FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- Zero propagation delay, zero ground bounce
- TTL-compatible input and output levels
- Undershoot clamp diodes on all switch and control pins
- Available in 56-pin SSOP and TSSOP Packages

DESCRIPTION:

TheQS316292 is a high-speedCMOS12-bit2:1 multiplexer/demultiplexer switch with a 500Ω resistor termination to GND on the demultiplexer side to eliminate floating nodes. The low ON resistance of the QS316292 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise.

The QS316292 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

APPLICATIONS

- Resource sharing
- Hot-docking
- Voltage translation (5V to 3.3 V)

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SSOP/ TSSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description		Max.	Unit
Vterm ${ }^{(2)}$	Supply Voltage to Ground		-0.5 to +7	V
Vterm ${ }^{(3)}$	DC Switch Voltage Vs		-0.5 to +7	V
Vterm ${ }^{(3)}$	DC Input Voltage VIN		-0.5 to +7	V
Vac	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns}$)		-3	V
lout	DC Output Current		120	mA
Pmax	Maximum Power Dissipation ($\mathrm{TA}=85^{\circ} \mathrm{C}$)	SSOP	. 93	W
		TSSOP	. 77	
TstG	Storage Temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc Terminals.
3. All terminals except Vcc.

CAPACITANCE

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{VIN}=0 \mathrm{~V}, \mathrm{VOUT}=0 \mathrm{~V}\right)$

Pins	Typ.	Max. ${ }^{(1)}$	Unit
Control Inputs	4	5	pF
Quickswitch Channels (Switch OFF)	7.5	9	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	$1 / O$	Description
${ }_{1} A 1-{ }_{12} A 1$	$1 / 0$	Bus A
$1 B n-12 B n$	$1 / 0$	Bus B
S	I	Data Select

FUNCTION TABLE(1)

\mathbf{S}	xA_{1}	Function
L	xB 1	xA 1 to $\mathrm{xB} 1, \mathrm{xB} 2$ to GND through 500Ω
H	xB 2	xA 1 to $\mathrm{xB2} 2, \mathrm{xB} 1$ to GND through 500Ω

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
lin	Input Leakage Current (Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
Ioz	Off-State Current (Hi-Z)	OV \leq Vout \leq Vcc, Switches OFF	-	-	± 1	$\mu \mathrm{A}$
los	Short Circuit Current	$\mathrm{A}(\mathrm{B})=0 \mathrm{~V}$ B $(\mathrm{A})=\mathrm{Vcc}$	-100	-	-	mA
VIK	Clamp Diode Voltage	$\mathrm{VcC}=$ Min., $\mathrm{lin}=-18 \mathrm{~mA}$	-	-0.7	-1.2	V
VH	Input Hysterisis at Control Pins	-	-	150	-	mV
Ron	Switch ON Resistance ${ }^{(2)}$	$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{VIN}=0 \mathrm{~V}$, ION $=30 \mathrm{~mA}$	-	5	7	Ω
Ron	Switch ON Resistance ${ }^{(2)}$	$\mathrm{VcC}=\mathrm{Min} ., \mathrm{VIN}=2.4 \mathrm{~V}$, $\mathrm{ION}=15 \mathrm{~mA}$	-	10	14	Ω
Vp	Pass Voltage ${ }^{(3)}$	VIN $=\mathrm{VCc}=5 \mathrm{~V}$, IOUT $=-5 \mu \mathrm{~A}$	3.7	4	4.2	V

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$.
2. Max value of Ron is guaranteed but not production tested.
3. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Tyo.	Max.	Unit
IccQ	Quiescent Power Supply Current	Vcc $=$ Max., VIN $=$ GND or Vcc, $f=0$	0.1	3	$\mu \mathrm{~A}$
$\Delta \mathrm{ICC}$	Power Supply Current per Control Input HIGH ${ }^{(2)}$	Vcc $=$ Max., VIN $=3.4 \mathrm{~V}, \mathrm{f}=0$	-	1.5	mA
ICCD	Dynamic Power Supply Current per MHz ${ }^{(3)}$	Vcc $=$ Max., A and B pins open Control Input Toggling at 50% Duty Cycle	-	0.25	$\mathrm{~mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per TLL driven input $(\mathrm{VIN}=3.4 \mathrm{~V})$. A and B pins do not contribute to $\Delta \mathrm{lcc}$.
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant $A C$ or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$
CLOAD $=50 \mathrm{pF}$, RLOAD $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{(1)}$	Typ.	Max.	Unit
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Data Propagation Delay ${ }^{(2,3)}$ xA 1 to $\mathrm{xBn}, \mathrm{xBn}$ to $\mathrm{xA} 1_{1}$	-	-	$0.25{ }^{(3)}$	ns
$\begin{aligned} & \text { tPZL } \\ & \text { tPZH } \\ & \hline \end{aligned}$	Switch Turn-on Delay ${ }^{(4)}$ S to xA_{1} or xBn	1.5	-	6.5	ns
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Switch Turn-off Delay ${ }^{(2)}$ S to $\mathrm{xA} 1, \mathrm{xBn}$	1.5	-	6.2	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The time constant for the switch alone is of the order of 0.25 ns for $\mathrm{CL}=50 \mathrm{pF}$. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
4. Switch turn-on delay from S to $\times \mathrm{Bn}$ is guaranteed but not production tested.

ORDERING INFORMATION

[^0]
[^0]: *To search for sales office near you, please click the sales button found on our home page or dial the 800\# above and press 2. The IDT logo, QuickSwitch, and SynchroSwitch are registered trademarks of Integrated Device Technology, Inc.

