: $T_C = T_J^-(Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R(1 - D)$; $I_R @ V_{R1} = rated V_R$

Bulletin PD-21046 rev. A 07/06


Outlines Table



Part Marking Information



Tape & Reel Information

Bulletin PD-21046 rev. A 07/06

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07