

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

April 1988 Revised September 2000

74F112

Dual JK Negative Edge-Triggered Flip-Flop

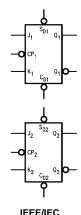
General Description

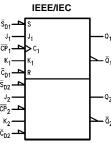
The 74F112 contains two independent, high-speed JK flipflops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on $\overline{\mathbb{S}}_{\mathbb{D}}$ or $\overline{\mathbb{C}}_{\mathbb{D}}$ prevents clocking and forces Q or $\overline{\mathbb{Q}}$ HIGH, respectively.

Simultaneous LOW signals on \overline{S}_D and \overline{C}_D force both Q and \overline{Q} HIGH.

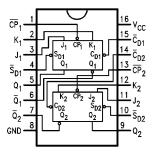
Asynchronous Inputs:

LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock


Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH


Ordering Code:

Order Number	Package Number	Package Description
74F112SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F112SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F112PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

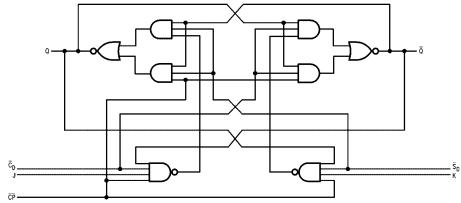
Connection Diagram

Unit Loading/Fan Out

Din Names	December 1	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	1.0/1.0	20 μA/-0.6 mA	
\overline{CP}_1 , \overline{CP}_2	Clock Pulse Inputs (Active Falling Edge)	1.0/4.0	20 μA/–2.4 mA	
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	1.0/5.0	20 μA/–3.0 mA	
\overline{S}_{D1} , \overline{S}_{D2}	Direct Set Inputs (Active LOW)	1.0/5.0	20 μA/–3.0 mA	
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	50/33.3	−1 mA/20 mA	

Truth Table

		Outputs				
\overline{s}_{D}	\overline{c}_{D}	CP	J	K	Q	Q
L	Н	Х	Х	Χ	Н	L
Н	L	Χ	Х	Χ	L	Н
L	L	Χ	Х	Χ	Н	Н
Н	Н	\sim	h	h	\overline{Q}_0	Q_0
Н	Н	\sim	1	h	L	Н
Н	Н	\sim	h	1	Н	L
Н	Н	~	I	I	Q_0	\overline{Q}_0


H (h) = HIGH Voltage Level L (l) = LOW Voltage Level X = Immaterial

 $\begin{array}{lll} & & \\ \sim & = \text{HIGH-to-LOW Clock Transition} \\ & & \\$

Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition.

Logic Diagram

(One Half Shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias $-55^{\circ}C$ to $+150^{\circ}C$ V_{CC} Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC}

3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

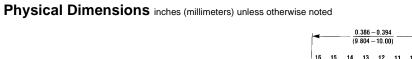
Recommended Operating Conditions

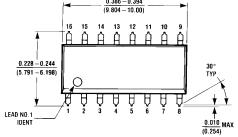
Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

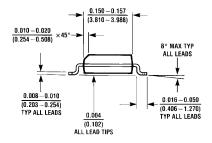
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

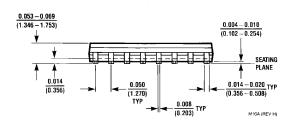
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

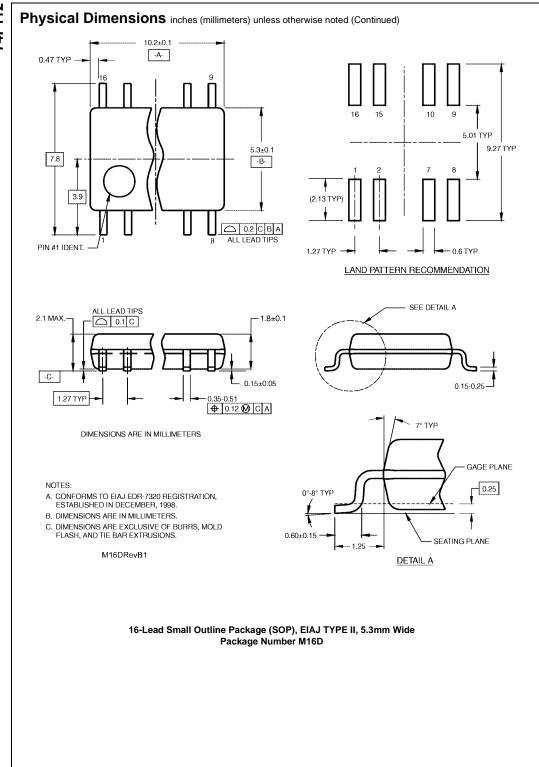

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage	5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	N.45	I 00 A	
	Voltage			0.5		J.5 V	Min	I _{OL} = 20 mA	
I _{IH}	Input HIGH				5.0	^	May	1/ 2.71/	
	Current				5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current				7.0	^	Max	1/ 7.01/	
	Breakdown Test				7.0	μΑ	iviax	$V_{IN} = 7.0V$	
I _{CEX}	Output HIGH				50		Max	V V	
	Leakage Current				50	μΑ	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$	
	Test							All other pins grounded	
l _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV	
	Circuit Current							All other pins grounded	
I _{IL}	Input LOW Current				-0.6			$V_{IN} = 0.5V (J_n, K_n)$	
					-2.4	mA	Max	$V_{IN} = 0.5V (\overline{CP}_n)$	
					-3.0			$V_{IN} = 0.5V (\overline{C}_{Dn}, \overline{S}_{Dn})$	
los	Output Short-Circuit Current	l	-60		-150	mA	Max	V _{OUT} = 0V	
Іссн	Power Supply Current			12	19	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			12	19	mA	Max	V _O = LOW	

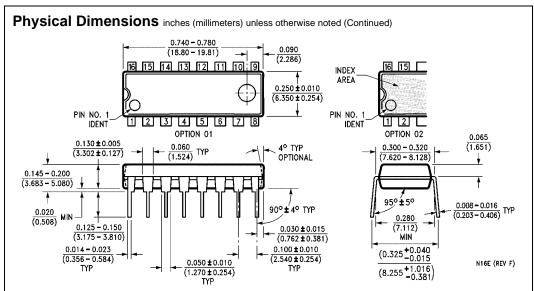

AC Electrical Characteristics


Symbol	Parameter	$T_A = +25$ °C $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = 0$ °C to $+70$ °C $V_{CC} = +5.0V$ $C_L = 50$ pF		Units	
		Min	Тур	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency	85	105		80		MHz	
t _{PLH}	Propagation Delay	2.0	5.0	6.5	2.0	7.5	no	
t _{PHL}	\overline{CP}_{n} to Q_{n} or \overline{Q}_{n}	2.0	5.0	6.5	2.0	7.5	ns	
t _{PLH}	Propagation Delay	2.0	4.5	6.5	2.0	7.5	20	
t _{PHL}	\overline{C}_{Dn} , \overline{S}_{Dn} to \overline{Q}_n , \overline{Q}_n	2.0	4.5	6.5	2.0	7.5	ns	


AC Operating Requirements

	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$		Units	
Symbol							
		Min	Max	Min	Max		
t _S (H)	Setup Time, HIGH or LOW	4.0		5.0			
t _S (L)	J_n or K_n to \overline{CP}_n	3.0		3.5		ns	
t _H (H)	Hold Time, HIGH or LOW	0		0		115	
t _H (L)	J_n or K_n to \overline{CP}_n	0		0			
t _W (H)	CP Pulse Width	4.5		5.0		ns	
t _W (L)	HIGH or LOW	4.5		5.0		115	
t _W (L)	Pulse Width, LOW \overline{c}_{Dn} or \overline{S}_{Dn}	4.5		5.0		ns	
t _{REC}	Recovery Time \overline{S}_{Dn} , \overline{C}_{Dn} to \overline{CP}	4.0		5.0		ns	





16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com